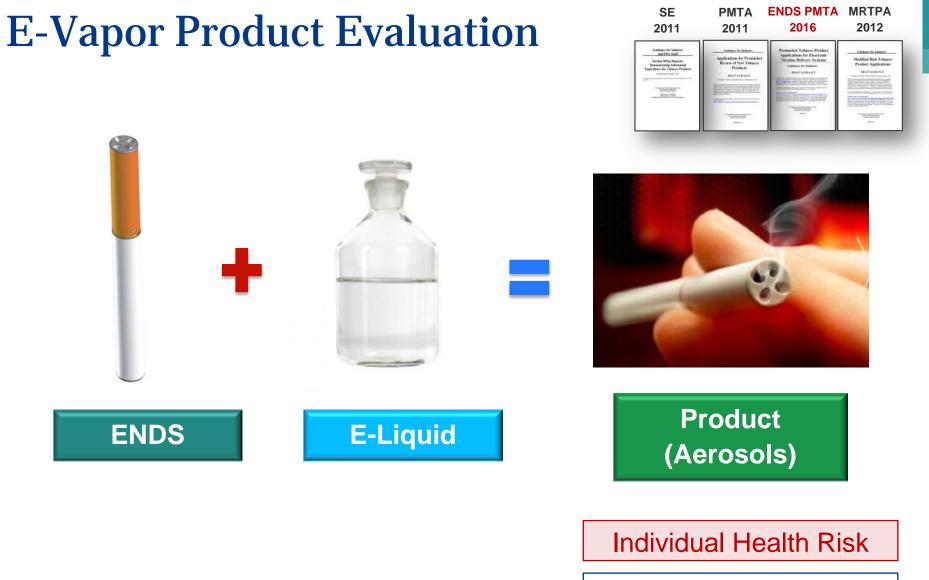

In vivo Genotoxicity Testing of Aerosolized ENDS E-Liquids

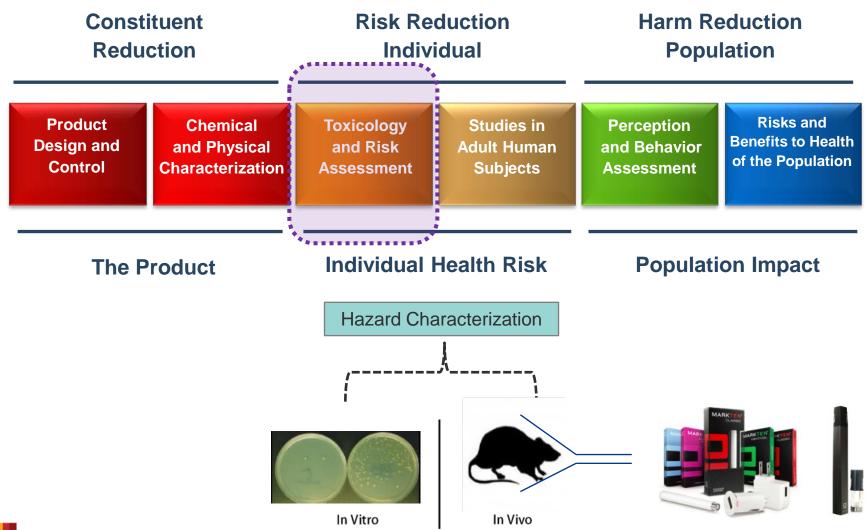
Presenter: Jingjie Zhang

Co-authors: James Randazzo, Kamala Pant, Viktoriya Lagoda, Willie McKinney, K Monica Lee

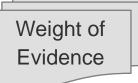


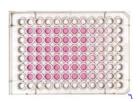
Content

- Background
 - E-vapor Product Regulatory Testing (US)
 - Altria Client Services LLC (ALCS) Evaluation Approach
- E-vapor Formulation (e-Liquid) Testing
 - In vitro cytotoxicity and genotoxicity
 - In vivo follow-up genotoxicity
- Summary



