# Dissolution and Physical Characterization of Oral Nicotine Pouches

Platt, Sean P.; Gonzales, Christa; Pokharel, Pashupati; Park, Seok Chan; Sriram, Akchara; Thorpe, S. Brandon; Ritzenthaler, Abaigeal; and Aldeek, Fadi









FAMILY OF COMPANIES -

### **Background and Study Overview**

### **STUDY OF CHEMICAL AND PHYSICAL ANALYSIS**

of seven commercially available nicotine pouch products:



**NICOTINE POUCHES** are oral tobacco products that DO NOT CONTAIN TOBACCO and are composed of flavorings, sweeteners, and plant-based fibers

#### **Characterization includes:**

- Nicotine
- 🕢 pH
- Nicotine dissolution
- 📀 Particle size
- Imaging
- O Density
- Crystallinity
- Extracted viscosity
- Solubility
- ✓ Oven volatiles (OV)

### **UNDERSCORES THE NEED FOR FURTHER RESEARCH** on relationship between the chemical and physical properties and product performance

Note: Trademarks used for comparison purposes only and ownership in each trademark is retained by its respective owner

## **Nicotine and pH Determination**



#### **Methods:**

Nicotine determined using CORESTA CRM No. 62<sup>1</sup>

Calculated content vs. can label

- on!, Rogue, Volt were higher than can label
- Zyn, Velo, Dryft, and Loop were lower than can label



Methods: pH measured using CDC method<sup>2</sup>

 pH ranged from 7.43-8.98 for all products

1. CORESTA. No. 62: Determination of Nicotine in Tobacco and Tobacco Products by Gas Chromatographic Analysis; TTPA-284-2-CRM-62; 2021.

2. Revised Protocol for Analysis of Nicotine, Total Moisture, and pH in Smokeless Tobacco Products. Department of Health and Human Services, C. f. D. a. P., Ed.; Federal Register, 2009; Vol. 74, pp 712-719.

Can Label



### **Experimental Dissolution**



#### **Results confirm different performance**

between nicotine pouches and their ability to release nicotine

|          |          | Total Nicotine Re                                                                             | ]                                                                                         |            |
|----------|----------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------|
|          |          | Difference factor (f <sub>1</sub> )                                                           | Similarity factor (f <sub>2</sub> )                                                       |            |
|          |          | Calculates the percent<br>difference between two release<br>profile curves at each time point | A logarithmic reciprocal square<br>root transformation of the sum<br>of the squared error |            |
|          | Products |                                                                                               |                                                                                           | Equivalent |
| on!® vs. | Zyn®     | 14.3                                                                                          | 52.9                                                                                      | Yes        |
|          | Rogue™   | 2.9                                                                                           | 81                                                                                        | Yes        |
|          | Velo®    | 14.5                                                                                          | 47.3                                                                                      | No         |
|          | Dryft®   | 22.6                                                                                          | 38.2                                                                                      | No         |
|          | Volt™    | 14.9                                                                                          | 46.6                                                                                      | No         |
|          | Loop®    | 34.4                                                                                          | 27.8                                                                                      | No         |

Miller, J.H.; Danielson, T.; Pithawalla, Y.B.; Brown, A.P.; Wilkinson, C.; Wagner, K.; and Aldeek, F. J. Chromatogr B. 2020, 1141, 122012. DOI: 10.1016/j.jchromb.2020.122012.

### Particle Size (Dynamic Image Analysis – Volume-Weighted)



# Imaging



# Heterogeneous distribution of particles for most fillers present

(Rogue is exception with spherical homogenous particles)

- Particle size estimated by measuring diameter of 100 particles in one image and averaging diameter
- Loop was dried prior to imaging in a vacuum oven at ambient temperature

# **Pouch Material Imaging**





# Average void pore size for all paper was less than $d_{10}$ for corresponding filler



# **Density and Porosity**



| Product | Porosity % | Hausner Ratio | Carr's Index |
|---------|------------|---------------|--------------|
| on!     | 48.11      | 1.250         | 20.02        |
| Zyn     | 63.21      | 1.200         | 16.68        |
| Velo    | 45.84      | 1.195         | 16.32        |
| Dryft   | 45.36      | 1.314         | 23.91        |
| Rogue   | 38.62      | 1.147         | 12.85        |
| Volt    | 39.00      | 2.015         | 50.38        |
| Loop    | 55.74      | 1.585         | 36.90        |

# Particle size does not correlate to density values

High and low porosity of Zyn and Rogue indicate large surface and smooth spherical surface of these products, respectively

#### Flowability ratios:

Hausner Ratio > 1.25: indicates powder not free flowing Carr's Index > 25: indicates poor flowing powder



# **Crystallinity by Differential Scanning Calorimetry (DSC)**



### TWO GROUPS: High and Low Melting Point

### High Melting: Dryft → Velo → Zyn → on!

- Melting points around 150°C
- Possess secondary thermal transition at 60-115°C due to water molecules or other additives

### 2) Low Melting: Volt $\rightarrow$ Loop $\rightarrow$ Rogue

- Melting points around 110°C
- Lower melting leads to lower enthalpy relative to other fillers
- Glass transition temp for Loop due to oil like additive

## Viscosity



### Viscosity of extracted pouches

in artificial saliva run using concentric cylinder and thermal jacket at ambient temperature

- · Artificial saliva shown as reference
- Viscosity of extracted solution can be used to co-relate the property of the solubility of filler

|          | Percent Solubles (%)                                                                       | OV (% MC)                                                              |
|----------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Products | 1g Filler extracted in 40 mL artificial saliva,<br>filtered, and dried at 120°C for 1 hour | 2g filler placed in halogen oven<br>at 80°C for 10 min                 |
| on!®     | 66.35 ± 0.15                                                                               | $4.48 \pm 0.20$                                                        |
| Zyn®     | 78.26 ± 0.77                                                                               | $3.52 \pm 0.08$                                                        |
| Velo®    | 64.41 ± 2.67                                                                               | 6.62 ± 0.23                                                            |
| Dryft®   | 68.03 ± 0.68                                                                               | 3.71 ± 0.15                                                            |
| Rogue™   | 41.21 ± 0.35                                                                               | 14.70 ± 0.14                                                           |
| Volt™    | 59.75 ± 2.54                                                                               | 37.18 ± 1.80                                                           |
| Loop®    | N/A                                                                                        | 26.64 ± 0.84                                                           |
|          |                                                                                            | f                                                                      |
|          |                                                                                            | High % MC<br>for Volt and Loop<br>due to products<br>being wet pouches |



# Investigated chemical and physical characterization of seven commercially available nicotine pouch products

THIS STUDY **Provides a better understanding of the properties of the studied pouches** and reveals significant differences in their characteristics



- All nicotine pouches are made by different manufacturers using various ingredients and granulation processes, leading to differences in physicochemical properties
- Multiple driving factors do influence the nicotine release and overall performance
- Insights from the study enhance knowledge for developing nicotine pouch products



# Any Questions?

Altria Altria Client Services | CORESTA Congress October 16, 2024 | ST36