Estimation of Second Hand Exposure Levels from ENDS and Conventional Cigarette Use, Using Computational Modeling

Ali A. Rostami*, Jeffery S. Edmiston, George D. Karles

Altria Client Services LLC, Research, Development and Sciences, Richmond, VA 23219, USA Society for Research on Nicotine and Tobacco, 24th Annual Meeting, February 21-24, 2018, Baltimore, MD, USA

This poster may be accessed at www.altria.com/ALCS-Science

ABSTRACT

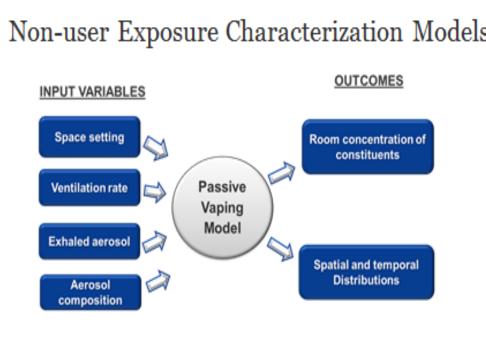
The pre-market tobacco product application (PMTA) draft guidance for an electronic nicotine delivery system (ENDS) recommends providing data that adequately characterize the likely impact of the new product on the health of both users and non-users of the tobacco product. Further, during the public seminar on PMTA for ENDS (November 2016), FDA suggested that when discussing the impact on nonusers, second-hand, and third-hand

well-established physical laws of mass transfer, air flow, and thermodynamic relationships. The model has been constituents over time in pre-defined spaces based on the presence of selected constituents in the exhaled breath of ENDS users, or side stream smoke of burning cigarette. The amount of selected constituents in exhaled breath when using an e-vapor device, was determined experimentally in controlled clinical trials. The side stream smoke data were identified from the published literature.

The model was applied to various space settings such as a car, a private office and a restaurant. Equivalent product use conditions (number of users, product consumption, length of use) for ENDS and conventiona cigarettes were used in order to compare the estimated levels of nicotine, formaldehyde, propylene glycol,

Results indicate that the estimated concentration of nicotine in each space setting due to exhaled aerosol from a cig-a-like ENDS product was approximately 20 times less than a conventional cigarette and two orders of magnitude less than the OSHA permissible limit. The estimated value for formaldehyde during ENDS use was three orders of magnitude less than during cigarette use and between four and five orders of magnitude less than the OSHA limit. The concentrations of propylene glycol and glycerin in each space were also estimated to be orders of magnitude less than the NIOSH and OSHA limits. More data are needed before extending our findings to open tank, modifiable systems.

INTRODUCTION


Development of methodologies that advance our scientific understanding and ability to estimate exposure of users and non-users to ENDS aerosol is critical for characterizing the health impact of ENDS products on the population as a whole.

Computational models have a long history of use for estimating and predicting air quality and the level of chemicals in indoor environments (NRC 2007). Models of both indoor and outdoor air quality assessment have been referenced by the US Environmental Protection Agency (EPA) as predictive tools for scientific and educational purposes (EPA 2014, EPA 2015, EPA 2016)

OBJECTIVE

Use computational modeling, validated by experimental data, as a tool to estimate concentrations of aerosol constituents in several confined spaces where ENDS or combustible cigarettes are used.

MODEL DEVELOPMENT

Physics-based models that include fluid flow, mass and heat transfers along with thermodynamic and kinetic interactions

Two Types of Computational Models [7]

Models based on principles similar to those used in the indoor air quality assessment models, referred to by the EPA

Well-mixed Model

space as a function of time

Total, vapor and particular concentrations of each constituent in air

concentrations of each constituent in air

Distributed CFD Model

Verification

Space volume: 100 m³

Air change rate: 5 ACH

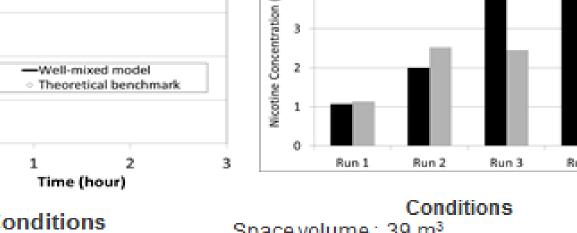
Controlled Clinical Study [8]:

