Prediction of Analyte Yields, Mutagenicity, and Cytotoxicity of Mainstream Tobacco Smoke from Tobacco Blends

Altria Altria Client Services

Abstract

The purpose of this study was to determine if analyte yields, mutagenicity, and in-vitro cytotoxicity of two blended experimental cigarettes containing multiple types of tobacco could be predicted from the response of experimental cigarettes containing a single tobacco type represented within each blended experimental cigarette. Select mainstream tobacco smoke (MS) analytes were collected using the International Organization for Standardization puff regimen and measured. Spontaneous mutant frequency was determined using a mouse lymphoma assay. The number of revertant colonies was determined via the Salmonella reverse mutation assay. Cytotoxicity (1/EC₅₀) of gas vapor phase (GVP) and total particulate matter (TPM) from MS was determined using the neutral red uptake assay. Under the assumption of linear blending, the predicted result for a tobacco blend is based on the weighted average of the responses of the experimental cigarettes containing the corresponding single types of tobacco that constitute the blend. Accurate predictions were considered to be those with values ±10% of measured value. Accurate Predictions for 60–82% of selected mainstream analytes were made for Blend 1 experimental cigarettes (35.41% Bright: 22.96% Burley: 14.63% Oriental: 27% Reconstituted Leaf Domestic Bright) and Blend 2 experimental cigarettes (35.41% Bright: 22.96% Burley: 14.63% Oriental: 27% Expanded Tobacco). Accurate predictions for spontaneous mutation frequency were made for Blends 1 and 2 experimental cigarettes. The number of revertant colonies was not consistently predicted with accuracy for Blend 1 or 2 experimental cigarettes. However, $1/EC_{50}$ could be accurately predicted for GVP in Blend 1 and 2 experimental cigarettes, but TPM could only be accurately predicted for Blend 2 experimental cigarettes. In conclusion, predictions via linear blending were not sufficient to replace measurement of analyte yields, mutagenicity or cytotoxicity. However, linear blending may serve as an additional screening tool when toxicological and mutagenic responses of experimental or blended tobacco cigarettes of known tobacco composition must be evaluated.

Methods

Analyte yields from MS were measured, mutagenicity assays (MLA and Salmonella reverse mutation assay) and an in-vitro cytotoxicity assay (NRU) were conducted on two sets of experimental cigarettes. Experimental cigarettes in Set 1 comprised individual tobacco types or a mix of tobaccos in the U.S., except for Oriental tobacco which was sourced internationally. Experimental cigarettes in Set 2 comprised individual types or a mix of tobaccos which were sourced internationally, except for the expanded tobacco (ET), which was predominantly US-sourced. A University of Kentucky reference cigarette 1R4F (Tobacco and Health Research, Lexington, KY) was used as an internal assay standard.

Analytical Chemistry

MS analytes were collected from each experimental cigarette and quantified using validated analytical methods. Since the experimental cigarettes tested yielded statistically significantly different amounts of water, the analytical chemistry, mutagenicity, and cytotoxicity results were reported on a per mg tar basis. Smoke analyte yield predictions were done on a per cigarette basis to determine analyte yields in Blend 1 and Blend 2 experimental cigarettes.

In-Vitro Mutagenicity: Mouse Lymphoma Assay

The mouse lymphoma TK assay (MLA) was conducted in general compliance with Organization for Economic Cooperation and Development (OECD) guideline 476.¹ Mouse lymphoma cells were treated with MSC for 4 h at 37 °C, with/without metabolic activation (Aroclor-induced rat liver S9). Positive (-S9 = Methyl methanesulfonate; +S9 = benzo[a]pyrene) and negative controls (DMSO) were used in each assay. Experimental cigarettes were ranked on spontaneous mutant frequency on a per cigarette basis. The concentration for the effect level of three times the spontaneous mutant frequency (C_{3B}) was calculated from the dose response curve. Higher C_{3B} values are associated with decreased spontaneous mutant frequency, and lower C_{3B} values are associated with increased spontaneous mutant frequency. Spontaneous mutant frequency predictions, using C_{3B} values (95% confidence limits), were done on Blend 1 and Blend 2 experimental cigarettes on a per cigarette basis.

Description of experimental cigarettes used in this study										
Set 1	Tobacco content									
Tobacco type	Bright	Burley	Oriental	RLDBright	Blend 1					
Percentage of tobacco	100%	100%	100%	50%RLD; 50%Bright	Bright;Burley;Oriental;RLD ^a					
Source	USA	USA	International	USA	USA					
Set 2										
Tobacco type	Bright	Burley	Oriental	ET	Blend 2					
Percentage of tobacco	100%	100%	100%	100%	Bright;Burley;Oriental;ET ^b					
Source	International	International	International	USA	International + USA					

Experimental Cigarettes

EI, expanded iobacco; KLDBright, reconstituted leaf domestic Bright ^aBlend 1: Bright(35.41%)+Burley(22.96%)+Oriental (14.63%) +RLD (27%) ^bBlend 2: Bright(35.41%)+Burley(22.96%)+Oriental (14.63%) +ET (27%)

Donna C. Smith, David J. Mason, Jr, Michael J. Morton, Michael J. Oldham, and Willie J. McKinney, Jr.

