# Double haploid populations as a tool for improved markers for Tomato Spotted Wilt Virus (TSWV) resistance breeding

DELLA VECCHIA, M.;IRVING, B.; MICHAEL MOORE J.\*; LAHUE, S.\*; PRAMOD S.; ADAMS A.; FREDERICK J.

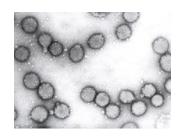
Altria Client Services, Research, Development & Regulatory Affairs, 601 E. Jackson Street, Richmond, VA 23219
\*The University of Georgia, College of Agricultural and Environmental Science, 137 Cedar St, Athens, GA 30602



#### Overview

- Tomato Spotted Wilt Virus (TSWV)
  - Economic Impact
  - Control Methods
  - Sources of Resistance
- Doubled Haploid (DH) lines
  - Benefits of DH lines




- Deformity
- Existing Markers
- Disease Incidence
- Conclusions







## Tomato Spotted Wilt Virus - TSWV





Source: USDA RAMP Project

#### Economic impact of the disease

- Impact in Georgia peanuts, vegetables and tobacco
- Perceived northward migration of the virus
- In Georgia alone, an estimated average losses of \$11.3 million in tobacco 1996-2006



#### Control Methods

- Eliminate infected plants
- Insecticide treatments for vector control
- Eliminate weeds
- Genetic resistance



## Tomato Spotted Wilt Virus - TSWV

#### Sources of Resistance

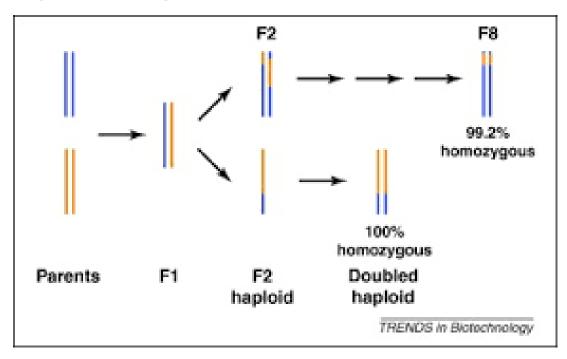
#### Nicotiana species

- N. alata
- N. sanderae
- N. glauca
- N. langsdorfii
- N. longiflora
- N.trigonophhylla
- N. forgetiana
- N. fragrans
- N. noctiflora
- N. palmeri

#### N. tabacum - Polalta

- Hypersensitive response
- N. alata source
- N. otophora bridge pollination
- Poor agronomic performance








## Doubled Haploids (DH) Lines- Benefits

- ✓ Backcross breeding
- ✓ Trait Mapping
- ✓ Accelerating Breeding

☐ Can we use DH to break the linkage of deformity?





### Population Selection & Evaluation







**SCAR Markers** 

#### **Deformity Scale**

0-no symptoms;

1-thickened veins or leaves;

2-nonparallel and thickened veins;

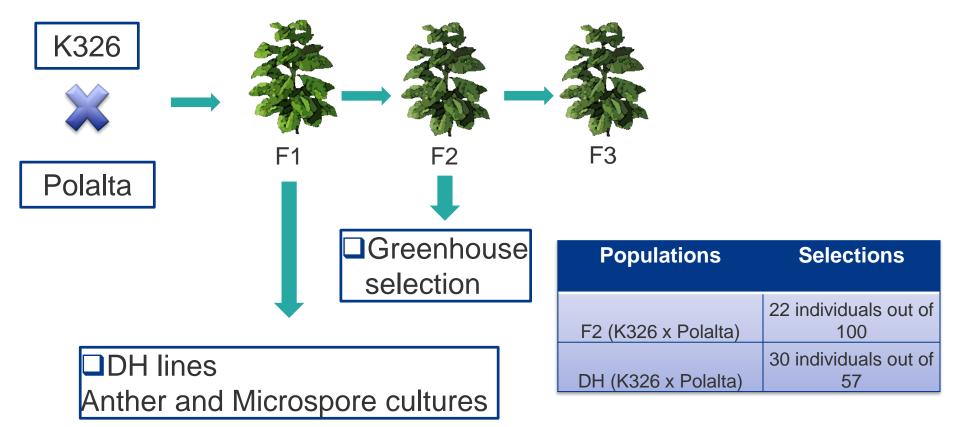
3-wide, irregular and thickened veins;

4-wide, irregular venation and narrow leaves;

5-wide, irregular nerves and ribbon-shaped leaves;

6-irregular venation and tumors on blossoms

Trojak-Goluch, Anna. "Morphological and chemical characteristics of doubled haploids of flue-cured tobacco combining resistance to *Thielaviopsis basicola* and TSWV. "Breeding science. Japanese Society of Breeding. Vol. 66.2. (2016): 293-299.

