Qi, Dong; Rabara, R; Shen, Y; Della Vecchia, M Altria Client Services LLC, Richmond, VA 23219 Center for Research and Technology

CORESTA AP 2023

October 17, 2023

Colchicine treated Tobacco – Potential to Change Biochemical **Composition of Leaves**

Colchicine and its effect on chromosomeduplication

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17, 2023 | AP 22

Source: (-)-Colchicine – AFG Scientific

Colchicine is a chemical that can induce abnormal cell division

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17, 2023 | AP 22

DIPLOID CELLS

MITOSIS WITH CHOLCHICINE

Souce: Colchicine results in doubling of chromosome number because of (toppr.com)

Proof of concept objectives:

and sensory profile.

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17, 2023 | AP22

 Develop library of polyploid tobacco lines for trait development and discovery.

Screen developed tobacco lines for improved flavor

Polyploidy plants and line development

Ploidy manipulation: A traditional method to create new traits in plants

Polyploidy

Name	Number
Common wheat	6N = 42
Tobacco	4N = 48
Potato	4N = 48
Banana	3N = 27
Boysenberry	7N = 49
Strawberry	8N = 56

chromosome number up to 400N

Source: Bioninja-https://ib.bioninja.com.au/higher-level/topic-10-genetics-and-evolu/103-gene-pools-and-speciati/allopolyploidy.html

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17,2023 | AP22

Source: https://image.slidesharecdn.com/dnaextractionlab-120201174434-phpapp01/75/dna-extraction-lab-2-2048.jpg?cb=1668579615

Source: Errors in Cell Division - Course Hero

Material and method: How to induce polyploidy in Tobacco

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17, 2023 | AP 22

Line 1, Line 2, Line 3, Line 4 - tobacco seeds and seedlings

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17, 2023 | AP 22

Cellular level changes

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17,2023 | AP22

Method for inducing polyploidy in tobacco

Shaking in orbital shaker for better penetration

Adapted from Gantait, S., Mukherjee, E. Induced autopolyploidy—a promising approach for enhanced biosynthesis of plant secondary metabolites: an insight. J Genet Eng Biotechnol 19, 4 (2021).

Altria

Science

Cellular level changes

Source: Gantait, S., Mukherjee, E. Induced autopolyploidy—a promising approach for enhanced biosynthesis of plant secondary metabolites: an insight. *J Genet Eng Biotechnol* **19**, 4 (2021).

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17, 2023 | AP 22

Polyploidy-potential changes in the plant

Product level changes

Source: Niazian, M., Nalousi, A.M. Artificial polyploidy induction for improvement of ornamental and medicinal plants. *Plant Cell Tiss Organ Cult* **142**, 447–469 (2020). https://doi.org/10.1007/s11240-020₋₀₁₈₈₈₋₁

Preliminary results

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17, 2023 | AP22

Seed Source	Number of treated seeds	Number of treated seedlings	Doubling Confirmation (Flow Cytometry)	Seed Collection	Fertileoffspring
Line 1	100+	50+	9	9	
Line2	100+	50+	4	4	0
Line3	100+	50+	4	4	0
Line4	100+	50+	0	0	0

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17, 2023 | AP 22

Polyploid line development from colchicine treatment

✓ Treatments: 0.5 and 1% aqueous solution for 8 hours

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17, 2023 | AP 22

Colchicine effects - control versus colchicine treated

Control vs Treated

Control vs Treated

Other examples of colchicine's effects on plant materials

Inflorescence of poinsettia 'Dulce Rosa' and its colchicineinduced mutants. Bar = 5 cm. CK (control): 'Dulce Rosa', D-M1 to D-M7: mutant lines obtained by colchicine treatments.

Source: Pan, I., Lu, Y., Wen, P., & Chen, Y. (2019). Using Colchicine to Create Poinsettia (Euphorbia pulcherrima × Euphorbia cornastra) Mutants with Various Morphological Traits. *Hort Science horts*, 54(10), 1667-1672. Retrieved Oct 4, 2023, from <u>https://doi.org/10.21273/HORTSCI14143-19</u>).

