In Vitro Dissolution Testing of Nicotine Release from Smokeless Tobacco Products

John H. Miller, Fadi Aldeek, Tim Danielson, Yezdi B. Pithawalla, Anthony A. Brown and Celeste Wilkinson

CORESTA
October 6-10th 2019
Presentation ST50

Substantial Equivalence (SE) Pathway "905"

Compare Predicate vs. New Product

Demonstrates if the new product has:

- Same characteristics as the predicate
- Product does not raise different. questions of public health

US FDA: Abbreviated HPHC List*

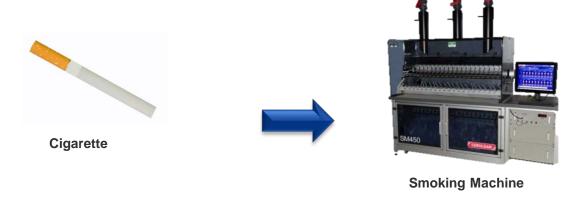
Cigarette Smoke	Cigarette Filler	
NNK	NNK	
NNN	NNN	
Nicotine	Nicotine	
Acetaldehyde	Arsenic	
Crotonaldehyde	Cadmium	
Formaldehyde	Ammonia	
Acrolein		
Acrylonitrile		
Benzene	Smokeless Tobacco	
1,3-Butadiene	NNK	
Isoprene	NNN	
Toluene	Nicotine (total and free)	
4-Aminobiphenyl	Acetaldehyde	
1-Aminonaphthalene	Crotonaldehyde	
2-Aminonaphthalene	Formaldehyde	
Ammonia	Arsenic	
Benzo[a]pyrene	Cadmium	
Carbon monoxide	Benzo[a]pyrene	

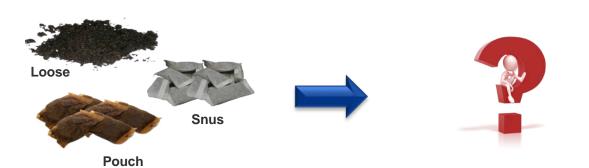
"Reporting Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke Under Section 904(a)(3) of the Federal Food, Drug, and Cosmetic Act" (Guidance for the Industry, March 2012).

Substantial Equivalence (SE) for Smokable Tobacco Products

Predicate vs. New Product

- Comparison of HPHCs in cigarette filler and in smoke (route of exposure)
- Smoking machines allow for a comparison of multiple products
- Standardized smoking protocols: ISO, CORESTA & HC
- Not meant to replicate human exposure


Cigarette


Smoking Machine

ISO: International Organization for Standardization CORESTA: Cooperation Center for Scientific Research Relative to Tobacco HC: Health Canada.

Substantial Equivalence (SE) for Smokeless Tobacco Products

Dissolution Testing

In vitro laboratory test method designed to demonstrate how efficiently an active ingredient is extracted out of a solid oral dosage into solution

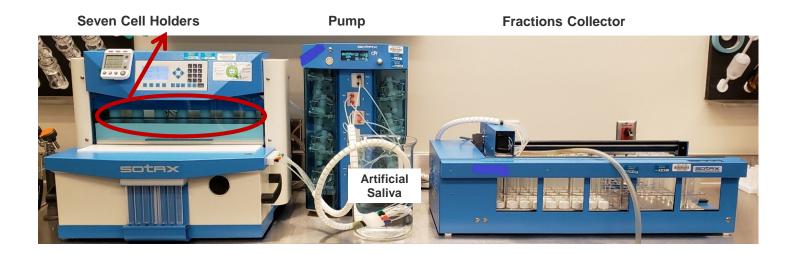
Applications in Pharmaceutical Industry

- Guide product design
- Quality control testing
- Product to product performance comparison
- Develop *in-vivo/in-vitro* correlation (IVIVC)