Altria Client Services LLC, 601 East Jackson Street, Richmond, VA 23219, USA

SRNT 25th Annual Meeting, February 20 - 23, 2019, San Francisco, California, USA

Methods

In-Vitro Mutagenicity: Salmonella Mutagenicity

The Salmonella typhimurium reverse mutation assay was conducted in general compliance with OECD guideline no. 471.² To measure number of revertant colonies, TA98 and TA100 strains were treated with MSC (three replicates from each of two separate MSC collections/assay) in the presence or absence of S9 for 44–72 h at 36–37 °C. Positive controls (TA98+S9 = 2-amino anthracene: TA98-S9 = daunomycin; TA100+S9 = 2-amino anthracene; TA100-S9 = methyl methanesulfonate) and negative controls (DMSO) were used in each assay. For each assay, the genotype of each strain was confirmed, and number of revertant colonies was measured in response to MSC on a per mg of dry condensate basis. The specific number of revertant colonies induced by MSC was measured over a range of non-toxic dose levels, with the slopes of regression lines compared to determine mutagenic response to MSC.³ Experimental cigarettes were ranked by number of revertant colonies on a per mg dry condensate basis.⁴ Number of induced revertant colonies was predicted using the weighted average of the tobacco components for Blend 1 and Blend 2 experimental cigarettes on a per mg dry condensate basis.

In-Vitro Cytotoxicity: NRU Assay

TPM and GVP fractions of MSC from each experimental cigarette were added separately to mouse embryo Balb/c 3T3 cells, obtained from the American Type Culture Collection (Manassas, VA). To determine 1/EC₅₀ (the reciprocal of the concentration that reduces the number of viable cells by 50% as compared with the control), 24 h post-seeding, cells were treated with TPM, GVP or a positive control (acrolein) dissolved in media for 24 h. After 24 h, media containing TPM, GVP or positive control were replaced with media containing neutral red. After 3 h, cells were washed in PBS, and the neutral red taken up by the cells was extracted. Optical density was read at 540 nm. Three separate batches of TPM or GVP were collected and assayed independently. Experimental cigarettes were expressed as 1/EC₅₀ for TPM and GVP fractions on a per mg tar basis. Reciprocal EC₅₀ predictions using linear blend calculations were done for Blend 1 and Blend 2 experimental cigarettes on a per mg tar basis.

Evaluation: Weighted Average of Components Assumption

The predicted result for a tobacco blend is based on the weighted average of the responses of the experimental cigarettes containing the corresponding single types of tobacco that constitute the blend.

The weighted average assumption was applied to analyte yields above the limit of quantitation, mutagenicity (MLA and Salmonella reverse mutation assay) and in-vitro cytotoxicity. The weighted average for Blend 1 experimental cigarette was calculated as follows:

Bright * 0.3541 + Burley * 0.2296 + Oriental * 0.1463 + 0.27 * 2 * (RLDBright – 0.5 * Bright) =

Bright * 0.0841 + Burley * 0.2296 + Oriental * 0.1463 + RLDBright * 0.54.

Similarly the weighted average for the Blend 2 experimental cigarette was calculated as follows: Bright * 0.3541 + Burley * 0.2296 + Oriental * 0.1463 + ET * 0.27

Results

Set 1 C _{3B} from MLA Assay			Set 2 C	3B from ML	AAssay
S9	Cigarette	C _{3B}	S9	Cigarette	C _{3B}
No	Bright	36.9	No	Bright	37.0
	Burley	55.8		Burley	52.5
	Oriental	35.5		Oriental	37.0
	RLDBright	39.4		ET	43.2
	Blend1	40.8		Blend2	42.0
	Predicted	42.4		Predicted	42.2
	% Error	3.8%		% Error	0.4%

Set 1	C _{3B} from ML	AAssay	Set 2 C	3B from ML	AAssay
S9	Cigarette	C _{3B}	S9	Cigarette	C _{3B}
Yes	Bright	141.4	Yes	Bright	110
	Burley	184.3		Burley	163
	Oriental	126.2		Oriental	133
	RLDBright	198.9		ET	180
	Blend1	172.6		Blend2	158
	Predicted	180.0		Predicted	144
	% Error	4.3%		% Error	-8.5%

