FTIR Chemometrics Applied to E-liquids Quantitative Analysis

TSRC 08.18.2018

Frank S. Higgins, E. Kate Thorn, and Mark J. Rusyniak

What is FTIR?

Fourier Transform Infrared (FTIR) spectroscopy

Measures the absorption of infrared light in the 2.5-25µm wavelength range of the EM spectrum (4000-400cm⁻¹)

Infrared Spectrum

A spectrum is a graph of how much infrared light is *absorbed* by molecules at each *wavenumber* of infrared light

What is FTIR

Advantages

- Specificity fingerprint technique
- High optical throughput all wavelengths of light are measured simultaneously
- High signal to noise
- Fast
- Easy to use

FTIR is Trending

Advances in optics and chemometrics

- Industries are taking a second look at FTIR
- Replacing or supplementing existing techniques

Organizations accepting FTIR methods

- FDA
- US Pharmacopeia (USP)
- American Oil Chemist Society (AOCS)
- AOAC International
- ASTM International
- International Organization for Standardization (ISO)

Existing E-liquid Methods

Currently gas chromatography (GC) is the conventional method to measure the principle components of e-liquids (CORESTA CRM 84)

- Water, nicotine, propylene glycol (PG), vegetable Glycerin (VG), menthol, and ethanol
- Ion chromatography (IC) for acids
- Karl Fischer (KF) is now the primary technique for water

FTIR e-liquids method includes all these components in a single measurement

FTIR Advantages Over GC & KF

FTIR Advantages

- Better PG and VG measurements
- Improved low water measurements
- Low cost of operation
 - No consumables
 - No expensive gases
 - No solvents
 - Low instrument maintenance
 - Low cost instrumentation
- No dilution or sample preparation
- No post analysis data processing
- Time per sample 2 minutes

Why FTIR for E-liquids Analysis

Ideal screening technique

- Reduces product development bottle necks
- Can be rolled out to high throughput manufacturing online or atline applications

Factory QA/QC

- Incoming raw materials (i.e. Glycerol, PG)
- Could be used to quickly identify and possibly prevent out of spec batches

New FTIR Technology Available

Analyzers

Laboratory

Agilent Cary 630 FTIR Innovations

- Compact and portable
- Connects to most laptops
- True Michelson Interferometer ensures full wavenumber range capabilities (DTGS Detector)
- High signal to noise equivalent performance to full size FTIR instruments

TumblIR Liquids Cell

Single Transmission Cell

- Fixed path length liquid transmission cell
 - Standard 100µm
 - Can be factory Set to 30µm
- Liquids only
- Quantitative analysis
 - 100 ppm to 100%
- Reproducible and easy to use
- Easy to clean
- Ideal for viscous liquids like e-liquids

TumblIR Liquids Cell

Cell empty - background

Cell full – ready for scanning

TumblIR Liquids Cell

Cell open - cleaning

Traditional IR Liquid Transmission Cell

Filling: Messy

Cleaning: Not always this bad

Calibrating the method

Partial Least Squares (PLS) Chemometrics

- Great for complex mixtures
- Allows multiple regions of the IR spectrum to be used in the calibration
- Preprocessing algorithms can be used to improve the calibration
 - Mean centering
 - First and second derivatives
 - Ideal for calibrations using bands that over lap
- Standard Error of Cross Validation (SECV) is a PLS feature to evaluate the performance of the calibration.

Large sets of e-liquids are measured

- Known values for each analyte are obtained
 - KF, GC, and IC values are used for each sample in the calibration
 - Preprocessing and regions are selected to optimize each analyte

FTIR PLS Spectral Overlay

FTIR PLS Spectral Overlay (Fingerprint Region)

Water: FTIR PLS Actual vs. Predicted Calibration Plot

FTIR Method Accuracy and Precision: Low Water

Accuracy - Individual aliquots of the same e-liquid sample were measured (N=10). The sample was measured by validated "gold standard" techniques as shown in the "Actual %" column. The percent water LOD (3x SD) and LOQ (9x SD) are shown.