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17,2023 | AP22

The inflorescence and pollen character and relative DNA content on poinsettias, 'Dulce Rosa', 'Princettia-Hot Pink', and their individual mutants. (A) Abnormal involucre of 'Dulce Rosa'. (B) Dehisced anther of 'Dulce Rosa' mutant D-M1. (C) Pollen germination of 'Dulce Rosa' mutant D-M1. (D) The relative DNA contents of CK (control): 'Dulce Rosa' and mutant D-M1. (E) The involucre of 'Princettia-Hot Pink'. (F) Anther dehisced 'Princettia-Hot Pink' mutant P-M13. (G) Non-pollen germination of 'Princettia-Hot Pink'. (H) Pollen tube elongation of 'Princettia-Hot Pink' mutant P-M13. (I) The relative DNA contents of CK (control): 'Princettia-Hot Pink' and mutant P-M13. Bar (A, B, E, F) = 0.5 cm; (C, G) = 200 μ m; (H) = 100 μ m

Comprisons of leaf morphology in chicory plants having different ploidy levels. Diploid (Panel A), an euploid (Panel B), mixoploid (20%) tetraploid +80%diploid;Panel C),mixoploid (83%tetraploid + 17%diploid; Panel D), and tetraploid (Panel E) leaves are shown. Scale bar $=5 \, \mathrm{cm}$.

Flowers and pollen grains from diploid (Panels A, C) and colchine-treated tetraploid (Panels B, D) chicory plants. Scale bars = 2 cm (Panels A, B); 50 μ m (Panels C, D).

Source: Ghotbi, Elnaz & Rezanejad, Farkhondeh & Zolala, Jafar & Dehghan, Ishmael. (2013). The effects of chromosome-doubling on selected morphological and phytochemical characteristics of Cichorium intybus L. Journal of Horticultural Science and Biotechnology. 88.701-709. 10.1080/14620316.2013.11513027.

Effect of chemical compound level on controls and treated plants: comparable, higher or lower levels.

Sensory attributes: warm, woody, smoky, nutty, roasted, bitter, peppery.

(Preliminary internal screening based on 03 participants. All panelists were adults aged 21+, who smoke conventional cigarettes)

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17, 2023 | AP 22

> Chemical classes of existing compounds: triterpenoid, diterpenoid, alkane, fatty acids, phenolic compound, aromatic compounds, aldehydes.

Aerosol Derived from Tobacco filler-Lines 1& 2 *Treated vs Control* - (one repetition)

Conclusions:

Developed and improved methods for creation of new polyploid tobacco lines via colchicine treatment ✓ Tobacco clones might better suited as final format of polyploid tobacco library ✓ Established polyploid tobacco line library for trait development

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17, 2023 | AP22

References!

Comai L, Tan EH. Haploid Induction and Genome Instability. Trends Genet. 20 19 Nov; 35(11): 791-803. doi: 10.10 16/j.tig. 20 19.07.005. Epub 20 19 Aug 14. PMID: 31421911.

Ghotbi, Elnaz & Rezanejad, Farkhondeh & Zolala, Jafar & Dehghan, Ishmael. (2013). The effects of chromosome-doubling on selected morphological and phytochemical characteristics of Cichorium intybus L. Journal of Horticultural Science and Biotechnology. 88.701– 709.10.1080/14620316.2013.11513027.

Gu XF, Yang AF, Meng H, Zhang JR. In vitro induction of tetraploid plants from diploid Zizy phus jujuba Mill. cv. Zhanhua. Plant Cell Rep. 2005 Dec;24(11):671-6. doi: 10.1007/s00299-005-0017-1. Epub 2005 Aug 11. PMID: 16094528.

Hassan J, Miyajima I, Ozaki Y, Mizunoe Y, Sakai K, Zaland W. Tetraploid Induction by Colchicine Treatment and Crossing with a Diploid Reveals Less-Seeded Fruit Production in Pointed Gourd (*Trichosanthes dioica* Roxb.). Plants (Basel). 2020 Mar 17;9(3):370. doi: 10.3390/plants9030370. PMID: 32192090; PMCID: PMC7154917.

Manzoor A, Ahmad T, Bashir MA, Hafiz IA, Silvestri C. Studies on Colchicine Induced Chromosome Doubling for Enhancement of Quality Traits in Ornamental Plants. Plants (Basel). 20 19 Jun 28;8(7):194. doi: 10.3390/plants8070 194. PMID: 3126 1798; PMCID: PMC668 1243

Pan, I., Lu, Y., Wen, P., & Chen, Y. (2019). Using Colchicine to Create Poinsettia (Euphorbia pulcherrima × Euphorbia cornastra) Mutants with Various Morphological Traits. *HortScience horts, 54*(10), 1667-1672. Retrieved Oct 4, 2023, from <u>https://doi.org/10.21273/HORT SCI 14143-19</u>).

Putri, Devi Anggraini et al. Secondary Metabolites of Nicotiana tabacum and Their Biological Activities: A Review. The Journal of Pure and Applied Chemistry Research, [S.I.], v. 11, n. 2, p. 149 - 165, Aug. 2022. ISSN 2541-0733.

Thank you!

Questions?

Marilia Della Vecchia | Product Development | Altria Client Services | CORESTA October 17, 2023 | AP22

