Molecular Mechanism Involved in Maleic Hydrazide-Mediated Sucker Control

Payyavula R.; <u>Shen Y.</u>; Kudithipudi C.; Govindarajulu R.; Xu D.

Objectives

- Understand mechanism of Maleic Hydrazide-Mediated (MH) sucker control
- Evaluate gene expression in axillary bud during MH treatment
- Identify candidate genes for sucker inhibition in tobacco
- Integrate selected gene into our sucker control pipeline

Outline

- Tobacco topping
- Experiment design
- Differential gene expression
 - Cell cycle genes
 - MYBs (Myeloblastosis family)
 - > Ethylene related genes
- Conclusion and future work

Tobacco Topping and Sucker

Removal of Apical Meristem

Suckers <u>divert nutrition</u> and <u>impact leaf</u> <u>quality</u>

Tobacco Sucker Control

Control Methods

- Manual removal (labor intensive)
- Chemical application
 - Contact : Fatty Alcohols, burn tender suckers
 - Contact-local systemic : Flumetralin
 - Systemic: Maleic Hydrazide (MH)

Experiment Design

MH

RNA Sequencing Analysis

Number of genes

Categories of Differentially Expressed Genes

MH

Ctrl

MH

W

Examples of Differentially Expressed Genes

Genes Induced by MH-treatment

Gene	# of Genes
Glutathione S-transferase	9
Ribonucleoside-diphosphate reductase	2
P-loop containing nucleoside triphosphate hydrolases	2
Transcription repressor ofp17	1
WRKY transcription factor	1
Cyclin-dependent protein kinase inhibitor SMR4	1

Genes Suppressed by MH-treatment

		Cyclin
	Cell cycle	Cyclin Dependent Kinase
\		MYB transcription factors
	Spindle	
	DNA synthesis	
	Cell division	
Cellulose synthase		Cellulose synthase
	Others	Unknown
		Kinesin-like protein

Cyclin and Cyclin Dependent Kinases

class	Gene	W72/Ctrl	MH72/Ctrl
A1	g50932	1.811	0.072
A1	g63973	1.517	0.074
A2	g3714	1.827	0.321
A2	g37426	2.911	0.560
A2	g85369	4.147	0.826
A2	g92675	1.786	0.464
А3	g65151	2.965	1.584
А3	g60711	3.748	2.066
B1	g89928	1.823	0.079
B1	g74082	1.552	0.098
B1	g23522	1.843	0.047
B1	g95819	2.088	0.075
B1	g22492	1.705	0.087
B1	g94178	2.041	0.060
B1	g22493	1.840	0.043
B2	g11884	1.852	0.119
B2	g13941	2.519	0.068
B2	g49442	1.752	0.071
B2	g58123	1.975	0.147
B2	g60549	1.485	0.093
B2	g65820	1.718	0.072
B2	g66934	1.216	0.121
B2	g69724	3.047	0.149
B2	g80143	0.976	0.032
B2	g82564	2.155	0.073
В3	g40199	1.945	0.694
В3	g71747	2.185	0.727
D	g23478	0.863	1.030
D	g95745	0.406	0.959
D	g78000	1.246	0.653
D	g44547	1.247	0.592
U2	g8070	1.717	0.845

__ 93% reduction

85 – 95% reduction

CDK

class	Gene	W72/Ctrl	MH72/Ctrl
B1	g95438	2.664	0.407
B1	g23308	2.034	0.439
B2	g49387	1.964	0.138
B2	g65882	1.831	0.096

CDK inhibitor

g45641	0.758	114.916
--------	-------	---------

MYB Transcription Factors

- Unreplicated DNA inhibits the production of activating MybA protein by an unknown mechanism, and inhibitory MybB occupies the promoter, preventing the transcription of M-phase-related genes, including cyclin.
- When DNA replication is complete, MybA is produced and displaces MybB from the promoter.
- Cyclin B is transcribed and activates cyclindependent kinase A (CDKA), allowing progression into mitosis

MYB Transcription Factors

_ ve regulator

Ethylene Related Genes

Plant Cell Cycle regulation

Conclusion and Future Work

- Ethylene biosynthesis upregulated by MH
- MYBs altered expression
- Cyclins, CDKs: significantly down-regulated
- MH inhibit cell division by affecting G2 and M phase
- Functional analysis of several cell cycle genes will be analyzed to confirm sucker control effects

Thank You

Questions?

For copies of this presentation visit the Altria's Science Website at www.altria.com/alcs-science

Altria has a new Altria Science Twitter account Follow us @AltriaScience