S	Salmonella Reverse Mutation Assay Results (per mg dry condensate)								
		Set 1			Set 2				
S9	Strain	Cigarette	Mean		S 9	Strain	Cigarette	Mean	
Yes	TA98	Bright	3470		Yes	TA98	Bright	3670	
		Burley	5809				Burley	5867	
		Oriental	2167				Oriental	3159	
		RLDBright	3501				ET	2637	
		Blend 1	3993				Blend 2	4282	
		Predicted	3833				Predicted	3821	
		% Error	-4.0%				% Error	-10.8%	
Yes	TA100	Bright	1721		Yes	TA100	Bright	2019	
		Burley	2793				Burley	2988	
		Oriental	1386				Oriental	1529	
		RLDBright	1624				ET	1162	
		Blend 1	1989				Blend 2	2001	
		Predicted	1865				Predicted	1938	
		% Error	-6.2%				% Error	-3.1%	

Results

				Set 1							Set 2			
							Difference							Difference
Analyte	Bright	Burley	Oriental	RLDBright	Blend 1	Predicted	Pred - Meas.	Bright	Burley	Oriental	ET	Blend 2	Predicted	Pred - Meas
	Meas.	Meas.	Meas.	Meas.	Meas.	Wtd Ave	% Diff	Meas.	Meas.	Meas.	Meas.	Meas.	Wtd Ave	% Diff
TPM (mg/cig)	29.3	22.2	32.5	16.6	20.2	21.3	5.3%	24.0	15.8	26.4	14.3	19.1	19.8	3.9%
Tar (mg/cig)	22.9	16.8	26.2	13.0	15.7	16.6	6.0%	19.4	12.6	21.9	11.2	15.3	16.0	4.5%
Nicotine (mg/cig)	2.77	2.24	1.33	1.05	1.44	1.51	4.8%	2.77	1.8	1.86	1.29	1.93	2.01	4.4%
Water (mg/cig)	3.64	3.17	4.98	2.61	3.05	3.17	4.0%	1.79	1.41	2.65	1.83	1.82	1.84	1.1%
Carbon monoxide (mg/cig)	15.7	15.8	16.9	14.4	15.5	15.2	-2.0%	11.3	10.0	13.0	10.0	11.0	10.9	-1.0%
1,3-Butadiene (µg/cig)	47.8	45.4	52.5	34.8	44.9	40.9	-8.9%	48.2	36	60.8	52.3	47	48.3	2.9%
Isoprene (µg/cig)	708	479	444	336	448	416	-7.2%	664	464	404	623	561	569	1.4%
Formaldehyde (µg/cig)	50.9	14.6	83.7	67.0	43.3	56.1	29.5%	39.7	29	48.3	49.1	40.5	41.0	1.3%
Acetaldehyde (µg/cig)	825	679	740	718	737	721	-2.1%	737	639	721	588	732	672	-8.2%
Acrolein (µg/cig)	88.7	60.3	89.7	77.7	78.3	76.4	-2.4%	54.7	42.6	62.1	61.6	64.9	54.9	-15.5%
Propionaldehyde (µg/cig)	63.6	49.9	63.1	55.5	56.9	56.0	-1.6%	71.5	52.3	77.5	52.5	67.8	62.8	-7.3%
Acrylonitrile (µg/cig)	15.2	20.7	15.7	10.3	14.3	13.9	-2.9%	16.1	17.0	16.6	11.9	15.2	15.2	0.3%
Hydrogen cyanide (µg/cig)	177	150	150	116	143	134	-6.4%	180	152	209	90	197	154	-22.1%
2-Nitropropane (μg/cig)	7.4	18.2	6.7	8.8	10.1	10.5	4.8%	9.3	19.0	12.7	9.9	12.8	12.2	-5.0%
o-Toluidine (ng/cig)	126	160	105	55	74	92	24.9%	114	130	78.3	42.8	81.5	93.2	14.4%
o-Anisidine (ng/cig)	5.59	5.05	2.05	2.95	3.22	3.52	9.4%				Not Measured			
2-Naphthylamine (ng/cig)	11.5	15.7	8.0	4.9	6.9	8.4	21.6%	12.2	11.0	8.1	4.4	9.7	9.2	-4.7%
4-Aminobiphenyl (ng/cig)	1.99	3.83	1.43	1.03	1.43	1.8	26.7%	2.3	3.47	1.92	1.09	2.23	2.19	-2.0%
Vinyl chloride (µg/cig)	27.3	27.4	40.5	27.1	31.2	29.1	-6.6%			All valu	es below LOQ	(<19.8)		
Nitrogen oxides (mg/cig)	144	457	151	232	287	264	-7.9%	0.146	0.265	0.151	0.089	0.171	0.159	-7.2%
Benzene (µg/cig)	53.1	49.1	73.8	36.0	46.1	46.0	-0.3%	47.3	44.1	56.9	34.0	45.7	44.4	-2.9%
Toluene (µg/cig)	84.3	81.3	130.5	57.1	72.8	75.7	4.0%	76.5	76.7	86.9	44.0	69.2	69.3	0.1%
NNN (ng/cig)	103	543	32	264	234	281	19.9%	43.5	336	28.6	51.0	131	111	-15.6%
NNK (ng/cig)	190	159	<12 #	179	224	151	-32.6%	51.5	55.4	< 17.6 #	59.1	51.7	49.5	-4.3%
Phenols (µg/cig)	62.9	41.7	61.7	19.3	27.4	34.3	25.2%	71.3	39.2	57.6	16.6	44.5	47.2	6.0%
Catechol (µg/cig)	139	56	185	64	72	86	19.7%	122	52.2	113	42.9	83.3	83.3	0.0%
Benz[a]anthracene (ng/cig)	35.8	18.1	60.2	15.1	18.6	24.1	29.7%	23.4	12.5	25.1	9.48	16.8	17.4	3.5%
Benzo[b]fluoranthene (ng/cig)	15.3	10.2	22.2	8.2	9.3	11.3	21.6%	19.3	10.2	21.8	7.04	11.9	14.3	19.9%
Benzo[k]fluoranthene (ng/cig)	3.50	1.65	5.65	2.04	2.23	2.60	16.7%				Not Measured	l		
Benzo[j]fluoranthene (ng/cig)	7.53	4.19	10.68	3.86	4.30	5.24	21.9%				Not Measured			
Benzo[a]pyrene (ng/cig)	17.6	8.8	28.6	8.3	9.7	12.2	25.4%	12.2	5.2	11.5	4.0	7.8	8.3	6.6%
Indeno[1,2,3-cd]pyrene (ng/cig)	7.53	3.94	12.82	3.98	4.64	5.56	19.9%	3.03	0.81	2.35	< 0.261 #	1.39	1.67	20.3%
Dibenz[a,h]anthracene (no/cio)	1 89	0 94	4 91	0.98	1 22	1 62	33.0%				Not Measured	1		