Measured room air levels of

selected constituents over 4

every 30 min for 4 hours on a

9 individuals took 10 puffs

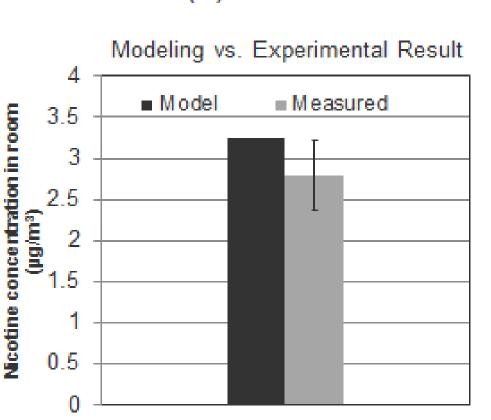

cig-a-like

e-vapor product

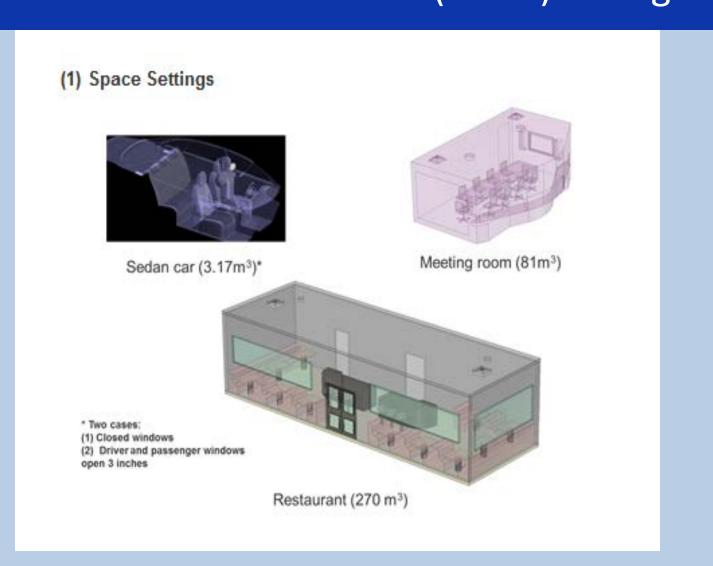
5s puff duration

Duration: 2 hours

VERIFICATION AND VALIDATION


Space volume: 39 m³ Air change rate (ACH): 6.8 (runs 2-4), 9.8 (run

Validation (1)


Number of occupants in roor Smoking machine generated aerosol 10 Rate of release of constituent: 7 puffs (runs 1.

2) and 15 puffs (runs 3, 4)

Validation (2)

INPUT DATA: Exhaled Aerosol (ENDS) vs. Cigarette

INPUT DATA (cont.)

(2) Number of users and duration of use Car (closed windows) Car (open windows) Meeting room 100a Restaurant • 15.1% of adult population (CDC, 2016)- rounded up for the meeting room

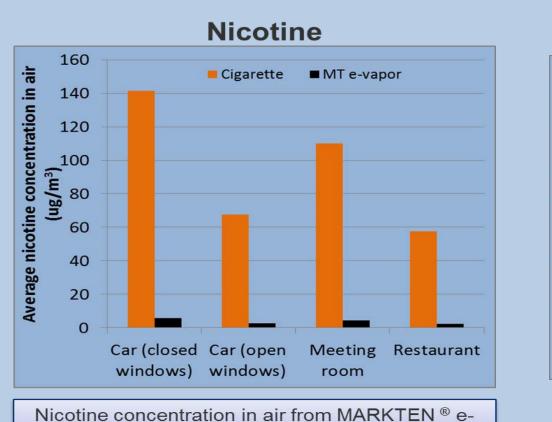
(3) Product consumption

902 mg per day (daily cartridge weight change [in-clinic 16hrs ad libitum use, ALCS, unpublished data])