				Actual %	Accuracy (%			KF St.Dev.	
E-Liquid 1	Average (%)	St.Dev. (%)	%RSD	(GC, KF, IC)	Difference)	LOD%	LOQ %	(%)	KF %RSD
Water (%)	0.147	0.010	7.080	0.144	1.883	0.031	0.094	0.032	20.071
Propylene Glycol (%)	37.692	0.102	0.270	37.853	-0.427				
Glycerol (%)	57.504	0.181	0.314	57.598	-0.163				
Nicotine (wt %)	2.486	0.015	0.607	2.461	1.028				
Menthol (%)	0.000	0.000	NA	0.000	NA				
EtOH (%)	0.617	0.010	1.646	0.614	0.456				
Acids (%)	0.000	0.000	NA	0.000	NA				

Precision – The same aliquot of E-Liquid 1 measured consecutively (N=9).

E-Liquid 1	Average (%)	St.Dev. (%)	%RSD
Water (%)	0.157	0.002	1.474
Propylene Glycol (%)	37.627	0.039	0.104
Glycerol (%)	57.419	0.067	0.116
Nicotine (wt %)	2.489	0.016	0.637
Menthol (%)	0.000	0.000	NA
EtOH (%)	0.607	0.004	0.717
Acids (%)	0.000	0.000	NA

FTIR Method Repeatability Test: High Water

Individual Aliquots = Same E-liquid 2 sample with replicate ~0.25mL aliquots measured. Same Aliquot = Same E-liquid 2 sample and aliquot measured 5 consecutive times.

	E-Liquid 2				KF Average	KF St.					
Individual Aliquots	Rep1	Rep2	Rep3	Rep4	Rep5	Average	Std. Dev.	%RSD	(%)	Dev. (%)	KF %RSD
Water (%)	15.590	15.640	15.540	15.600	15.610	15.596	0.036	0.234	15.583	0.107	0.682

	E-Liquid 2							
Same Aliquot	Rep1	Rep2	Rep3	Rep4	Rep5	Average	Std. Dev.	%RSD
Water (%)	15.590	15.600	15.590	15.580	15.590	15.590	0.007	0.045

E-liquid 2 Air Exposure Experiment

	E-Liquid 2	E-Liquid 2	E-Liquid 2
Same Aliquot	Avg	30 Mins	3hours
Water (%)	15.60	12.36	11.96
Propylene Glycol (%)	23.98	24.78	24.82
Glycerol (%)	55.89	57.80	58.22
Nicotine (wt %)	3.64	3.84	3.86
Menthol (%)	0.00	0.00	0.00
EtOH (%)	0.84	0.52	0.39
Acids (%)	0.74	0.87	0.88

FTIR Method Accuracy and Precision: Propylene Glycol

The lowest PG calibration sample (E-liquid 3) was measured to determine LOD and LOQ (N=6).

E-Liquid 3	Average (%)	St.Dev. (%)	%RSD	Actual % (GC, KF, IC)	Accuracy (% Difference)	LOD	LOQ
Water (%)	15.565	0.023	0.149	15.583	-0.119		
Propylene Glycol (%)	23.336	0.020	0.088	23.386	-0.215	0.061	0.184
Glycerol (%)	56.339	0.067	0.118	56.644	-0.538		
Nicotine (%)	3.502	0.021	0.614	3.490	0.339		
Menthol (%)	0.000	NA	NA	NA	NA		
EtOH (%)	0.736	0.009	1.233	0.754	-2.431		
Acids (%)	0.706	0.002	0.237	0.723	-2.284		

FTIR Method Accuracy and Precision: Glycerol

The lowest glycerol calibration sample (E-liquid 4) was measured to determine LOD and LOQ (N=6).

E-Liquid 4	Average (%)	St.Dev. (%)	%RSD	Actual % (GC, KF, IC)	Accuracy (% Difference)	LOD	LOQ
Water (%)	15.060	0.025	0.164	15.000	0.398		
Propylene Glycol (%)	66.719	0.100	0.150	67.950	-1.812		
Glycerol (%)	17.417	0.016	0.092	17.050	2.153	0.048	0.144
Nicotine (%)	0.000	NA	NA	NA	NA		
Menthol (%)	0.000	NA	NA	NA	NA		
EtOH text	0.000	NA	NA	NA	NA		
Acids (%)	0.000	NA	NA	NA	NA		

FTIR Method Accuracy and Precision: Nicotine and Menthol

The lowest nicotine and menthol calibration sample (E-liquid M4) was measured to determine LOD and LOQ (N=6).