The > LOQ value was replaced with the LOQ for the purposes of the predicted Diend I and 2 value

Cytotoxicity (1/EC ₅₀) determined by NRU (per mg tar)								
GVP TPM								
Cigarette	Set 1	Set 2	Set 1	Set 2				
Bright	4.2	3.4	10.0	11.5				
Burley	2.9	2.2	10.6	10.9				
Oriental	5.1	3.6	10.2	11.7				
RLDBright	6.6	_	10.4	_				
ET	_	5.8	_	9.8				
Blend	5.4	4.2	9.6	11.8				
Predicted	5.3	3.8	10.4	10.9				
% Error	-1.3%	-9.5%	8.2%	-7.4%				

Summary

There were mixed results regarding whether the blended cigarette values could be well predicted by the simple weighted average of the individual component values.

- The biological assays were generally well predicted, though they did not show a large difference between tobacco types. • Many of the compounds in smoke, such as tar, nicotine, and carbon monoxide, are well predicted by the simple additive
- Some of the trace level constituents, such as the polyaromatic hydrocarbons, had differences from the predicted value of
- more than 10%, likely due to their low levels.
- Some compounds, such as NNN, NNK and formaldehyde, were not well predicted by the simple additive model, perhaps due to the complex nature of their formation mechanisms.
- Note that different crop year tobaccos could perform differently, because of natural variation in agricultural products.

This poster may be accessed at www.altria.com/ALCS-Science

Cytotoxicity (1/EC ₅₀) determined by NRU (per cigarette)										
	GVP TPM									
Cigarette	Set 1	Set 2	Set 1	Set 2						
Bright	115	88	272	298						
Burley	59	37	220	184						
Oriental	144	104	291	338						
RLDBright	116	_	182	_						
ЕТ	_	85	_	144						
Blend	109	86	191	242						
Predicted	107	78	214	236						
% Error	-1.9%	-9.2%	12.0%	-2.4%						

References

- 1. Organisation for Economic Co-operation and Development (1997). Test No. 476: in Vitro Mammalian Cell Gene Mutation Test. OECD Publishing, Paris, France.
- 2. Organisation for Economic Co-operation and Development (1997). Test No. 471: Bacterial Reverse Mutation Test. OECD Publishing, Paris, France.
- 8. Roemer, E., Tewes, F.J., Meisgen, T.J., Veltel, D.J., Carmines, E.L. (2002). Evaluation of the potential effects of ingredients added to cigarettes. Part 3: in vitro genotoxicity and cytotoxicity. Food Chem. Toxicol. 40, 105-111.
- 4. Gaworski, C.L., Oldham, M.J., Wagner, K.A., Coggins, C.R., Patskan, G.J. (2011). An evaluation of the toxicity of 95 ingredients added individually to experimental cigarettes: approach and methods. Inhal. Toxicol. 23 Suppl 1, 1-12.