

Abstract

Chronic exposure to cigarette smoke is a risk factor for the development of various diseases including chronic obstructive pulmonary disease. Smoking cessation remains the most effective approach to minimize smoking related diseases. It is generally regarded that switching from combustible cigarette to e-cigarettes (e-vapors), can offer a potential alternative for tobacco-related harm reduction. Though various variants of e-vapor products are available, studies evaluating long-term toxicity and biological implications of e-vapors alone and in the context of switching from cigarettes to e-vapors are not available. We designed a 7-month nose only inhalation (4 hours/day, 5 days/week, for 7 months) study to evaluate chronic toxicity of MarkTen[®] e-vapor aerosols (4% nicotine by weight) and compared it to responses from exposure to the 3R4F reference cigarette (CS). Additional groups of mice were added to explore the impact of switching or cessation after first 3-months of exposure to CS (followed by 4 months of cessation or e-vapor exposures).

Over the 7 months of exposure, there were no notable in-life observations from the e-vapor groups. Their body weights were comparable to the sham control, whereas the CS group showed consistently lower body weight. Upon cessation or switching to e-vapor exposure, body weights gradually increased. In contrast to e-vapor, the 3R4F group showed transient clinical signs of distress post-exposure, and, in part because of markedly reduced respiratory volume during exposure, they had lower plasma nicotine and cotinine levels compared to the e-vapor group. In addition, the CS exposure induced significant changes in organ weights (e.g., increases in lung; decreases in kidney, thymus, and liver weights). Following 7 months of exposure, e-vapor resulted in no or minimal increase in inflammatory cellular responses in bronchoalveolar lavage fluid, while the CS group showed consistently elevated responses (activated macrophages, CD4+T cells, B cells, neutrophils and eosinophils). Also, the extent of changes observed in switching group was overall similar to changes observed in the cessation group. Altogether, the pathophysiological changes induced by e-vapor exposures were significantly lower than changes induced by CS exposure. This study suggests that complete switching from CS to e-vapor products could significantly reduce biological changes associated with cigarette smoke.

Methods

- Female C57BL/6 mice, 11 weeks, were exposed to cigarette smoke (3R4F; 550 µg/L TPM [Total particulate matter]) or e-vapor aerosols (MarkTen[®] Test Red; 1100 µg/L TPM) via nose-only inhalation for 4 hours/day, 5 days/week, for up to 7 months. After the first 3 months of exposure, groups of 3R4F mice were subjected to different exposures of: 1) Test Red ("Switching") or 2) filtered air ("Cessation"), while a group remained on 3R4F exposures (Study Design: see Table 1).
- Mice were examined for in-life observations (clinical signs, body weights) throughout the study. At selected timepoints (Months 3, 4, and 7), cohorts were evaluated for various biological endpoints including: respiratory physiology; blood and urine sampling for biomarkers of exposure (plasma nicotine and cotinine, blood carboxyhemoglobin, urinary metabolites), anatomy (organ weights, gross findings) and histopathology, bronchoalveolar lavage (BAL) fluids (cytology), and genotoxicity (bone marrow micronucleus).

	Group	Exposure (µg/L WTPM)	Total Number of Animals
1	Sham	0	161
2	3R4F*	550	161
3	Test Red [#]	1100	161
4	Switching	550/1100	102
5	Cessation	550/0	102

 TABLE 1. Study Design

*Exposure regimen for 3R4F, CIR regimen (55/30/2; a 55±0.3 mL/puff, a puff every 30 sec, a 2-sec puff duration) for 8 puffs/cigarette

#Exposure regimen for Test Red, modified CRM81 regimen (55/30/5; a 55±0.3 mL/puff, a puff every 30 sec, a 5-sec puff duration) for 130 puffs/cartridge

	Month						
Exposure	1	2	3	4	5	6	7
		Air					
Sham	Air						
				Air			
	3	3R41	F				
3R4F	3R4F						
	36	BR4F	R4F				
		TA					
Test Red		T.	A				
(TA)	TA						
Switching	3	3R4I	F	TA			
Switching	-	3R41	TA				
Constian		3R41	F	Air			
Cessation	3	3R41	F		A	Air	