Population Health Risk

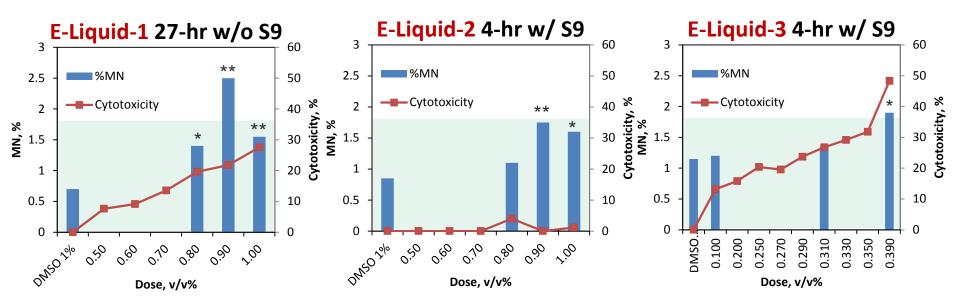

ALCS e-Vapor Evaluation Approach


ALCS Nonclinical: Tox Evaluation

Toxicological evaluation of e-liquids & aerosols

- Individual ingredients Literature review on toxicity & CMR information
- Flavor Mixtures In Vivo: 90-day rat inhalation studies, focusing on respiratory tract
- Product (e-liquid & aerosols)
 - Harmful and Potentially Harmful Constituents
 - In Vitro: cytotoxicity & genotoxicity
 - (if necessary) in Vivo genotoxicity per ICH 2012

5

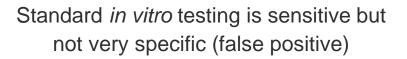


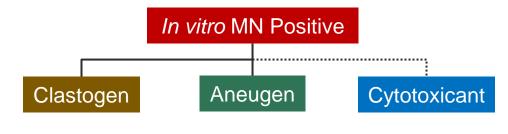
E-Liquid - in vitro Tox Screening

E-Liquids: PG/VG/Nicotine/Flavors

- Ames: 5 strains
- NRU: 3T3 fibroblasts
- MN: TK6

- → Negative
- ➔ Not Cytotoxic
- → Positive


* p ≤0.05, ** p ≤0.01 using Fisher's Exact Test 1-Tailed Test



Follow-Up Considerations

Positive In Vitro Genotoxic (MN) Results:

- Reformulation
- Ingredient breakdown & test
- Mechanistic investigation
- In vivo genotoxicity study per ICH S2 (R1) Guidance (2012)

7

"In summary, negative results in appropriate in vivo assays, with adequate justification for the endpoints measured, and demonstration of exposure are considered sufficient to demonstrate absence of significant genotoxic risk."

ICH Guidance S2(R1) Genotoxicity (2012)

Guidance for Industry

S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) enter for Biologics Evaluation and Research (CBER)

> > June 2012 ICH

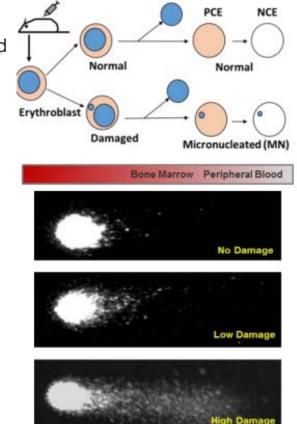
"Standard Genotox Battery"

Option-1:

- *in vitro* Bacterial mutation (Ames)
- *in vitro* Chromosomal damage (MN, MLA)
 - (if negative) in vivo MN
 - (if positive)
 - in vitro mechanistic + in vivo MN

Option-2:

