Modification of Standardized Methods for the Measurement of Nicotine in Very Low Nicotine Content Cigarettes

Anthony Brown, Matt Melvin, Yezdi Pithawalla, Jennifer Smith, Karl Wagner

Altria Client Services LLC, 601 E. Jackson St., Richmond, VA 23219, U.S.A.

Kiana Manson, Jay Pierotti, Hui Liu, Kerry Stutt Eurofins Lancaster Laboratories Professional Scientific Services

FDA – Tobacco Product Standard for Nicotine Level of Combusted Cigarettes – ANPRM

FDA – Tobacco Product Standard for Nicotine Level of Combusted Cigarettes – ANPRM

Potential Maximum Nicotine Level for cigarette tobacco filler: 0.3 - 0.5 mg/g

Potential Analytical Testing Method

Commercial Cigarette Fillers vs Proposed Maximum Nicotine Level in ANPRM

Altria Client Services

Analytical Testing Method – ANPRM

- FDA asked: Should the proposed tobacco product standard specify a method for the analysis of nicotine?
- **FDA** believes the test method should:
 - 1. Provide consistent results across accredited testing facilities
 - 2. Demonstrate a high level of specificity, accuracy, and precision to measure a range of nicotine levels across a wide variety of tobacco blends and products

Three Pillars of Effective Analytical Testing

Consensus Standardized Methods

Itria

Altria Client Services

Laboratory Proficiency Testing

Certified Tobacco Reference Materials

List of Analytical Testing Methods – ANPRM

12 methods referenced in ANPRM

CRM 35, Continuous Flow Analysis (Filler)

GC-FID (Filler)

GC-MS confirmatory method (Filler)

GC-MS using SPME (Filler)

Other formats of GC-FID (Filler)

Capillary electrophoresis using UV detection (Filler)

SFC Chromatography-Ion Mobility Detection (Filler)

Reverse phase ion-pair LC extraction (Filler)

HPLC-UV (Filler)

WHO TobLabNet, SOP 04, GC-FID (Filler)

CRM 62, GC-FID (Filler)

ISO 10315, GC-FID (Smoke)

Only two consensus standardized test methods referenced in ANPRM

CRM 87, GC-MS (Filler) published 2018 – after ANPRM issued – is a consensus standardized method

Standardized Methods for Nicotine

Filler

CRM Nº 62: 2005

Determination of nicotine in tobacco and tobacco products by gas chromatographic analysis

CRM Nº 87: 2018

Determination of nicotine in tobacco products by GC-MS

Smoke

ISO 10315: 2013 Determination of nicotine in smoke condensates -Gas chromatographic method

Are Very Low Nicotine Content (VLNC) cigarette filler and smoke condensates within method scope?

Determination of Nicotine in Tobacco Filler

Methods

□ CRM N° 62 – GC-FID

□ Calibration range 5.0 – 40 mg/g

□ CRM Nº 87 – GC/MS

 \Box Calibration range 0.64 – 64 mg/g

Repeatability and reproducibility values

Determined through interlaboratory collaborative studies

□ Range of nicotine levels in a variety of traditional tobacco products: 8 – 40 mg/g

Maximum nicotine level proposed in ANPRM: 0.3 – 0.5 mg/g

Method scope and r and R values are not valid for VLNC filler

ALCS Modifications of CRM $N^{\rm o}\,62\,$ and CRM $N^{\rm o}\,87\,$

Parameter	CRM 62	Modified CRM 62	CRM 87	Modified CRM 87
LOQ (mg/g)	5.0	0.02	0.64	0.064
Calibration range (mg/g)	5 to 40	0.02 to 40	0.64 to 64	0.064 to 64
Injection mode	split	splitless	split	split
Regression model	equal	1/x	1/x	1/x
Sample mass : Extract volume	1g:50ml	1g:50ml	0.25g:40ml	0.25g:40ml

Modified method calibration ranges will bracket VLNC filler

Validation Results – ALCS Modifications

Parameter	Modified CRM 62 MTBE	Modified CRM 62 Hexane	Modified CRM 87
LOQ (mg/g)	0.02	0.02	0.064
S:N ratio	19	34	152
% Deviation at LOQ (n=6)	3%	9%	14%
Instrument precision at LOQ (n=6)	1.2%	0.9%	1.1%
Calibration range (mg/g)	0.02 to 40	0.02 to 40	0.064 to 64
Linear regression (r ²)	≥ 0.995	≥ 0.995	≥ 0.995

SRM NIST 3222 Cigarette Tobacco Filler

Prepared from air cured, low nicotine tobacco

- □ Processed and supplied by 22nd Century Group, Inc.
- □ Developed through NIST and FDA Center for Tobacco Products

Certified value for nicotine: 0.117 ± 0.018 mg/g

- Based on 5 distinct data sets from NIST and CDC
 - □ 4 Methods LC/MS/MS
 - \Box 1 Method GC/MS Method: 0.137 \pm 0.016 mg/g
 - **\square** Range of test results: 0.095 0.137 mg/g with %RSDs 3%-17%

Available through NIST

^{1.} Sander L.C., Pritchett J.S, Daniles Y.C., Wood L.J., Lang B.E., Wise S.A., Development of a Cigarette Tobacco Filler Standard Reference Material, Anal. Chem., 2017 Vol. 89, 10461-10467.