A 7-Month Inhalation Study in C57BL/6 Mice to Investigate Potential Toxicity of E-vapor Aerosols Compared to Cigarette Smoke Using Cessation and Switching Study Design Ashutosh Kumar¹, Sam Harbo², Eric Benson², Michael Oldham^{1*}, Bill Gardner¹, Julia Hoeng³, Willie McKinney^{1*}, and K Monica Lee¹ ¹Altria Client Services LLC, Richmond, VA, USA; ²Battelle, West Jefferson, OH, USA; ³Philip Morris International R&D, Neuchâtel, Switzerland SOT 58th Annual Meeting & ToxExpo, March 10 - 14, 2019, Baltimore, Maryland, USA

		Groups				
Exposure Parameter (mean ± SD)		Sham (Air) Control (0 μg TPM/L)	3R4F Cigarette (550 μg TPM/L)	Test Red (1100 μg TPM/I		
Total Particulate Matter [ug/L]		0±0	540±15	1091±38		
Carbon Monoxide [ppm]		NM	643±21	NM		
Nicotine [µg/L]		ND	42.1±2.9	29.4±2.3		
Propylene Glycol [µg/L]		ND	BLOQ	205±22		
Glycerol [µg/L]		ND	59.7±3.6	788±40		
Particle Size (MMAD [µM] ± GSD)		NM	0.66±1.4	1.1±1.5		
	Month 1	BLOQ	3.306954	0.007610		
	Month 3	0.000298	3.455845	0.009886		
Acrolein [µg/L]	Month 4	0.000759	3.375584	0.009971		
Γ	Month 6	BLOQ	3.165442	0.009687		
Γ	Month 7	0.000951	4.813747	0.012874		
	Month 1	BFB	34.604537	0.041258		
	Month 3	0.000849	35.258584	0.052991		
Acetaldehyde	Month 4	0.001054	32.268813	0.057191		
	Month 6	0.000713	33.540513	0.055081		
	Month 7	0.001071	32.389975	0.061445		
	Month 1	0.012687	0.898244	0.037161		
T	Month 3	0.003940	0.923797	0.032049		
Formaldehyde	Month 4	0.003070	0.827892	0.043567		
	Month 6	0.009656	0.803764	0.037130		
Γ	Month 7	0.002963	0.489221	0.036943		
	Month 1	0.007430	9.420541	0.014357		
[Month 3	0.011064	9.185413	0.020443		
Propionaldehyde	Month 4	0.000799	3.480762	0.005311		
[µg/L]	Month 6	0.003885	8.564756	0.010677		
	Month 7	0.004308	6.145158	0.009134		
	Month 1	ND	0.846773	ND		
	Month 3	BLOQ	0.918520	BLOQ		
Crotonaldehyde	Month 4	ND	0.914780	ND		
[µg/L]	Month 6	BLOQ	0.582760	BLOQ		
	Month 7	BLOO	0 533726	BLOO		

RESPIRATORY PHYSIOLOGY

FIG 1. Respiratory rate (RR: top) and minute volume (MV: bottom) during the first hour of exposure at 7 month. The 3R4F group had the largest reduction in RR (and MV), while the e-vapor group showed comparable values to the sham control.

Results

Abstract 1935 Poster P321

This poster may be accessed at www.altria.com/ALCS-Science

FIG 5. Percent organ weights relative to body weight: A notable finding was consistently decreased liver, kidney (not shown) and thymus weights and increased lung weights in 3R4F group when compared to sham

Summary

- An inhalation exposure system successfully generated and delivered e-vapor aerosols of a respirable size (for 3R4F as well as e-vapor) via nose-only inhalation system for up to 7 months.
- During the exposure, the 3R4F group showed respiratory function depression, increased blood carboxyhemoglobin, decreased mean body weight, changed relative organ weights (e.g., increases in lung; decreases in kidney, thymus, and liver weights) and notable cellular infiltration/changes in BAL fluid.
- Despite higher plasma nicotine, and cotinine levels than the 3R4F, the Test Red (evapor) groups had minimal changes in respiratory function, mean body weight, relative organ weights (liver, thymus, lung, kidney), that were similar to the sham control. There were few differences in BAL cytology compared with the sham control.
- The Switching and Cessation groups often exhibited similar levels of reversibility of 3R4F exposure related findings after switching to Test Red or air exposure.
- In conclusion, following 7 months of exposure, cigarette smoke induced biological responses in the respiratory tract associated with smoking-related diseases, while evapor exposure, even with higher nicotine intake, showed substantially reduced changes in parameters tested.
- This study suggests that complete switching from CS to e-vapor products could significantly reduce biological changes associated with cigarette smoke.

Financial Disclosure/Conflict of Interest: The authors are employees of Altria Client Services LLC, Philip Morris International R&D, or Battelle.