Dissolution Methodology Considerations

- Apparatus
- Dissolution Media
- Analytical Method Development & Validation

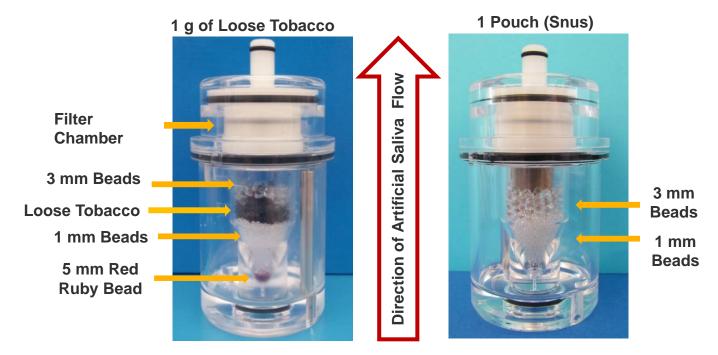
Dissolution Apparatus


Multiple commercial & non-commercial options available for measuring release of constituents from oral dosage forms

Example: U.S. Pharmacopeia Apparatus

Name	Apparatus Type
USP-1	Basket
USP-2	Paddle
USP-3	Reciprocating cylinder
USP-4	Flow-through cell
USP-5	Paddle over disk
USP-6	Cylinder
USP-7	Reciprocating holder

SOTAX CE7 Smart Flow-Through Cell Apparatus (USP-4)



Flow rate 4.0 mL/min

Temperature 37°C

Flow-Through Cell in USP-4 Apparatus

Artificial Saliva Composition*

Ingredient	Per 1000 mL
Magnesium Chloride Hexahydrate (MgCl · 6H2O)	0.17 g
Potassium Hydrogen Phosphate anhydrous (K2HPO4 · H2O)	0.68 g
Sodium Chloride (NaCl)	0.33 g
Potassium Chloride (KCl)	0.75 g
Calcium chloride dihydrate (CaCl · 2H2O)	0.15 g
Potassium Carbonate (K2CO3)	0.53 g
Type I Water (De-ionized)	1000 mL
Hydrochloric acid	To pH 6.8 ± 0.1

^{*}German Institute for Standardization (DIN) Recipe is based upon German standard DIN v53160-1, "Determination of the Colour Release of Articles of Daily Use, Part1: Resistance to Artificial Saliva", section 4.2, October 2002.

Fraction Collection Protocol

Fraction Number	Fraction Collection Time (min)	Fraction Collection Duration (min)	Volume Collected (mL)
1	4	4	16
2	8	4	16
3	12	4	16
4	16	4	16
5	20	4	16
6	30	10	40
7	40	10	40
8	50	10	40
9	60	10	40

- Flow rate 4.0 mL/min
- Temperature 37°C

Sample Preparation in Autosampler Vials

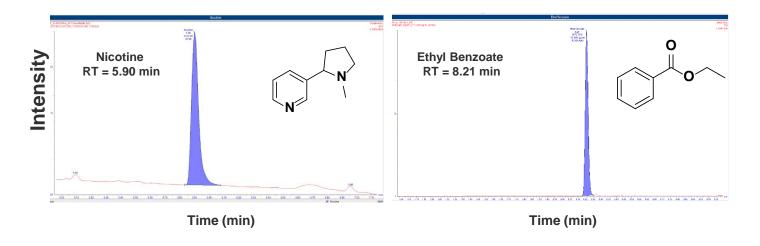
- 1. 0.1 mL of the dissolution fraction
- 2. 0.8 mL of artificial saliva
- 3. 0.1 mL of ISTD (Ethyl Benzoate, 1 mg/mL)
- 4. Cap, vortex and analyze by UPLC-PDA*

ISTD: Internal Standard

UPLC-PDA: Ultra-high Performance Liquid Chromatography Photodiode Array

Instrument: Waters Acquity I-Class UPLC system coupled to Photodiode Array Detector

Column: BEH C18, 2.1 x 100 mm, 1.7 µm, Waters Corporation


Guard column: BEH C18 VanGuard, 2.1 x 5 mm, 1.7 µm, Waters Corporation

UPLC Parameter	Setting	
Run Time	12 min	
Injection Volume	10 μL	
Autosampler Temperature	5 °C	
Column Temperature	45 °C	
Mobile Phase A	10 mM Ammonium Acetate pH 10	
Mobile Phase B	Acetonitrile	
Pump Program	Gradient Elution	
Flow Rate	0.5 mL/min	
Compound	PDA Setting	
Nicotine	260 nm	
Ethyl benzoate	260 nm	