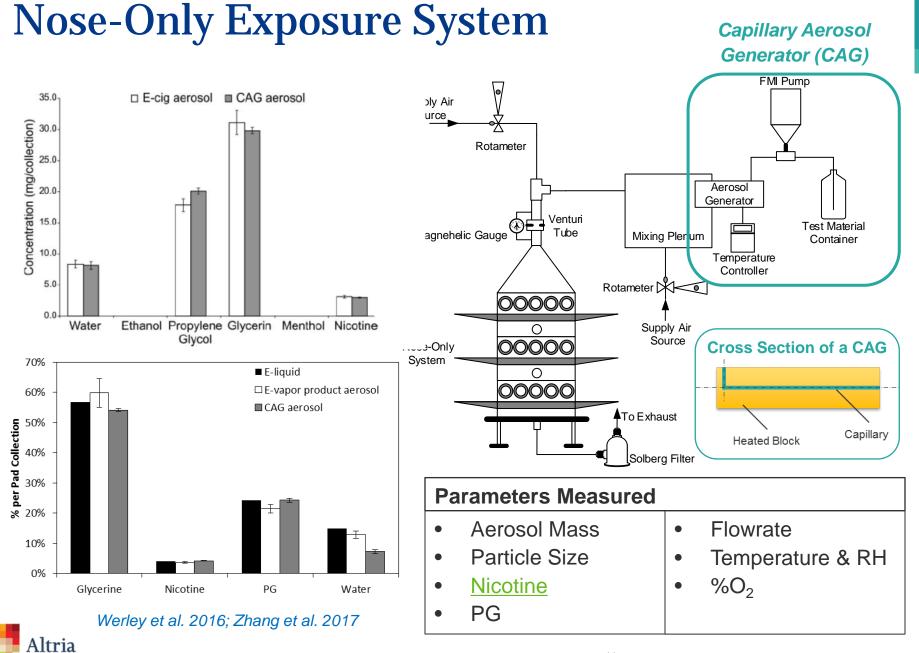
- *in vitro* Bacterial mutation (Ames)
- In vivo (Two) Tests (MN & Comet)


(Adapted) e-Liquids & Aerosols:

- In vitro Bacterial mutation (Ames)
- In vitro MN
 - (If MN positive) two in vivo (MN & Comet)

In vivo Genotoxicity Endpoints

- Bone Marrow MN (Chromosomal damage)
 - Bone marrow flushed 2-4 hrs after the last exposure; pellets smeared
 - Endpoint: %MN-PCE (micronucleated-polychromatic erythrocyte, immature erythrocyte or reticulocyte)
- Alkaline Comet (DNA breaks)
 - Detecting single or double stranded DNA breaks tissue specific; single cell gel electrophoresis assay
 - pH>13, coiled DNA loops→ nucleoid + DNA fragments
 - Endpoint: % Tail DNA (fluorescence intensity of tail DNA)
 - Level of DNA damage is correlated to the length and amount of fragmented DNA that migrates outside the cell nucleus (Comet tail)



Study Design

- OECD 474: Mammalian Erythrocyte MN Test (2016)
- OECD 489: In Vivo Mammalian Alkaline Comet Assay (2016)

