Infrared Thermal **Imaging Applied to E-Cigarette Heater Core Temperature** Measurement

CORESTA 10.24.2018 Frank S. Higgins, Jim Skapars, and Mark J. Rusyniak

Introduction

- FDA PMTA Draft Guidance for ENDS* recommends providing information on "design parameters that would be affected by and that would affect aerosolizing apparatus performance"
- Characterization of device temperatures is important, as changes in temperature can result in changes in aerosol ingredients
- It is difficult to accurately measure temperature in ENDS devices using standard methodologies (e.g. thermocouples)

*FDA, May 2016. Premarket Tobacco Product Applications for Electronic Nicotine Delivery Systems, Guidance for Industry, Draft Guidance. Page 39, line 1569-1571, Food and Drug Administration, Rockville, MD. Altria Client Services | Frank Higgins | 10/24/2018 | CORESTA 2018

Limitations of Thermocouple (TC) Heater Core Measurement

- Difficult to position TC in heater core (heater assembly)
 - TC's are Fragile
 - Time consuming to insert TC and prevent movement
 - Location reproducibility of the TC is a problem
- TC is single point measurement
- TC mounted in heater assembly acts as a heat sink to surrounding areas
- Presence of TC in heater assembly may disturb airflow and interfere with wicking

FLIR[®] Imaging

- Profiles entire heater core
- Realtime measurement
 - Fast response time (30 frames per second)
 - Captures the hottest point of a puff (i.e. hottest frame)
- Capable of auto triggering
- Labview automation for pump puff activation and FLIR[®] activation
 - Any sequence of puffs can be recorded
 - Puff duration and volume can be changed

ENDS Schematic

Infrared thermal imaging through the front of the cartridge

Optical Resolution – FLIR[®] E-cigarette Setup

- Optimized optical resolution allows for high spatial resolution of temperature measurements
 - 45µm/pixel
- Working distance = 0.04m
 - Using 0.5in extension ring
 - 25mm Lens
 - Focal plane array detector pixels (frame size) = 640x512

Emissivity Determination

- IR cameras (FLIR[®]) measure radiance
 - FLIR[®] calibrations convert radiance to temperature
 - Uses known constants and input parameters
 - Emissivity

Altria Client Services

- Reflected temperature (environment)
- Working distance
- Ambient air temperature
- Relative Humidity
- External optics temperature
- Emissivity is the most critical parameter
 - Opaque target objects
 - Radiance = Emissivity + Reflectivity

Object Parameters 📃 🗖	
✓ Override Camera/File	
Object	
Emissivity (0 to 1):	0.96
Distance (m):	0.040
Reflected Temp (°C):	25.5
Atmosphere	
Atmospheric Temp (°C):	23.0
Relative Humidity (%):	52.4
Transmission (0 to 1):	0.99
External Optics	
Temperature (°C):	29.8
Transmission (0 to 1):	1.00

Emissivity Determination

- ASTM E1933-14, "Standard Practice for Measuring and Compensating for Emissivity Using Infrared Imaging Radiometers," 2014.
- Surface modification
 - Heater core is half painted with a high emissivity paint
 - Black Header Paint (704-1093°C, Flame Proof, Silica-Ceramic Coating), recommended by FLIR[®]
 - Emissivity = 0.99

Emissivity Determination

Altria Client Services

- Custom built emissivity fixture
- Temperature controlled aluminum block
- Allows heater core materials to be mounted securely in direct contact with block
- TC and heating elements are connected to a temperature controller

Heater Core Temp Measurement

Atomizer Cross-sectioned to expose heater core

Altria Client Services

FLIR® Image of a heater core

FLIR[®] Movie – Puff Duration (5s) & Volume (55cc), w/ TC Mounted

Temporal Plot – Puff Duration (5s) & Volume (55cc), w/ TC Mounted

Hottest Frame #161 – TC Mounted

- TC temperature agrees with FLIR[®] Mean Temperatures
 - Pixels adjacent to the TC
- TC does not measure the hottest temperatures
 - Heat sinking
 - Positioning

Apparatus Setup – FLIR[®] w/ Pump

Setup for FLIR[®] Imaging

Stream of nitrogen gas is used to prevent condensation of vapors onto the FLIR[®] lens

FLIR[®] Imaging Parameters

CORESTA Puff Profile*:

- 55cc Puff Volume*
- 3s* and 5s Puff Durations
- Square Wave Puff Profile*
- 30s Puff Interval*
- Positive pressure
- Max = Peak temperature attained in the heater zone at the hottest point during the puff (hottest spot of heater zone)
- Mean = Average temperature attained in the heater zone at the hottest point during the puff
- FLIR[®] factory default calibration range is 150-350°C
- We employ a custom calibration with a neutral density filter to extend the temperature range (180-464°C)
 - Segmentation is used to only include the heater zone in mean temperature calculations, values >181°C

Summary Averaged Temps – Single Cartridge thru One Charged Battery

- Same e-liquid, N=3
- Single battery for each replicate, 140 puffs
- Puff duration: 3s and 5s
- Prototype batteries:
 - B1 (no temperature cutoff)
 - B2 (with temperature cutoff)
- Both batteries are far below carbonyl forming temps, 350-400°C
 - Mean temperatures 212-217°C
 - Max temperatures 247-265°C

Altria Client Services | Frank Higgins | 1 10/24/2018 | CORESTA 2018 17

Summary Averaged Temps, Single Cartridge thru Two Fully Charged Batteries

- Simulating dry wicking
- Same e-liquid, N=3

Altria Client Services

- Two batteries for each replicate
 - First Battery (puffs 1-140)
 - Second battery (puffs 141-220)
- B1 batteries indicate max temps >350°C
- B2 with 3s puff duration <350°C
- B2 with 5s puff exceeds 350°C briefly
 - How long and how much?

Thermal Imaging Video Capture–B1 and B2 Batteries

- Hottest point of puff 160 for each battery
 - 5s puff duration

No cutoff B1 battery, captured image near the end of the 5s puff

Temp cutoff B2 battery, captured image prior to cutoff (~2.2s)

E-liquid 1 Mean Temperature vs. Time, Puff 160

Altria Client Services

Altria Client Services | Frank Higgins | 1 10/24/2018 | CORESTA 2018 20

E-liquid 1 Max Temperature vs. Time, Puff 160

Altria Client Services

Simultaneous FLIR[®] & FTIR Formaldehyde Analysis

Vapors produced during each puff are simultaneously measured by FLIR thermal imaging and FTIR for formaldehyde concentration

 Vapors drawn into FTIR using temperature controlled tubing

FLIR Heater Zone Temp w/ Real-Time FTIR Formaldehyde

Altria Client Services

In this example, Formaldehyde begins to evolve between 350-400°C, using B1 battery.

Conclusions

- FLIR[®] imaging overcomes drawbacks of thermocouple heater core measurements of ENDS devices.
- FLIR[®] imaging provides real time puff by puff temperature data, which can be automated.
- Emissivity and other parameters can be determined using ASTM methods and confirmed using thermocouple measurements.
- FLIR[®] measurements of the heater zone mean and max temperatures from the hottest frame during a puff provides consistent comparison of different e-liquids and ENDS devices.
- FLIR[®] imaging and FTIR gas analysis can be simultaneously used to provide real-time formaldehyde measurements and heater core temperatures.

ria Client Services

Acknowledgments

- Mike Ward
- David Cohen (NuMark Innovations)

Reducing risk. Expanding choice. Altria.

For copies of this presentation visit the Altria's Science Website at <u>www.altria.com/alcs-science</u>

