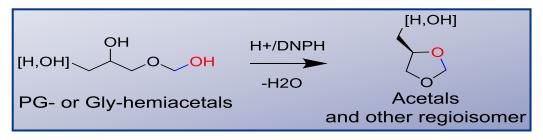

Evaluation of the Formaldehyde Hemiacetals and Acetals Relevant to Electronic Cigarettes

Xiaohong Cathy Jin, Karen C. Avery, Regina M. Ballentine, William P. Gardner, Willie J. McKinney, <u>Matt S. Melvin</u>, Yezdi B. Pithawalla, Donna C. Smith and Karl A. Wagner

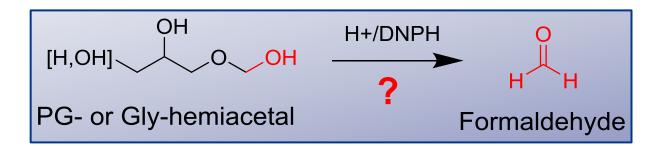

Background

- Formaldehyde is recommended for reporting in the FDA draft guidance for e-vapor products¹
- Methods for determination of formaldehyde typically use 2,4-Dinitrophenylhydrazine (DNPH) derivatization followed by analysis of the resulting hydrazone:
 - EPA method 8315A for waste water, air samples, etc.²
 - CORESTA CRM 74 for cigarette smoke³
 - Various methods for e-vapor products⁴

"Hidden Formaldehyde" (Jensen *et al.*)

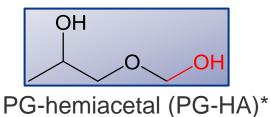
- Reported presence of formaldehyde hemiacetals of propylene glycol (PG) or glycerin (Gly) in e-vapor aerosol⁵
- Suggested conversion of hemiacetal to acetal in acidic DNPH solution⁶

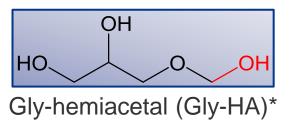
 Claimed that the commonly-used DNPH methods underestimate formaldehyde levels in e-vapor


Altria Client Services

Objective

- Evaluate the DNPH method performance for analysis of formaldehyde in e-vapor aerosol:
 - 1. Do PG- and Gly-hemiacetals hydrolyze to formaldehyde in acidic DNPH solution?
 - 2. Do PG- and Gly-hemiacetals convert to the corresponding acetals in acidic DNPH solution?
- Evaluate if acetals are formed in e-vapor aerosol


Do PG and Gly-hemiacetals Hydrolyze to Formaldehyde in <u>Acidic DNPH Solution</u>?



Approach

- Do hemiacetals hydrolyze to formaldehyde?

- Add PG-HA or Gly-HA to acidic DNPH solution
- Determine formaldehyde by UPLC/MS

* Custom synthesized by Dr. Sönke Peterson (Worms, Germany)

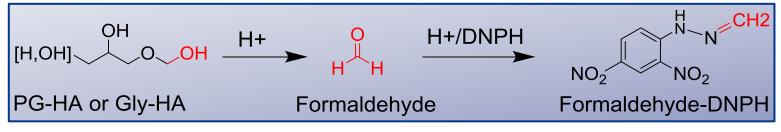
LC/MS Method for the Analysis of Formaldehyde

- Do hemiacetals hydrolyze to formaldehyde?

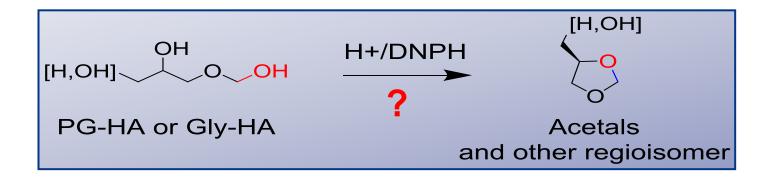
Parameters	
Instrumentation	UHPLC-MS
Column	BEH C18 (1.7µm)
Ionization mode	ESI negative, SIM
Trapping solution	DNPH in acetonitrile w/perchloric acid
Internal standard	Formaldehyde-DNPH-d3
Calibration range	0.01 - 4 μg/mL (1.5 - 60 μg/g)
Limit of quantification	1.5 µg/g
Recovery	97 - 105%

Results

- Do hemiacetals hydrolyze to formaldehyde?

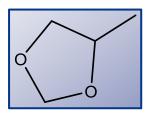

	Formaldehyde theoretical (µg/mL)	Formaldehyde determined (µg/mL)	Recovery (%)
PG-HA (3.19 µg/mL)	0.93	0.96	103
Gly-HA (5.86 µg/mL)	1.44	1.50	104

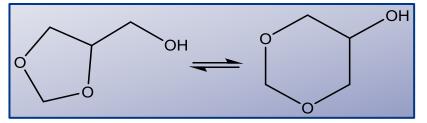
- PG-HA and Gly-HA quantitatively release formaldehyde and form the corresponding hydrazone in acidic DNPH solution
- ➤ These results corroborate those reported by PMI (Knorr, *et al.*)⁷


Summary

- Do hemiacetals hydrolyze to formaldehyde?
- PG-HA and Gly-HA quantitatively hydrolyze to formaldehyde in acidic DNPH solution
 - These hemiacetals rapidly hydrolyze in acidic DNPH solution to release formaldehyde
 - The secondary reaction with DNPH to form the hydrazone drives the equilibrium to release more formaldehyde

Do PG-HA and Gly-HA Convert to the Corresponding Acetals in <u>Acidic DNPH Solution</u>?