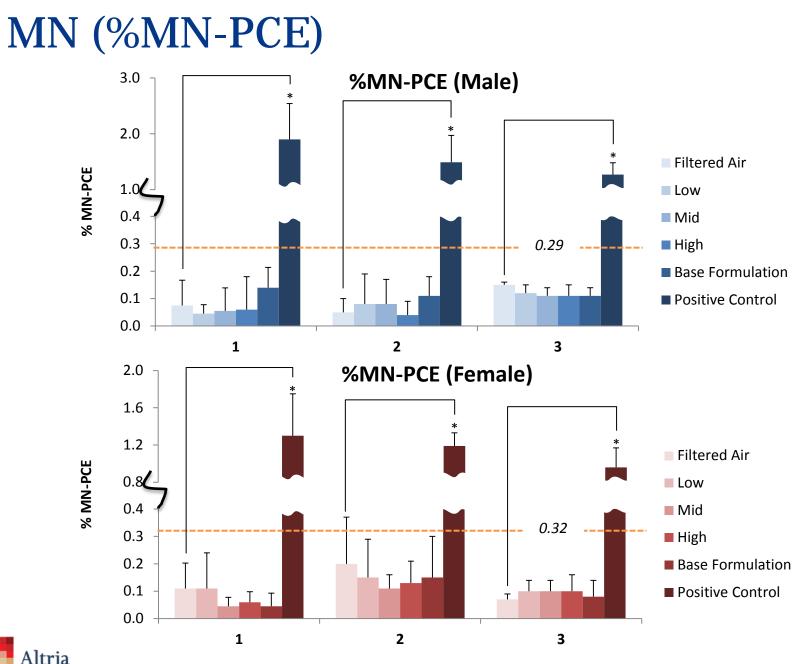
Торіс	Suggested by ICH Guidance	Study Design Used	Note
Study duration	Single or repeated	Repeated (3-4 days)	Can be part of safety tox study
Animals, sex	Young rodents M (unless sex- specific)	Rats, M/F (~7 week at start)	The sex with reduced exposure may not be scored
Route of exposure	Clinically relevant	Nose-only inhalation	Aerosol exposures
Top dose	Max. tolerated dose (MTD)	MTD (range-finding)	Max. feasible/ possible dose
Endpoints	DNA break; cytogenetics	Comet & MN	Preferable in a single study
Target tissues	Clinical relevant; site of contact	Nasal, lung, liver; bone marrow	Exposure-relevant
Exposure confirmation	Cytotoxicity or exposure	Plasma nicotine & cotinine	Systemic exposures similar or higher than clinical
Positive controls	Not always; other route acceptable	PC for each endpoints; oral	If established, not always

Tolerability: Maximum Tolerated Dose (MTD)

E-Liquid-1

- M/F rats, initial top dose at 2 mg/L TPM (~48 µg/L nicotine), up to 6 hrs per day for 3 days
- F rats showed signs of toxicity and clinical signs (tremor, labored breathing)
- M rats survived the top dose
- MTD for males (2 mg/L TPM) and females (1 mg/L TPM)
- E-Liquid-2 and E-Liquid-3 (MTD, mg/L)

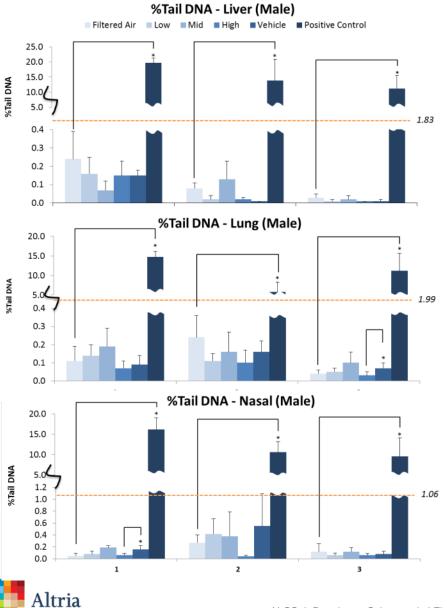
E-liquid-2	ТА	Base Formulation	E-liquid-3	ТА	Base Formulation
Μ	1.8	1.65	Μ	2.0	2.0
F	1.0	0.9	F	1.2	1.2



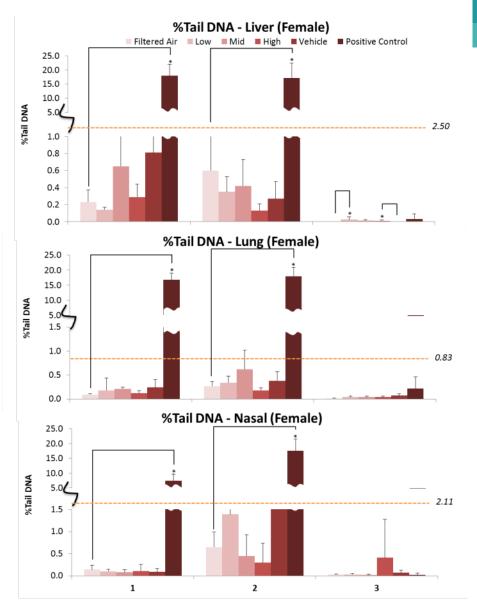
Definitive Study: *in vivo* MN / Comet Assay

