Optimization of 2,4dinitrophenylhydrazine (DNPH) derivatization conditions for the determination of carbonyl compounds in e-vapor products

Lena Jeong, John Miller, Niti Shah

Background

\ltria

Altria Client Services

FDA requires reporting of carbonyls in e-vapor products*:

- No CRM available for measuring carbonyls in e-vapor products
 - CRM 74: mainstream cigarette smoke
 - CRM 86: tobacco and tobacco products
- Carbonyl compounds react with 2,4-dinitrophenylhydrazine (DNPH) the presence of an acidic catalyst to form the respective hydrazones

*FDA Premarket Tobacco Product Applications for Electronic Nicotine Delivery Systems Final Guidance for Industry. 2019. CRM: CORESTA recommended method

Current Methods

	DNPH conc.	Acid	Diluent
CRM 74	11.65 mM	2.05 M phosphoric acid	50/50 ACN/H ₂ O
Altria (published)	17.5 mM	1.82 M perchloric acid	ACN

Challenges with current methods:

- High background for formaldehyde in current DNPH
- Low and unstable recovery for acrolein

J.W. Flora et al., Method for the Determination of Carbonyl Compounds in E-Cigarette Aerosols, *Journal of Chromatographic Science*, 55 (2017), 1421-148

1. Formaldehyde Contamination in DNPH

High background signals for Formaldehdye

- Problematic for low level quantitation
- Often requires recrystallization
- Lot-to-lot variation in background levels
- Limited availability (issue for high volume testing)

Alternate DNPH type desired

1. Formaldehyde Contamination in DNPH

DNPH-HCI

Switching to HCI salt form dramatically reduced background carbonyl levels

2. Low and Unstable Acrolein Recovery

-CRM 74 -Altria published

J.W. Flora et al., Method for the Determination of Carbonyl Compounds in E-Cigarette Aerosols, *Journal of Chromatographic Science*, 55 (2017), 1421-148

Altria

Altria Client Services

Investigation into Low Acrolein Recovery

Polyderivatization of Acrolein*

Polyderivatization increases under strong acidic conditions

*S. Uchiyama, Y. Inaba, N. Kunugita, J. Chromatogr. A, 1217 (2010) 4383-4388. doi: 10.1016/j.chroma.2010.04.056

Method Optimization

- Need to optimize method to:
 - Reduce formaldehyde background using new DNPH-HCI
 - Obtain higher and more stable acrolein recovery

- Evaluate preparation of DNPH solution:
 - Acid type/concentration
 - DNPH concentration
 - Solvent ratio

Derivatization Optimization

Evaluation of pH and DNPH concentration

- Concentration of DNPH (9 mM; 4.5 mM; 1.8 mM) in ACN solution prepared with 1.5 % (v/v) of
 - 1.82 M perchloric acid pH 0.04
 - 0.1 M sodium citrate buffer pH 3
 - 0.1 M sodium citrate buffer pH 6

Literature reports that acidity of derivatization solution has a significant impact on reaction rate and stability

Effect of pH

→ 9 mM DNPH HCl; pH 0.04 → 9 mM DNPH HCl; pH 3 → 9 mM DNPH HCl; pH 6

Low pH results in decomposition of acrolein-DNPH complex

Effect of DNPH Concentration

DNPH concentration is directly related to the derivatization rate

Derivatization Optimization

Effect of Water Content

	DNPH conc.	Acid	Diluent
CRM 74	11.65 mM	2.05 M phosphoric acid	50/50 ACN/H ₂ O
Altria (published)	17.5 mM	1.82 M perchloric acid	ACN

• How is derivatization rate affected in presence of added water?

Varying diluent ratios tested:

- 0/100 H₂O/ACN
- 25/75 H₂O/ACN
- 50/50 H₂O/ACN

Water Content Comparison

Optimized Method vs. CRM 74

Altria Client Services

Altria Client Services I Lena Jeong | Postdoctoral Fellow | Tobacco Science Research Conference, 2019 | 14

Comparison of Methods: Acrolein Recovery

Altria Client Services

New Method Performance with Varying Sample pH

Altria Client Services

Comparison of Methods: Percent Recovery

Derivatization time: 10 min n = 3

	Formaldehyde	Acetaldehyde	Acrolein	Crotonaldehyde
CRM 74	100% ± 2.8%	78.7% ± 0.91%	74.5% ± 1.9%	100% ± 2.4%
Altria published	87.2% ± 1.3%	77.7% ± 2.6%	72.5% ± 2.3%	103 ± 2.0%
Optimized method	102% ± 0.84%	80.7% ± 2.9%	85.6% ± 2.4%	103% ± 3.3%

Sample matrix: 50/50 PG/GLY with 2.5% nicotine (pH 9.36)

Summary - Learnings

- Switching to DNPH HCI form dramatically reduced background levels of formaldehyde
- Highly acidic DNPH solution results in polyderivatization of acrolein-DNPH (formation of AD1)
- Use of buffer to control the pH improves and stablizes acrolein recovery for over 90 min derivatization time
- Addition of protic solvent (H₂O) as diluent slows down the derivatization reaction

Conclusions

 DNPH-HCI form reduces background levels of formaldehyde and improves quantitation of carbonyls in e-vapor aerosol

 The DNPH derivatization method was optimized to give acceptable recovery levels for all aldehydes including acrolein

 New conditions allow for better stability of acrolein to extend aerosol collections