Approach

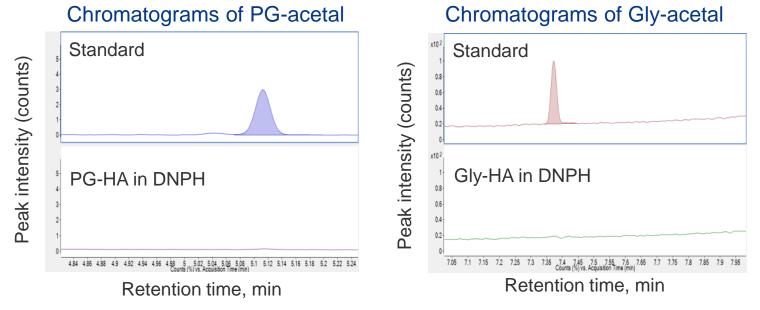
- Do hemiacetals convert to acetals?

- PG-HA and Gly-HA added to acidic DNPH solution (~5µg/mL)
- Determine PG- and Gly-acetals by GC/MS

PG-acetal (4-methyl-1,3-dioxolane)

Gly-acetals (4-hydroxymethyl-1,3-dioxolane and 5-hydroxy-1,3-dioxane)

GC/MS Method for the Analysis of Acetal


- Do hemiacetals convert to acetals?

Parameters	
Instrument	GC/MS
GC column	Restek Rtx 624
Ionization mode	EI
Acquisition mode	SIM
Extraction / trapping	Dichloromethane (DCM)
Internal standard	2,3-Hexadione
Calibration range	0.01 - 1 μg/mL (0.8 - 80 μg/g)
Limits of quantification	0.8 µg/g

Results

- Do hemiacetals convert to acetals?

PG- and Gly-acetals were not formed

Summary

- Do hemiacetals convert to acetals?

 PG-HA and Gly-HA do not convert to the corresponding acetals in acidic DNPH solution

Are PG-Acetal or Gly-Acetals Formed in <u>Aerosol</u>?

Approach

- Do acetals form in e-vapor aerosol?

 Investigate acetal formation during aerosol generation by analyzing the e-liquid and the corresponding e-vapor

Experimental

- Do acetals form in e-vapor aerosol?

- 0.25 g e-liquid + 20 mL DCM , or
- 50 puff block collection (55 cc/30 s/5 s)
- CFP + chilled impinger (20 mL DCM)
- 100 µL ISTD (2,3-Hexadione)
- 2 mL water

• GC/MS analysis (DCM layer)

3

Results

Altria Client Services

- Do acetals form in e-vapor aerosol?

Sample	e-Liquid Composition	PG-Acetal (µg/g)		Gly-Acetal (µg/g)	
		e-liquid	aerosol	e-liquid	aerosol
Control	PG:Gly (50:50) (2.5% Nic, 15% H20)	ND*	ND*	ND*	ND*
e-Cig A	Menthol (3.5% Nic)	ND*	ND*	<0.8	<0.8
e-Cig B	Non Menthol (3.5% Nic)	ND*	ND*	1.2±0.1	1.0±0.1

ND*: Not detected or <LOD (PG-acetal: 0.2ng/g, Gly-acetal: 0.3ng/g)

PG- and Gly-acetals do not form during aerosolization process for the cig-a-like devices tested

Conclusions

- PG- and Gly-hemiacetals can be determined and reported as formaldehyde when using acidic DNPH
 - Quantitatively hydrolyze to release formaldehyde which forms the hydrazone in acidic DNPH solution
 - Do not convert to the respective acetals in acidic DNPH solution
- PG- and Gly-acetals are not formed during the aerosolization process for cig-a-like type products
 - Our results demonstrate that commonly-used DNPH methods are fit for the analysis of formaldehyde in e-vapor products
 - Our results <u>contradict</u> the reported claim that "Hidden Formaldehyde" in e-vapor products causes the underreporting of formaldehyde

References

- 1. FDA Draft Guidance for Industry, Premarket Tobacco Product Applications for Electronic Nicotine Delivery Systems, 2016
- 2. EPA method 8315A "Determination of Carbonyl Compounds by High Performance Liquid Chromatography" Rev.1, 1996
- 3. CORESTA CRM 74 "Determination of Selected Carbonyls in Mainstream Cigarette Smoke by HPLC", Rev.4, 2018
- 4. Flora, J.W., Wilkinson, C.T.; Wilkson J. W.; Lipowicz P. J.; Skapars J. A.; Anderson, A.; and Miller J. H., Method for determination of Carbonyl Compounds in E-Cigarette Aerosols, J Chromatogr Sci. 2017 Feb; 55(2): 142-148
- 5. Jensen R.P.; Luo W.; Pankow J. F.; Strongin R. M.; and Peyton D. H., Hidden Formaldehyde in E-Cigarette Aerosols, N. ENGL. J. MED. 372:4, NEJM.ORG, JANUARY 22, 2015
- Salamanca J.C.; Ian, M.; Escobedo J. O.; Jensen R. P.; Shaw A.; Campbell R.; Luo W.; Peyton D. H.; Strongin R. M., Formaldehyde Hemiacetal Sampling, Recovery, and Quantification from Electronic Cigarette Aerosols, Scientific reports, 7:11044, September 8, 2017,
- Knorr A.; Gautier L.; Tekeste E.; Buchholz C., Almstertter M.; Arndt D.; Bently M., Formaldehyde-Glycerol Hemiacetal _Absence of "Hidden" Formaldehyde in THS 2.2 Aerosols, <u>https://www.researchgate.net/publication/291833243</u>

Reducing risk. Expanding choice. Altria.

For copies of this presentation visit the Altria's Science Website at <u>www.altria.com/alcs-science</u>

Altria Client Services | Xiaohong Cathy Jin | October 23, 2018 | CORESTA 2018 ST07 21