Preclinical Testing of Flavors in Evapor Products, Part 3: In Vitro Cytotoxicity and Genotoxicity of Representative Flavor Mixtures

Utkarsh Doshi

Tobacco Science Research Conference September 17, 2019

Overview of Session

- Part 1: Selection of Representative Flavor Mixtures Using a Structural Grouping Approach (Kim Ehman)
- Part 2: Preparation and Stability Characterization of Representative Flavor Mixtures (Cameron Smith)
- Part 3: In Vitro Cytotoxicity and Genotoxicity of Representative Flavor Mixtures (Utkarsh Doshi)
- Part 4: Flavor Transfer from the Liquid to the Aerosol for Inhalation Exposure (Jingjie Zhang)

Preclinical Testing of Flavors in E-vapor Products: Overview

Background

- Flavor compounds for oral consumption fall within "generally recognized as safe (GRAS)" category
- Limited safety data exists for inhalation route of exposure
- Many flavor compounds in e-vapor products are commonly used as mixtures which makes their hazard characterization resource and time-demanding
- Alternative approach (part 1):
 - Evaluate structural similarities to develop representative flavor mixtures for preclinical toxicity testing
- Representative flavor mixtures were tested for in vitro cytotoxicity and genotoxicity

Background (cont)

- Test Articles:
 - Carrier (PG:VG (80:20) + 2% Nicotine)
 - Test Formulation (18.6% flavor)
 - Test Formulation (18.6% flavor) + 2% Nicotine

Altria Altria Client Services OECD: Organization for Economic Cooperation & Development

Mutagenicity Assessment

- Ames Assay: OECD 471 Test Guidance (1997).
- Detects compounds ability to cause mutations (point or frame-shift).
- Carrier & test formulations ±nicotine were tested in 5 strains of Salmonella typhimurium TA98, TA100, TA102, TA1535 & TA1537 in absence and presence of metabolic activation (Aroclor induced rat liver S9).

Test Articles	Mutagenicity
Carrier (PG/VG/Nicotine)	Negative
Test Formulation	Negative
Test Formulation + Nicotine	Negative

Genotoxicity Assessment

- Mammalian in vitro micronucleus assay: OECD 487 Test Guidance (2016).
- TK6, human lymphoblast cell line.
- Three treatment conditions: Short term (±S9), long term (-S9).

Genotoxicity Assessment (cont)

Test Articles	Genotoxicity
Carrier (PG/VG/Nicotine)	Negative
Test Formulation	Equivocal
Test Formulation + Nicotine	Negative

* p≤0.05, Fisher exact test

Criteria For Positive Genotoxicity Call

All 3 criteria have to be met:

- Statistical Significance (p≤0.05, Fisher exact)
- Outside of vehicle historical control
- Significant for trend

Cytotoxicity Assessment

- Neutral Red Uptake Assay: OECD 129 Test Guidance (2010)
- Murine fibroblast cell line (BALB/c 3T3 cells, clone 31)
- 48 hr treatment

--- 50% Viability

Identifying Drivers of Cytotoxicity

- Cytotoxicity was common trend observed in all 3 assays.
- To understand the drivers of cytotoxicity, 38 flavor ingredients were divided into sub-group mixtures (called pre-blends) based on their solubility and chemical reactivity (part 2) and tested using NRU assay.

Cytotoxicity Assessment of Pre-blends

- Pre-blends IA, IB and II were the major contributors to toxicity.
- Examples of flavors reported to be in vitro cytotoxic/irritant:
 - IA (isopulegol)
 - II (furaneol, ethyl maltol)

Conclusions

- Representative flavor mixtures did not show mutagenicity and genotoxicity in the in vitro assays
- Representative flavor mixtures showed cytotoxicity in the in vitro assay, however the cytotoxicity was driven by few selected flavors or flavor groups
- Use of read across approach in combination with systematic toxicity evaluation (deconstructing mixtures into subsets of flavors) can reduce the list of compounds for thorough toxicological evaluation

Acknowledgements

Altria Client Services, Richmond, Virginia, USA

Jingjie Zhang Ashutosh Kumar K. Monica Lee

Bioreliance (Millipore Sigma), Rockville, Maryland USA