UPLC-PDA Chromatograms of Nicotine and Ethyl Benzoate (ISTD)

ISTD: Internal Standard

UPLC-PDA: Ultra-high Performance Liquide Chromatography Photodiode Array

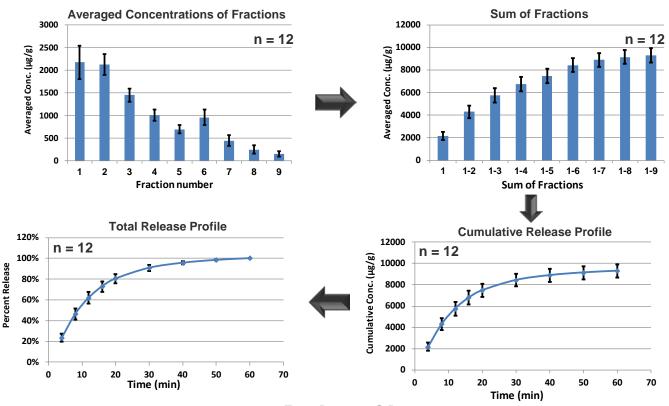
Method Validation

Parameter	Outcome
Calibration (0.5-100 µg/mL)	■ R ² > 0.998 on all days
	■ %RCR < 10%
Accuracy - 3 fortification levels in triplicate for each product type	96.2% - 102%
Repeatability (Intra-day precision, n = 6)	< 2.0%
Intermediate Precision (Inter-days precision, n = 18)	< 6.0%
Specificity	No interferences observed at the retention time of nicotine or IS
LOQ	0.5 μg/mL
Stability - Dissolution samples and final extracts	Stable for up to 15 days when stored in amber glass vials at 0-4°C (refrigerated)

Analysis of Products for Regulatory Submissions

Predicate vs. New Product

12 replicates per product*


- Requires two runs for each product (7 cell holders per unit)
 - 1. 6 Reps + 1 IQCS (CRP 2.1, American style loose moist snuff)
 - 2. 6 Reps + 1 reagent blank
- 9 fractions collected for each sample replicate

*Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms, FDA Center for Drug Evaluation and Research (CDER),1997.

IQCS: Internal Quality Control Sample

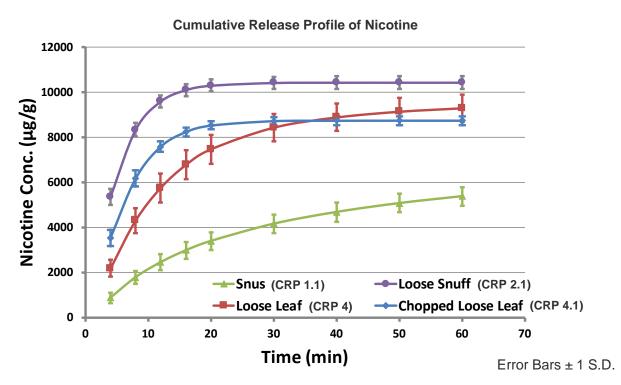
Calculations for Cumulative Release Profile

CORESTA Smokeless Tobacco Reference Products (CRPs)

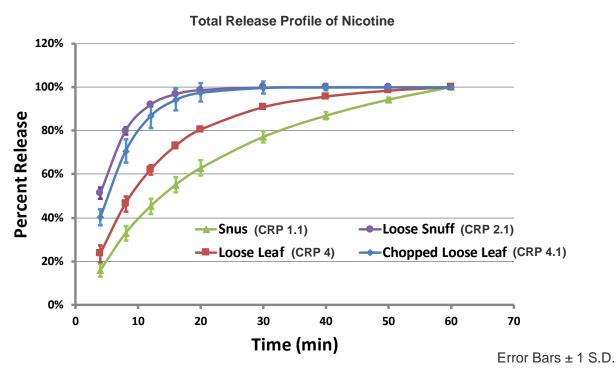
CRP 1.1 (Swedish style snus pouch)

CRP 4 (loose-leaf chewing tobacco)

CRP 2.1 (American style loose moist snuff)


