
Optimized Method for Determination of Selected Phenolic Compounds in Cigarette and Cigar Smoke by UPLC-FLD

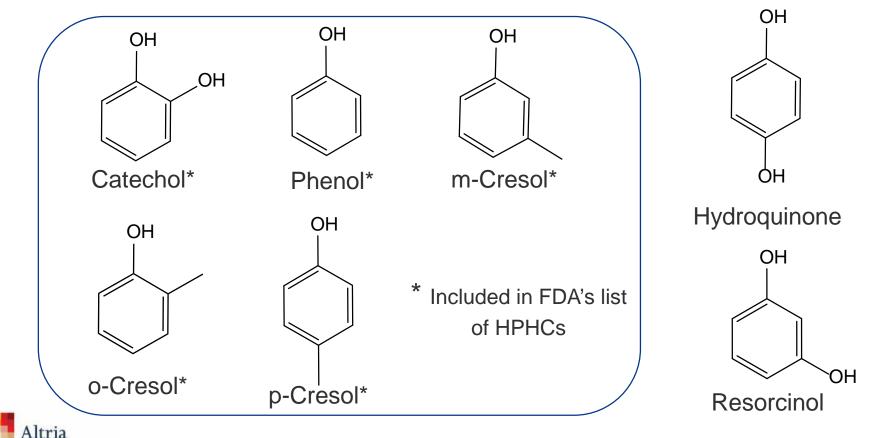
<u>Xiaohong Cathy Jin</u>, Thomas J. Hurst and Karl A. Wagner CORESTA SSPT CONFERENCE OCT. 6th-10th 2019

Introduction

- Selected phenolic compounds are included in the FDA "Established List of HPHCs in Tobacco Products and Tobacco Smoke¹".
- Analytical methods for phenols in tobacco and cigarette smoke:
 - Wu, J. et al. reported an HPLC-FLD method in 2012²
 - CORESTA recommended method 78 (CRM 78), 34 min run time, developed in 2014³
- No method for phenols in cigar smoke has been reported.

^{1.} FDA Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke: Established List (2012)

^{2.} Wu, J., et al. J. of chromatography A. 1264 (2012) 40-47


^{3.} CRM 78, Determination of selected phenolic compounds in mainstream cigarette smoke by HPLC-FLD, December 2018

Objective

 To develop a rapid method suitable for analysis of phenols in both cigarette and cigar smoke using Ultra-High Pressure Liquid Chromatography (UPLC) with Fluorescence detector (FLD)

Selected phenolic compounds

Experimental – Smoke collections

 Cigarette or cigar smoke was collected on a Cambridge filter pad (CFP) per smoking regime

Samples	Smoking regime	Puff volume (mL)	Puff frequency (sec)	Puff duration (sec)
Cigarette	ISO (ISO 3308)	35	60	2
	Intense (ISO 20778)	55	30	2
Cigar	CORESTA ¹	20 ²	40	1.5

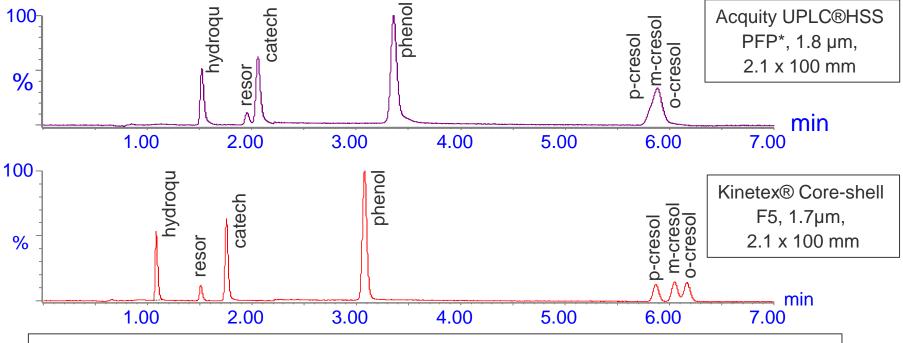
1. CORESTA recommended method Nº 64, Routine analytical cigar-smoking machine – specifications, definitions and standard conditions, May 2018