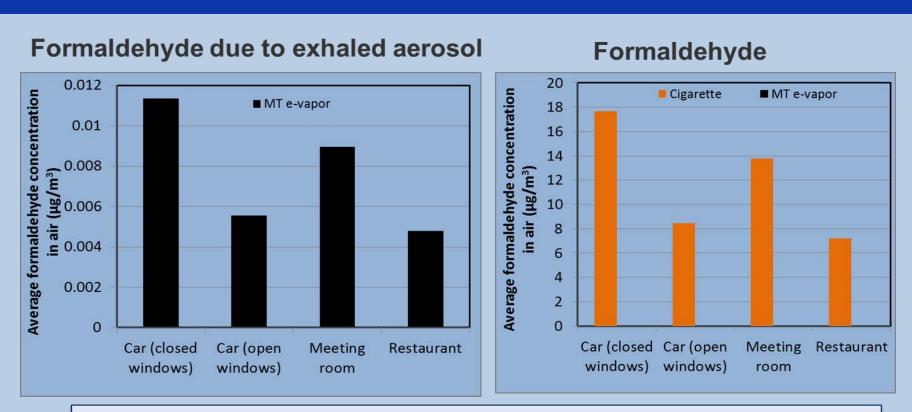
(4) Constituents released per unit base

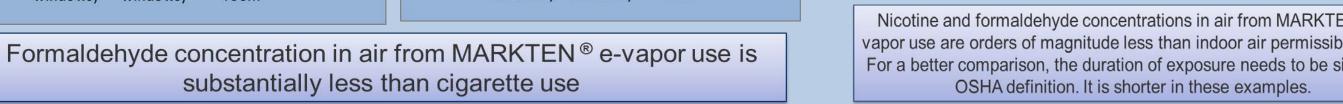
	ug per cigarette	ug exhaled/mg
Constituent	consumed *	consumed
	(side stream) [9]	[6]
Nicotine	5600	4.2207
Formaldehyde	700	0.0083
Glycerin	NA	162.1175
PĞ	NA	83.8625
Acetaldehyde	4200	BDL
Acrolein	1300	BDL
Menthol	NA	0.53

Side stream smoke is the primary source of second hand exposure. Contributions from the exhaled smoke are not included here.


(5a) Rate of release by all users: cigarette

			Nico	ane Form	aldehyde	Acetaldehyde	Acrolein
Meeting Room	15°	38	27,4	18 2,10	0	12,600	3,900
Car (closed windows)	4	2	11,2	200 1,40	0	8,400	2,600
Car (open windows)	4	2	11,2	200 1,40	0	8,400	2,600
Bar/restaurant	100°	15	84,0	000 10,5	00	63,000	19,500
Rate of re	lease b	y all ι	ısers:	MAR	KTE	V® e-vap	or
Rate of re	lease b	y all t				V® e-var aled rate (µç	
Rate of re		_					
	Number of	Number	Tot	al (all us	ers) exh	aled rate (με	J/hr) Menthol
Space	Number of occupants	Number of users	Tot Nicotine	al (all us	PG PG	aled rate (µç	Menthol 89.634
Space Meeting Room Car	Number of occupants	Number of users	Nicotine 714	Glycerol 27,418	PG 14,183	Formaldehyde	g/hr)


Number of Number Total (all users) release rate (µg/hr)


Maximum capacity: ANS/ASHRAE Standard 62.1-2004, Ventilation for Acceptable Indoor Air Quality.

RESULTS for Room Concentrations: Exhaled Aerosol (ENDS) vs. Cigarette

vapor use is significantly less than cigarette use

Other Constituents

Average acetaldehyde concentration in air (µg/m³)

	Cigarette	MARKTEN® e-vapor	OSHA PEL
ar (closed windows)	34.12	0	36,0000
ar (open windows)	16.32	0	36,0000
eeting room	26.56	0	36,0000
estaurant	13.86	0	36,0000

Average a	crolein	concentra	ation in air (µ	ıg/m³)
			MARKTEN®	

	Cigarette	MARKTEN® e-vapor	OSHA PEL
Car (closed windows)	106.15	0	250
Car (open windows)	50.80	0	250
Meeting room	82.63	0	250
Restaurant	43.12	0	250

Other Constituents Average propylene glycol concentration in air (ug/m³)

