

M. Peitsch[#], J. Hoeng[#] * PMI R&D, Philip Morris International Research Laboratories Pte Ltd, Singapore [#] PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland [@] Altria Client Services LLC, Richmond, VA, U.S.A.

2021 SOT Annual Meeting and ToxExpo

March 2021

Evaluating the toxicity of e-vapor flavor mixtures: 5-week inhalation study in A/J mice

E. Wong*, K. Luettich#, E. Guedj#, R. Dulize#, D. Peric#, D. Bornand#, C. Merg#, A. Kondylis#, K. M. Lee@, A. Kumar@, C. Smith@, N. Ivanov#, P. Vanscheeuwijck#,

genes (mRNA; FDR p<0.05). (C) Heatmap representing the log2(fold-change) for all proteins (listed on the left side) that were significantly increased or decreased in at least one of the comparisons to the sham or PG/VG/N groups.

Competing Financial Interest – The research described in this poster was sponsored by Philip Morris International and Altria Client Services LLC

Poster P360

D				Genes*		Promoters*		Enhancers*	
		Comparisor <mark>Sham</mark>	n vs Up (r) Down (n)	Hyper- meth. (n)	Hypo- meth. (n)	Hyper- meth. (n)	Hypo- meth. (n)	
		3R4F	782	745	50	44	2022	470	
		PG/VG/N	0	0	14	10	90	185	
	Female	PG/VG/N/F-I	L 0	0	9	75	119	431	
		PG/VG/N/F-I	M 36	40	2	6	99	470	
		PG/VG/N/F-I	H 16	33	13	33	187	859	
	Mala	PG/VG/N	1	2	43	10	105	165	
	Wale	PG/VG/N/F-I	H 8	2	29	9	109	260	
Е	p-value lung par mice. "U "Hypom	< 0.05), as we enchyma of ex p": upregulate eth.": hypome	ell as statistically xposed mice (stu ed molecules; "Do thylated.	significantly di dy group shov wn": downreg	fferentially me vn on the left, ulated molec	ethylated pro) compared to pules; "hypern	moters and e o those of sh meth.": hypei	enhancers in nam-exposed rmethylated;) Э/VG/N/F-H F
E	p-value lung par mice. "U "Hypom (anino- (10- (10- (10- (10- (10- (10- (10- (10	< 0.05), as we enchyma of ex p": upregulate eth.": hypome	ell as statistically xposed mice (stu ed molecules; "Do thylated. PG/VG/N F	significantly dir dy group shov own": downreg	fferentially me vn on the left ulated molec	ethylated pro) compared to pules; "hypern (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	moters and e o those of sh meth. ": hypei	enhancers in ham-exposed rmethylated;	G/VG/N/F-H
E	p-value lung par mice. "U "Hypom 10 10 -2.5 0 log2	< 0.05), as we enchyma of ex p": upregulate eth.": hypome	ell as statistically xposed mice (study ed molecules; "De thylated. PG/VG/N F -2.5 0.0 2.5 log2 fold chang	significantly did dy group show own": downreg	PG/VG/N/F-L F	ethylated pro compared to cules; "hypern -2.5 log	PG/VG/N/F-M F	enhancers in ham-exposed rmethylated;	G/VG/N/F-H
E	p-value lung par mice. "U "Hypom (anitor -2.5 0 log2	< 0.05), as we enchyma of ex p": upregulate eth.": hypome 3R4F F 0 2.5 5.0 fold change	ell as statistically xposed mice (stu- ed molecules; "Do thylated. PG/VG/N F -2.5 0.0 2.5 log2 fold chang PG/VG/N M	significantly dia dy group show own": downreg	Fferentially me vn on the left, ulated molec	ethylated pro compared to cules; "hypern (a) (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	PG/VG/N/F-M F	enhancers in ham-exposed rmethylated;	С G/VG/N/F-H F 0 2.5 ! fold chan