2. For cigar diameter (d) > 12.0 mm, puff volume (mL) = $0.139^* d^2$

Experimental – Sample preparations

Collect smoke sample on a CFP

Transfer pad to an amber vial

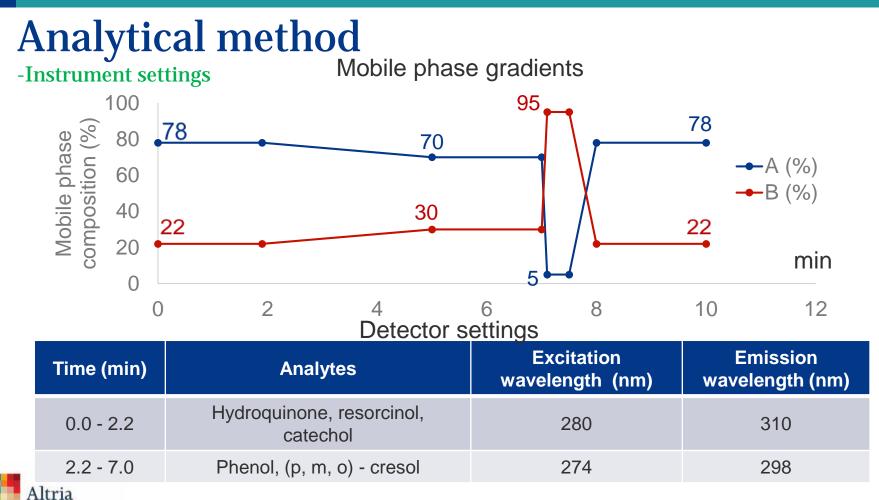

Add 40 mL of extraction solution (1% acetic acid)Shake for 30 min at 350 RPM

Filter extract through 0.2 µm PVDF syringe filter
Inject 2 µL into UPLC-FLD

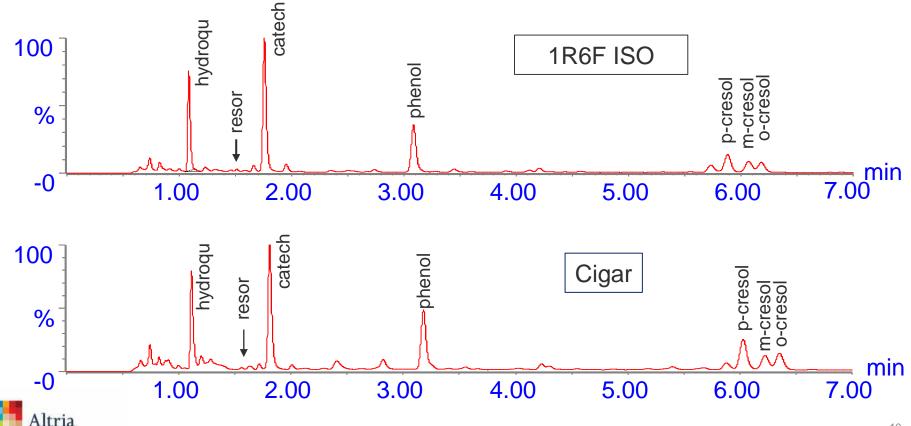
Column selection

-Chromatograms of standard 2

Kinetex F5 column has better separation and was selected for UPLC method.


*PFP: pentafluorophenylpropyl

Itria


Analytical method

-Parameters

- Acquity I-Class UPLC system: binary pump, temperature controlled autosampler, fluorescence detector
- Kinetex[®] Core-shell column F5, 1.7µm, 100 x 2.1mm
- Autosampler temperature: 5 °C
- Injection volume: 2 µL
- Mobile phase, gradient elution (flow rate 0.35 mL/min)
 - A 1% acetic acid in Type 1 water
 - B 1% acetic acid in methanol

Representative chromatograms of smoke samples

-Calibration

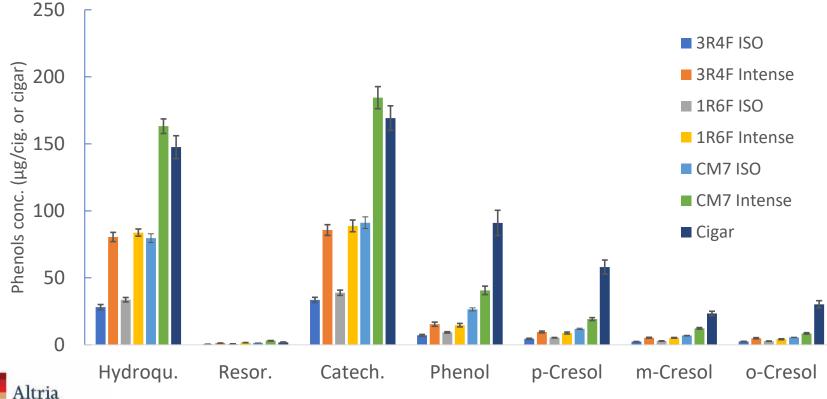
Elements	Analytes	Standards (µg/mL)	Conc. in smoke* (µg per cig. or cigar)
	Hydroquinone, phenol, catechol	0.05 - 20	0.4 - 160 (cig. ISO) 0.7 - 267 (cig. Intense) 2 - 800 (cigar)
Calibration ranges	Resorcinol, p-cresol, m- cresol, o-cresol	0.01 - 4	0.08 - 32 (cig. ISO) 0.13 - 53 (cig Intense) 0.4 - 160 (cigar)
Coefficient of determination (R ²)	> 0.999 for all 7 phenols		