E-Liquid M4	Average (%)	St.Dev. (%)	%RSD		Accuracy (% Difference)	LOD	LOQ
Water (%)	3.487	0.012	0.334	NA	NA		
Propylene Glycol (%)	53.147	0.058	0.109	52.993	0.290		
Glycerol (%)	40.659	0.051	0.125	41.273	-1.487		
Nicotine (%)	0.580	0.021	3.679	0.599	-3.172	0.064	0.192
Menthol (%)	0.542	0.025	4.567	0.481	12.613	0.074	0.223
EtOH (%)	0.169	0.007	4.253	0.208	-18.590		
Acids (%)	0.000	NA	NA	NA	NA		

FTIR Method Accuracy and Precision: Ethanol

The lowest ethanol calibration sample (E-liquid M17) was measured to determine LOD and LOQ (N=6).

E-Liquid M17	Average (%)	St.Dev. (%)	%RSD		Accuracy (% Difference)	LOD	LOQ
Water (%)	11.571	0.028	0.238	11.253	2.825		
Propylene Glycol (%)	27.031	0.032	0.117	27.197	-0.609		
Glycerol (%)	56.097	0.058	0.104	56.429	-0.588		
Nicotine (%)	3.674	0.016	0.439	3.661	0.334		
Menthol (%)	0.000	NA	NA	NA	NA		
EtOH (%)	0.146	0.006	3.930	0.155	-5.853	0.017	0.051
Acids (%)	0.713	0.003	0.359	0.713	-0.038		

FTIR Method Accuracy and Precision: Total Acids

The lowest total acids calibration sample (E-liquid M21) was measured to determine LOD and LOQ (N=6).

E-Liquid M21	Average (%)	St.Dev. (%)	%RSD		Accuracy (% Difference)	LOD	LOQ
Water (%)	0.919	0.010	1.042	0.889	3.337		
Propylene Glycol (%)	36.719	0.050	0.137	37.138	-1.128		
Glycerol (%)	56.868	0.082	0.145	57.520	-1.132		
Nicotine (%)	2.526	0.014	0.563	2.541	-0.597		
Menthol (%)	0.000	NA	NA	NA	NA		
EtOH (%)	0.566	0.005	0.960	0.583	-3.033		
Acids (%)	0.050	0.001	1.690	0.048	3.452	0.003	800.0

FTIR Method Calibration Summary

E-Liquids	SECV %	R2	LOD %	LOQ %
Water (%) High	0.156	0.9996	NA	NA
Water (%) low	0.094	0.9985	0.031	0.094
Propylene Glycol (%)	0.305	0.9994	0.061	0.184
Glycerol (%)	0.510	0.9990	0.048	0.144
Nicotine (wt %)	0.037	0.9993	0.064	0.192
Menthol (%)	0.052	0.9983	0.074	0.223
EtOH (%)	0.030	0.9950	0.017	0.051
Acids (%)	0.014	0.9974	0.003	0.008

Conclusions

- Current FTIR technology makes analysis of viscous liquids, such as e-liquids, faster and easier.
- FTIR methods can provide immediate results for e-liquids research and manufacturing applications.
- FTIR analysis is a less expensive and easier to maintain compared to other techniques.
- Chemometric PLS calibration to "gold standard" techniques, such as GC, KF, and IC, produces accurate and precise measurement of e-liquids by FTIR.
- FTIR e-liquids results indicate comparable performance to GC,
 KF, and IC techniques, and in some cases better performance.

Acknowledgments

- Special Thanks for the Karl Fischer, GC, and IC data, samples, and background knowledge of e-liquids formulations
 - Robert Ragland
 - Sean Platt
 - Charnise Jackson
 - Xue Luo
 - Geniya Prepelitskaya

