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Background and Purpose: Cigarette smoking causes chronic diseases
including lung cancer, cardiovascular disease, and chronic obstructive pulmonary
disease (COPD). While cessation is the most effective approach to minimize
smoking-related disease, novel smoke-free tobacco or nicotine products such as e-
vapor or heat-not-burn products offer potentially reduced-risk (PRR) alternatives
to smokers unwilling to quit. PRR products typically contain significantly lower
levels of smoke-related toxicants, yet their long-term risk is unknown with limited
human data. Howevet, evidence for PRR has been indirectly shown using
nonclinical (animal) models of chronic inhalation.

Methods: Animal models provide a holistic in vivo system that shares many
physiological, anatomical, and genetic resemblances with humans. In this study,
we have utilized publicly available gene expression data from COPD mouse
models and compared their gene expression (microarray) changes against existing
human COPD data (QTAGEN HumanDisease_B38_GC33 land; QIAGEN,
Redwood City, CA). Three objectives include: 1) analyzing human microarray
data, 2) analyzing mouse microarray data, and 3) conducting pathway analysis to
identify COPD-related canonical pathways, upstream regulators, and biological
functions from both datasets. The evaluated human data include differentially
expressed genes in healthy smokers, healthy non-smokers, smokers with COPD,
and non-smokers with COPD. The data also includes transcriptomic changes
during transition from healthy smoker to COPD smoker and from early to late
COPD. Mouse data were evaluated to identify pathways impacted duting early (1-
month) and chronic (up to 7-month) cigarette smoke exposure and any
differential pathways activated with PRR product exposutes, as well as differences
in pathway regulation due to cessation or switching from cigarette to PRR
products. Finally, Ingenuity Pathway Analysis (IPA) was used to compare
significant upstream regulators and pathways within and between human and
mouse data.

Results & Discussion: Despite differences in experimental methods and
environmental conditions in animal COPD models, the results demonstrate
qualitative similarities in the increase of immune cells and significant up and
down-regulation of neuronal activity that is associated with cigarette smoke-
related COPD progression in humans. At the same time, the context for
interpreting and applying the outcomes from secondary analyses needs to be
defined and the caution in predicting human outcomes from animal models are
warranted.

In conclusion, with defined experimental workflows in analyzing different study
outcomes, animal models can be valuable and informative to investigate potential
long-term clinical outcomes.
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Table 1: Examples of Common Upstream Regulator Trends
in Rodent and Human Model

¢ InTable 1, majority of upstream regulators for both human and mouse

models regulate immune responses (cell movement of immune cells,
phagocytosis, adhesion of immune cells, etc.) or tumorigenesis pathways
(growth of tumor, growth of lesion, metastasis, extra-pancreatic
malignant tumor)
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