* Based on 40 mL extraction vol. and 5 cig. for ISO, 3 cig. for Intense, 1 cigar

-Precision¹

Altria Client Services

Samples	Smoking regime	TPM 3 days average (mg/cig)	Phenols intra- day precision (%RSD)	Phenols inter- day precision (%RSD)
3R4F	ISO	9.6	3.1 - 9.8	2.0 - 8.1
	Intense	48.5	4.2 - 10.2	2.8 - 13.9
4005	ISO	10.4	2.4 - 6.5	4.1 - 6.8
1R6F	Intense	48.0	2.3 - 10.4	3.3 - 8.9
CORESTA monitor 7	ISO	16.7	0.9 - 5.6	3.1 - 5.8
(CM7)	Intense	46.3	3.0 - 8.8	3.4 - 7.8
Cigar ²	CORESTA	62.4	4.0 - 11.9	5.8 - 16.9


1. Intra-day: n=6 for cigarettes and n=4 for cigar; Inter-day: 3 days

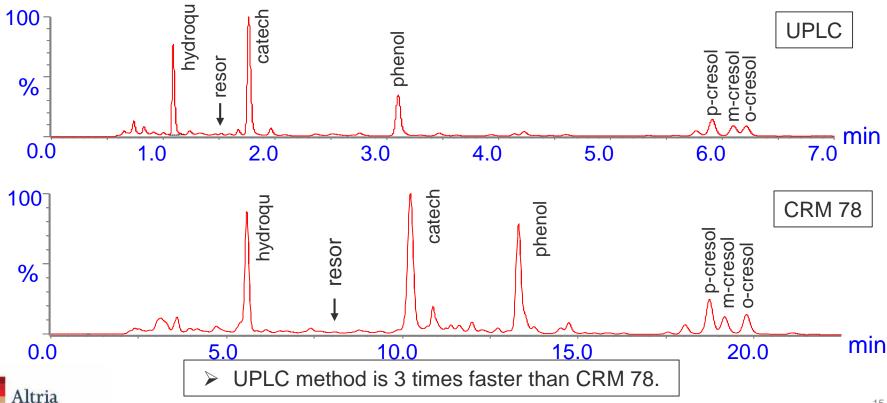
Altria 2. Machine made, traditional dark cured tobacco, natural wrapper cigar

Xiaohong Cathy Jin | Regulatory Affairs | Altria Client Services | CORESTA Oct 6th-10th | Final | ¹²

Altria Client Services

-Phenols yields in validation samples (n=18 for cig. and n=12 for cigar)

Xiaohong Cathy Jin | Regulatory Affairs | Altria Client Services | CORESTA Oct 6th-10th | Final | ¹³

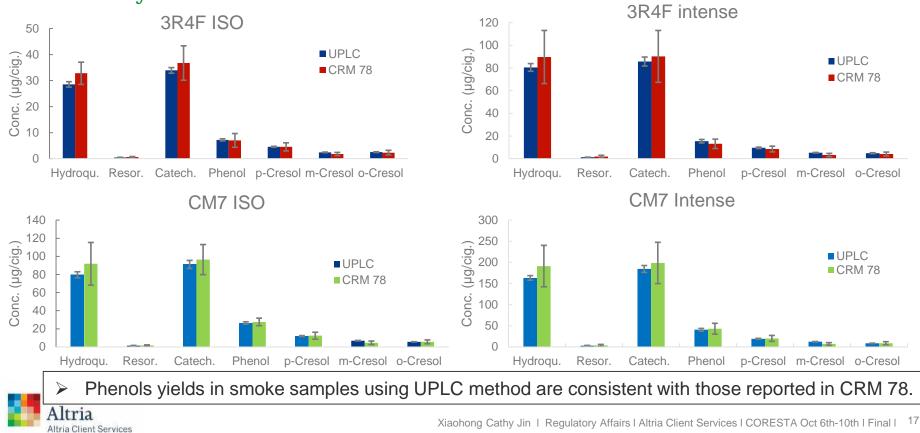

-Recovery (2 fortification levels at 0.5x & 2x of native analytes conc., n=3)