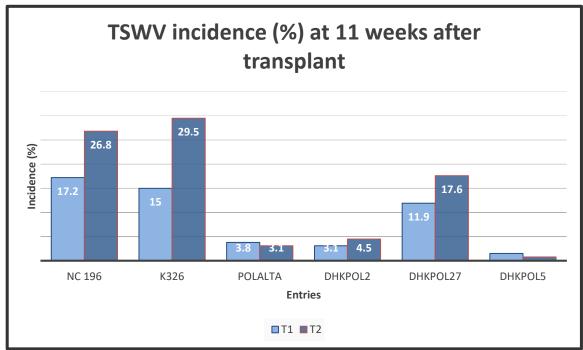



|               | PCR Product Size (bp) |      |
|---------------|-----------------------|------|
| AFLP Fragment | Polalta               | К326 |
| ACT/CTA268    | 161/200               | 200  |
| AAG/CGA228    | 117                   |      |
| AAC/CCC172    | 117                   |      |
| ACG/CCG169    | 105                   |      |

Moon, H; Nicholson, J S "Markers linked to Tomato Spotted Wilt Virus Resistance in tobacco. "Crop Science. Agricultural & Environmental Science Database. Vol. 47.5. (2007): 1887-1894.



## DH and Inbred Line Development and Selections






#### Evaluation of DH and Inbred Lines

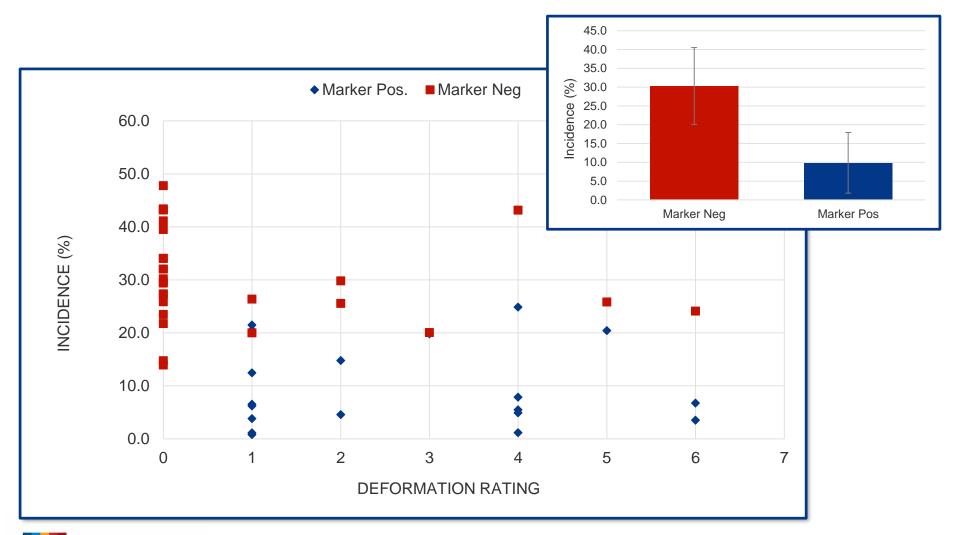
2019- Tifton, GA

- □ 54 entries in CRBD
- ☐ Incidence data collected weekly for 11 weeks
- ☐ 2 transplant dates (T1 and T2)
- ☐ 4 reps of 30 plants



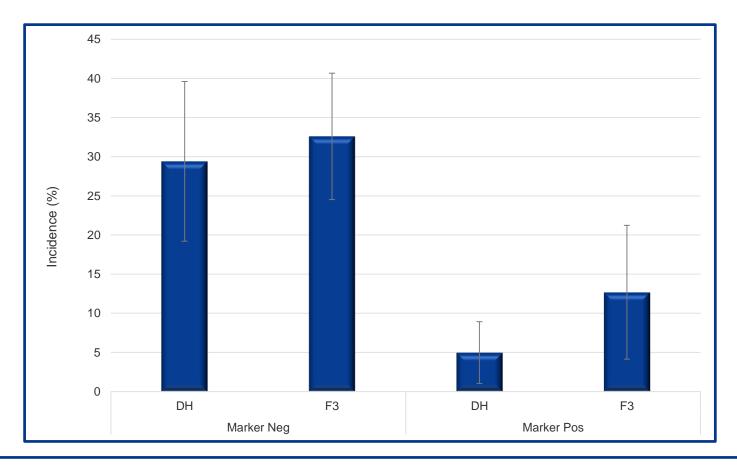


DHKPOL2




DHKPOL5

☐ Polalta Double Haploid lines show low virus incidence




#### Deformation and Resistance Do Not Correlate





#### Disease Incidence: DH vs Inbred lines



Double Haploid lines have higher resistance and less variability than inbred lines



#### **Conclusions and Future Considerations**

- Evaluation of both DH and inbred lines showed the feasibility of resistance without adverse phenotypic deformation.
- Marker positive lines exhibited disease incidence similar to the donor parent.
- DH lines are an appropriate tool for TSWV resistance breeding

- Future Considerations
  - Tracking the resistance trait by improving the existing markers
  - Finding and tracking the trait for deformity
  - Evaluation of hybrids made with TSWV-DH lines for resistance stability



## Acknowledgments

 Andy Adams, Marcos Lusso, Sree Pramod, Brenda Vigil, Ross Tombs, Greg Davis, Brittany Irving, Whit Morris, Jesse Frederick, J. Michael Moore-UGA.

## Thank you **Questions?**

For copies of this presentation visit the Altria's Science Website at www.altria.com/alcs-science

Altria has a new Altria Science Twitter account Follow us @AltriaScience