Groups	Test Materials	Animal Number (M/F)
Negative Control	Filtered Air	6/6
Test Article (TA)	TA-Low (~¼ MTD)	6/6
	TA-Mid (~½ MTD)	6/6
	TA-High (MTD)	8/8
Reference	Base Formulation (PG/G/Nicotine, flavor free) (MTD)	8/8
Positive Control	CP 20 mg/kg/day (2 d); EMS: 200 mg/kg (1 d)	6/6

Exposure regimen	Sample collection		
 Nose-only inhalation, up to 6 hrs/day, 4 days Aerosol generated by a CAG: ~ 275 °C Particle size: MMAD 0.7-1.1 µm (GSD 1.6 - 2.2) 	 Positive control: 2-4 hrs after EMS (18-24 hrs after the 2nd CP) Post-exposure plasma: nicotine and cotinine (within 5 min) MN: bone marrow Comet: nasal, liver, and lung tissue 		

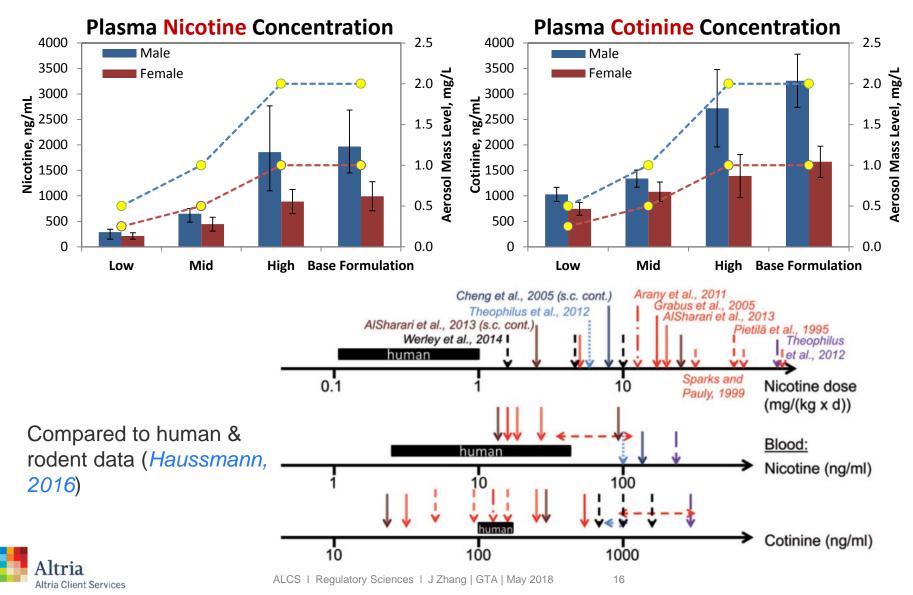


ALCS | Regulatory Sciences | J Zhang | GTA | May 2018

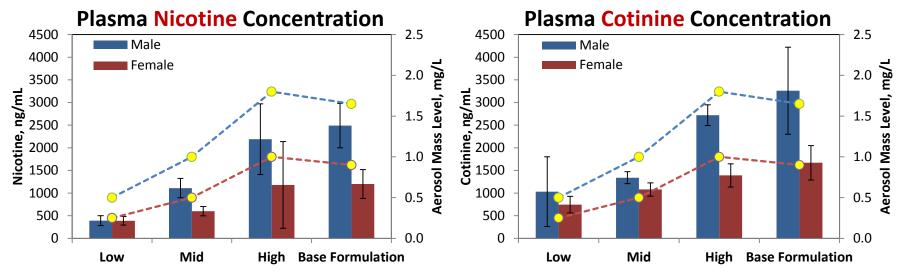

Altria Client Services

14

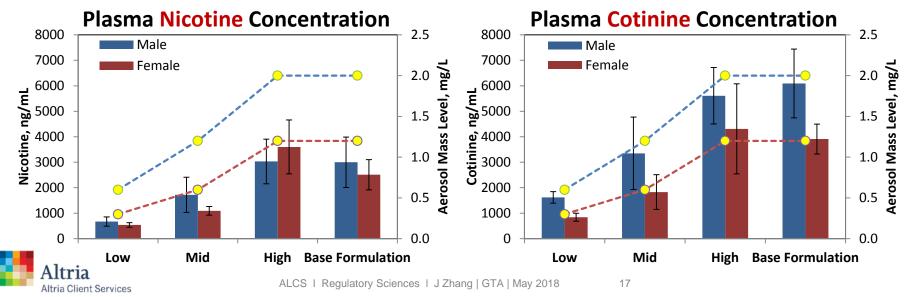
Comet (%Tail DNA)



Altria Client Services


Biomarkers of Exposure – Plasma levels

E-Liquid-1



Biomarkers of Exposure – Plasma levels

E-Liquid-2

E-Liquid-3

Summary

- Three ENDS e-liquids were tested in combined *in vivo* genotoxicity studies via inhalation according to ICH S2(R1) guidance, as a follow-up of positive *in vitro* MN results.
- Exposure concentrations were set to the MTD, based on mortality and abnormal clinical signs. Males groups were found to be able to tolerate higher TPM (total particulate matter, aerosol mass) exposure levels.
- There was no increase in two genotoxicity endpoints (MN and Comet) in all three e-liquids and their base formulations, compared to the negative control (filtered air). The plasma nicotine and cotinine levels increased with increasing TPM exposure concentration in the three studies.
- In summary, under the tested conditions, negative results in the combined *in vivo* assays, with the examined target tissues and the markers of exposure, demonstrated absence of significant genotoxic risk.

Acknowledgement

Altria Client Services LLC

- K Monica Lee
- Utkarsh Doshi
- Viktoriya Lagoda
- Michael Oldham
- Bonnie Coffa