Fortification level	1R6F ISO	CM 7 ISO	Cigar
Low level fortification ~0.5X of native conc.	74% - 96%	86% - 95%	75% - 83%
High level fortification ~2X of native conc.	75% - 96%	88% - 97%	77% - 97%

Compared to CRM 78

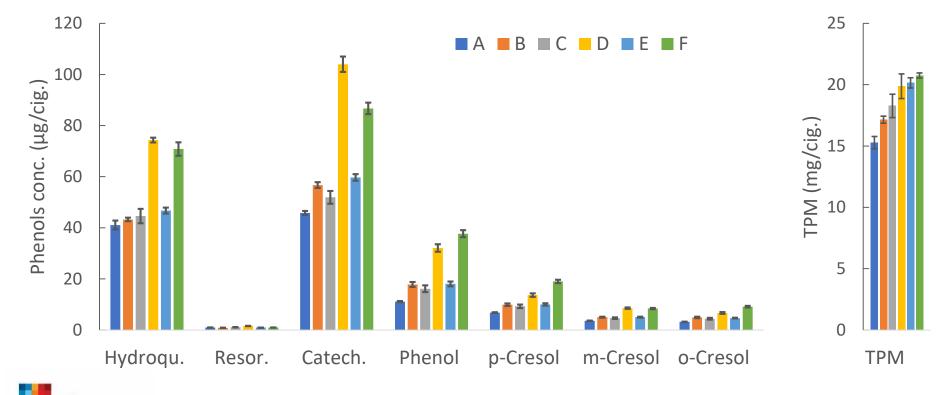
-Chromatograms of 3R4F ISO sample

Compared to CRM78

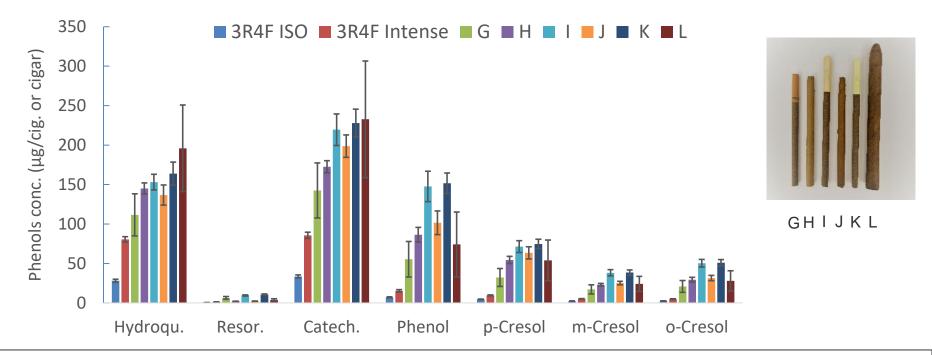

-Calibration ranges

	unit	UPLC	CRM 78
Hydroquinone, catechol, phenol	µg/mL	0.05 - 20	0.2 - 8
Resorcinol	µg/mL	0.01 - 4	0.04 - 1.6
p-cresol, m- cresol, o-cresol	µg/mL	0.01 - 4	0.06 - 2.4

> UPLC method has wider dynamic calibration ranges than CRM 78.



Compared to CRM78 -Phenols yields in 3R4F and CM 7 smoke



Phenols yields in market cigarettes ISO smoke

-Commercially marketed American blended cigarettes (n=4)

Phenols yields in machine-made cigar smoke -Machine made cigars vs. 3R4F

Phenols yields and variability higher in cigar smoke (%RSD:2%-55%) than in cigarette smoke (%RSD:1%-8%)

Conclusions

- The UPLC-FLD method met the acceptable validation requirements.
- The UPLC method is 3 times faster and has wider dynamic calibration ranges compared to CRM 78.
- Phenols yields per stick in cigar smoke were higher and more variable than in cigarette smoke.

The UPLC-FLD method was found fit for purpose of analysis of selected phenolic compounds in both cigarette and cigar smoke.

Thank You

Questions?

For copies of this presentation visit the Altria's Science Website at <u>www.altria.com/alcs-science</u>

Altria has a new Altria Science Twitter account Follow us @AltriaScience