Sample Results – ALCS Modifications

SRM NIST 3222ª Air cured, low nicotine filler	CRM 62 MTBE	CRM 62 Hexane	CRM 87
Nicotine (mg/g) "as-is" (n=15)	0.154 ± 0.009	0.149 ± 0.019	0.170 ± 0.015
%Recovery from Fortification (n=3)	94%	90%	88%
Intermediate Precision (n=15)	5.8%	12.6%	8.9%
RT1 ^b 1R6F cigarette filler	CRM 62 MTBE	CRM 62 Hexane	CRM 87
RT1 ^b 1R6F cigarette filler Nicotine (mg/g) "as-is" (n=9)	CRM 62 MTBE 17.5 ± 0.2	CRM 62 Hexane 17.7 ± 0.1	CRM 87 19.2 ± 0.3
RT1 ^b 1R6F cigarette filler Nicotine (mg/g) "as-is" (n=9) %Recovery from Fortification (n=3)	CRM 62 MTBE 17.5 ± 0.2 98%	CRM 62 Hexane 17.7 ± 0.1 98%	CRM 87 19.2 ± 0.3 95%

^a Standard reference material NIST 3222, VLNC cigarette tobacco filler 0.117 ± 0.018 mg/g

^b RT1 reference material data sheet, 1R6F ground filler 18.905 ± 0.503 mg/g

Standardized Methods for Nicotine

Filler

CRM Nº 62: 2005

Determination of nicotine in tobacco and tobacco products by gas chromatographic analysis

CRM Nº 87: 2018

Determination of nicotine in tobacco products by GC-MS

Smoke

ISO 10315: 2013 Determination of nicotine in smoke condensates -Gas chromatographic method

Are Very Low Nicotine Content (VLNC) cigarette filler and smoke condensates within method scope?

SPECTRUM® Cigarettes

Itria Client Services

- 23 Different cigarette configurations
 - □ Manufactured by 22nd Century Group, Inc.
 - Distributed by Research Triangle Institute
- Reported range of nicotine in filler¹ 0.28 25 mg/g
- Reported range of nicotine in smoke² 0.01 -1.68 mg/cigt
- Available through NIDA's drug supply program
 SPECTRUM[®] cigarettes are not available to the tobacco industry

Richter P., Pappas S., Bravo R., Lisko L.G., et al., Characterization of SPECTRUM Variable Nicotine Research Cigarettes, Tob. Regul. Sci.; 2016, 2(2), 94-105.
 Ding Y.S., Richter P., Hearn B., et al., Chemical Characterization of Mainstream Smoke from SPECTRUM Variable Nicotine Research Cigarettes, Tob. Regul. Sci., 2017, 3 (1), 81-94.

Determination of Nicotine in Smoke

Method

- □ ISO 10315 GC-FID
 - □ Calibration range 0.08 8.00 mg/cigt
- Repeatability and reproducibility values
 - Determined through interlaboratory collaborative studies
 - □ Range of nicotine in a variety of traditional cigarettes: 0.09 1.41 mg/cigt
- SPECTRUM[®] Cigarettes
 - □ Lowest nicotine yield¹: 0.01 mg/cigt

Method scope and r and R values are not valid for VLNC smoke condensates

ALCS Modifications of ISO 10315

Method	ISO 10315	Modified ISO 10315
LOQ (mg/cigt)	0.08	0.01
Calibration range (mg/cigt)	0.08 to 8	0.01 to 2
Injection mode	split	split
Regression model	equal	1/x
Y-intercept	include	ignore
Extraction volume	20 ml	10 ml

Modified method calibration range brackets VLNC cigarette smoke condensates

Validation Results – ALCS Modifications

Parameter	Modified ISO 10315
LOQ (mg/cigt)	0.01
S:N ratio at LOQ (n=30)	15.9
% Deviation at LOQ (n=6)	2%
Instrument precision at LOQ (n=6)	< 1%
Calibration range (mg/cigt)	0.01 to 2.00
Linear regression (r ²)	≥ 0.995

ISO Smoke Yields – ALCS Modifications

NIST 3222 cigarette filler was used to make handmade cigarettes

NIST 3222 (n=5) Air cured, low nicotine filler	TPM (mg/cigt)	Nicotine (mg/cigt)	%RSD
High Yield	10.5	0.019	8%
Med Yield	6.1	0.013	17%
Low Yield ^a	3.3	BLOQ	BLOQ
1R6F ^b	10.4	0.717	5%

^a Below limit of quantitation; 0.01 mg/cigt.

^b 1R6F Certified Reference Cigarette, Nicotine 0.721 ± 0.067 (mg/cigt)

Conclusions

Existing standardized methods are not fit for the analysis of VLNC tobacco products

Standardized methods can be modified for the analysis of nicotine in VLNC tobacco products

Future steps

- Create VLNC reference products
- Standardize methods that include VLNC products
- Establish proficiency testing for VLNC products

Further data and details: www.altria.com/ALCS-Science