CRP 4.1 (chopped loose-leaf chewing tobacco)

https://www.coresta.org/coresta-smokeless-tobacco-reference-products



CORESTA Smokeless Tobacco Reference Products (CRPs)

CORESTA Smokeless Tobacco Reference Products (CRPs)

Dissolution Profiles Comparison

Approach based on FDA guidance from CDER*

- Determine nicotine release profiles for predicate and new product (12 replicates per product)
- Use mean dissolution values from both curves at each time point to calculate difference factor (f₁) and similarity factor (f₂)

f₁ values up to 15 (0-15) and f₂ values of 50 or greater (50-100) ensure similarity or equivalence between two products

*Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms, FDA Center for Drug Evaluation and Research (CDER),1997.

Product to Product Comparison using f₁ and f₂

Compared Products	f ₁	f ₂	Equivalency
CRP 2.1 vs CRP 4.1	11.3	52.7	Yes
CRP 2.1 vs CRP 4	27.5	30.0	No
CRP 2.1 vs CRP 1.1	39.2	21.9	No
CRP 4.1 vs CRP 4	23.1	35.3	No
CRP 4.1 vs CRP 1.1	36.1	24.8	No
CRP 4 vs CRP 1.1	20.2	42.2	No

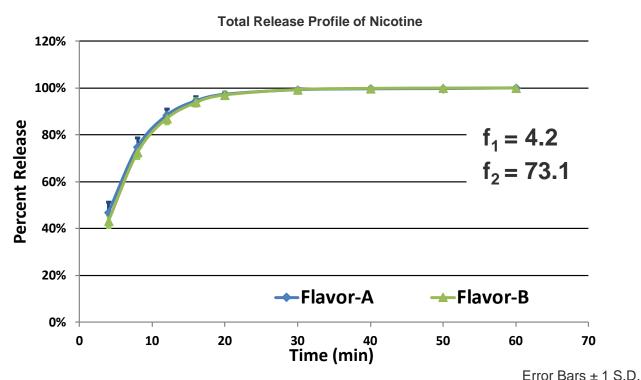
CRP 1.1 (Swedish style snus pouch)

CRP 2.1 (American style loose moist snuff)

CRP 4 (loose-leaf chewing tobacco)

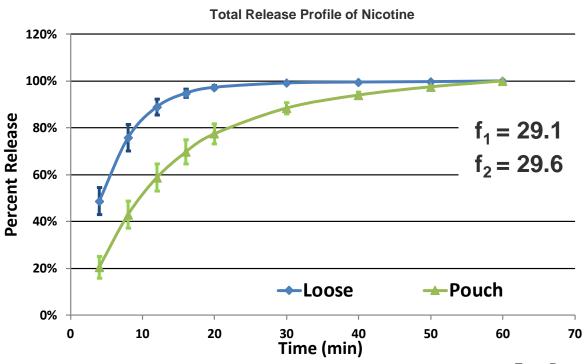
CRP 4.1 (chopped loose-leaf chewing tobacco).

Equivalent:


f1 values up to 15 (0-15)

f2 values of 50 or greater (50-

100)



Commercial Products with Different Flavors

Loose vs Pouched Commercial Products

Summary

- An efficient method for the dissolution testing and quantitation of nicotine was validated for a variety of smokeless tobacco products using a USP-4 flow-through cell apparatus and UPLC-PDA
- Percent of total release profiles, and f₁ and f₂ calculations were used to evaluate the similarity and differences between the smokeless tobacco products
- The nicotine release profiles are dependent on the form and cut of the smokeless tobacco products
- Validated dissolution methodologies can be an important tool for smokeless tobacco product assessments and product-to-product comparisons

f₁ and f₂ Calculations

$$f_1 = \left\{ \left[\sum_{t=1}^{n} |R - T| \right] / \left[\sum_{t=1}^{n} R \right] \right\} X 100$$

$$f_2 = 50 \cdot \log \left[\frac{100}{\sqrt{1 + \frac{\sum_{t=1}^{t=n} [R_t - T_t]^2}{n}}} \right]$$

R_t and T_t are the cumulative percentage dissolved at each of the selected n time points of the two products.

 f_1 values up to 15 (0-15) and f_2 values of 50 or greater (50-100) ensure similarity or equivalence between two products.