- Willie McKinney Jr

Bioreliance Co.

- Kamala Pant
- Jamie E. Sly

Itria Client Services

- Michelle Klug-Laforce
- Sandra Springer
- Shannon W. Bruce
- Natasha Celestin.

Charles River Laboratories

- James Randazzo
- Erica McCaman
- Archana Akalkotar
- Michelle Moy
- W^m Clue Nethero

Reference

- 1. OECD (2014), Test No. 474: Mammalian Erythrocyte Micronucleus Test, OECD Publishing, Paris.
- 2. OECD (2016), Test No. 489: In Vivo Mammalian Alkaline Comet Assay, OECD Publishing, Paris.
- 3. Sobol Z, Homiski, M. L., Dickinson, D.A., et al. (2012). Development and validation of an in vitro micronucleus assay platform in TK6 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 746 (1): 29-34
- 4. U.S. Department of Health and Human Services/Food and Drug Administration/Center for Tobacco Products. (2016). Guidance for industry (DRAFT): Premarket Tobacco Product Applications for Electronic Nicotine Delivery Systems.
- 5. International Conference on Harmonisation. (2011). S2(R1): Guidance on Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use.
- 6. Lee, K. M. (2017) A combined In Vivo Micronucleus and Comet Study of an Aerosolized ENDS Formulation. ICEM-ACEM 2017, Seoul, Korea.
- 7. Werley et al (2016) Prototype e-cigarette and the capillary aerosol generator (CAG) comparison and qualification for use in subchronic inhalation exposure testing. Aerosol Sci. & Technol. 50 (12): 1284-1293
- 8. Zhang et al (2017) Characterization of aerosols generated from a prototype e-vapor product and a capillary aerosol generator. TSRC 2017.
- 9. Haussmann & Fariss (2016). Comprehensive review of epidemiological and animal studies on the potential carcinogenic effects of nicotine *per se* Cri. Rev Toxicol.
- 10. Werley et al. (2011) Non-clinical safety and pharmacokinetic evaluations of propylene glycol aerosol in Sprague-Dawley rats and Beagle dogs, Toxicology, 287-76
- 11. Matta SG et al. Guidelines on nicotine dose selection for in vivo research. Psychopharmacol. 2007; 190: 269-319

Thank You! Questions?