N/A		
IN//C\	114.74	36,0000
N/A	56.09	36,0000
N/A	90.66	36,0000
N/A	48.54	36,0000
	N/A N/A	N/A 90.66

Average glycerin concentration in air (µg/m³)				
	Cigarette	MARKTEN® e-vapor	OSHA PE	
ar (closed windows)	N/A	221.81	5,000	
ar (open windows)	N/A	108.44	5,000	
leeting room	N/A	175.27	5,000	

N/A = Release rate not reported in side stream smoke [9]

Estimated Non-users Intake

Total intake of nicotine during exposure time by non-users (μg)

	Duration (hour)	Intake (µg) (Cigarette)	Intake (µg) (MARKTEN® e-vapor)
Car (closed windows)	1	50.95	2.07
Car (open windows)	1	24.37	1.01
Meeting room	4	158.6	6.57
Restaurant	2	41.39	1.75

Total intake of formaldehyde during exposure time by non-users (µg) (hour) (Cigarette) (MARKTEN® e-vapor) Car (closed windows) 1 6.36 3.04 4 19.83 0.01291

5.17 0.00345 Intake= (average concentration) x (exposure duration) x (breathing volume)x (breathing rate)

Nicotine Concentration Distributions Restaurant Example

Average nicotine Nicotine concentration distribution concentration over time -MT e-vapor Time (min)

15 individuals use one cigarette per hour for two hours 15 individuals use MARKTEN ® e-vapor at an equivalent rate of use 5 individuals use MARKTEN® e-vapor

CONCLUSIONS

- We have estimated the concentration of constituents in air due to exhaled aerosol from use of the MARKTEN® e-vapor and compared with that of using conventional cigarettes and with the permissible limits of OSHA* and AIHA
- Three space settings were used as examples in the study: (1) A car (open and closed windows), (2) a meeting room and (3) a restaurant.
- Results from the computational models show that nicotine and formaldehyde concentrations in air from the use of MARKTEN® e-vapor are significantly less than cigarette under equivalent use conditions.
- PG and glycerin levels in air from MARKTEN® e-vapor use were orders of magnitude less than OSHA and AIHA limits in all three spaces that were studied.
- Finally, intake amounts of each constituent by Non-users during the example use of MARKTEN® and cigarettes were
- *The OSHA PEL refers to the permissible limit of the total average airborne exposure in any 8-hour work shift of a 40-hour work week which shall not be exceeded

REFERENCES

- 1. National Research Council (2007). Models in Environmental Regulatory Decision Making. Washington, DC, The National Academies Press.
- EPA (2014) Indoor Air Quality Modeling, Available online: http://www.epa.gov/nrmrl/appcd /mmd/iaq.html (accessed on April 10, 2014).
- 3. EPA (2015) Air Quality Models. Available at http://www3.epa.gov/ttn/scram/aqmindex.htm. Last accessed December 12, 2015.
- 4. EPA (2016) Predictive Models and Tools for Assessing Chemicals under the Toxic Substances Control Act (TSCA), Available at: http://www.epa.gov/tsca-screening-tools, Accessed on January 27, 2016. 5. CDC (2016), Morbidity and Mortality Weekly Report, CDC, weekly/vol. 65 / No. 44, November 11, 2016
- 6. Edmiston et al. (2018), Exhaled Breath Levels of Selected Constituents From Controlled Use of MARKTEN® e-Vapor Products in Adult e-Vapor Users, Poster 191, February 24, SRNT 2018, Baltimore, MD. . Rostami, et al. (2016) A well-mixed computational model for estimating room air levels of selected constituents from e-vapor product use, Int. J. Environ. Res. Public Health, 13(8), 828.
- 8. Sarkar Et al. (2017) Determination of Selected Chemical Levels in Room Air, and on Surfaces after the Use of Cartridge- and Tank-Based E-Vapor Products or Conventional Cigarettes, Int. J. Environ. Res. Public Health. 14. 969: doi:10.3390/ijerph14090969.
- 9. Guerin et. al., The Chemistry of Environmental Tobacco Smoke: Composition and Measurement, 1992, p56.