Noninvasive Nicotine Quantitation and Flavor Differentiation of Nicotine Pouches Using Raman Spectroscopy: A Direct, Accurate, and Preparation-Free Approach

Seok Chan Park, Ph. D. September 16, 2025

Introduction

Nicotine Pouch Products

Growing category in the smoke-free market

Tobacco-leaf-free pouches, containing either synthetic or tobacco-derived nicotine

They come in various nicotine levels and flavors

Quantitative Analysis of Nicotine in Nicotine Pouch Products

Various methods have been developed: GC-FID | GC-MS | UPLC-MS/MS¹ | UPLC-UV

CORESTA standardized method (CRM #62): GC-FID

Provide accurate and repeatable measurements
Require laboratory set-up and time consuming

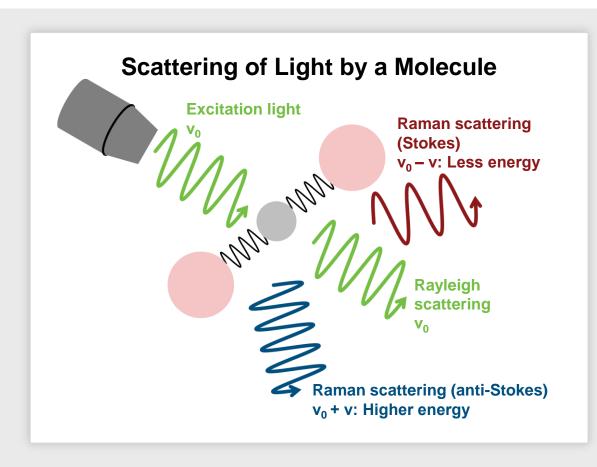
- Non-invasive and direct through-pouch measurement
- Rapid analysis (~50 seconds per replicate)
- Nicotine quantitation and flavor differentiation

¹Aldeek et al. (2023) ACS Omega 8, 31256-31264

CORESTA=Cooperation Centre for Scientific Research Relative to Tobacco; CRM=CORESTA recommended method; GC-FID=Gas chromatography flame ionization detector; GC-MS=Gas chromatography-mass spectrometry; OTDN=Oral tobacco-derived nicotine; UPLC-MS/MS=ultra-performance liquid chromatography-tandem mass spectrometry; UPLC-UV=ultra-performance liquid chromatography ultraviolet detection CRM. No. 62, Determination of Nicotine in Tobacco and Tobacco Products by Gas Chromatographic Analysis, 3rd ed; CORESTA, 2021

Objective

Simple and Rapid Method for Determination of Nicotine


	GC-FID Method	Raman Spectroscopy	
Proximity	Offline analysis at distant laboratories	Online/At-line analysis at the manufacturing site	
Solvent Preparation	Acid/Base, Organic standard reagents	None	
Nicotine Extraction Time ¹	2 hours	None	
Run Time ²	~12 minutes	50 seconds	
Consumables	 Column Carrier gases GC autosampler syringes Inlet septa Inlet liner O-ring for inlet liner GC vials and caps Gas-tight syringes 	None	

²Measurement run time per sample.

¹Nicotine Extraction time for OTDN pouch product (OTDN=Oral tobacco-derived nicotine).

Raman Spectroscopy

Energy Difference: Raman Shift

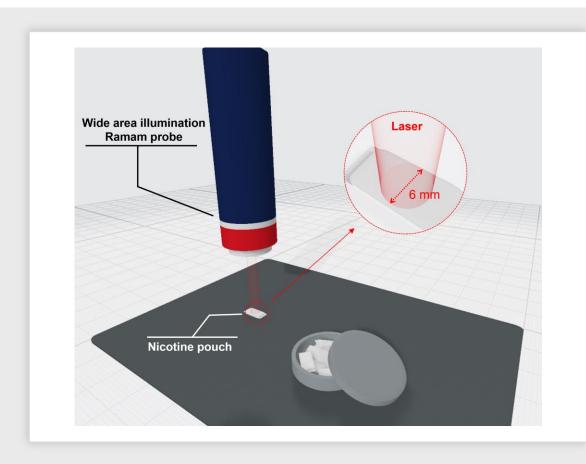
- Information on the vibrational modes of the sample
- Each peak in the Raman spectrum → A particular vibrational mode unique to the molecule (chemical bonds, functional groups)

Flexibility in Instrumental Configuration:

Flexible excitation systems

- Microscope
- Fiber optics
- Wide area illumination

Customization of detector location


- Backscattering
- Spatially offset Raman spectroscopy (SORS)
- Transmission

Beneficial for "through package analysis"

¹Kim et al. (2008) J. Pharm. Biomed. Anal. 48, 592-597; ²Kim et al. (2007). Anal. Chem. 79, 1696-1701; ⁴Bloomfield et al. (2013) J. Pharm. Biomed. Anal. 76, 65-69

Raman Spectral Acquisition

Wide Area Illumination (WAI) Scheme

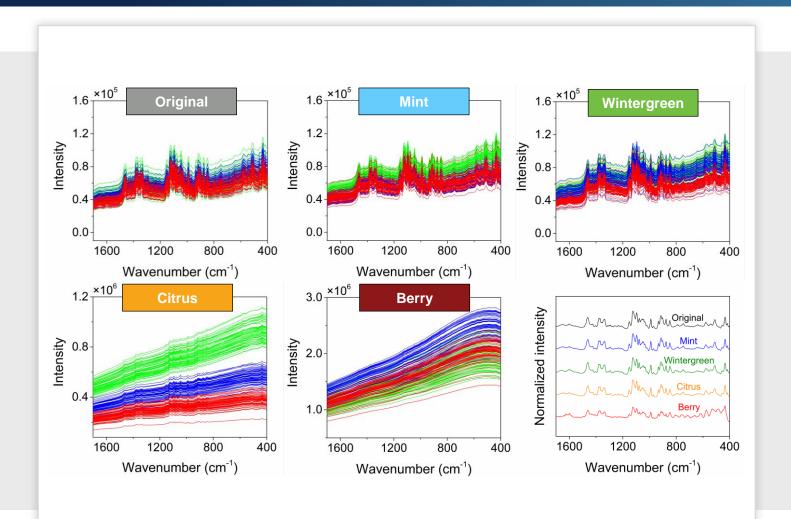
- Laser illumination diameter: 6 mm (28.3 mm² area)
- Focal plane distance: 254 mm
- Excitation Laser: 785 nm laser (400 mW)

Raman Spectral Acquisition

- Spectral resolution: 4 cm⁻¹
- Exposure time: 5 seconds
- Scan: 10 repeating scans
- 50 second total acquisition time per pouch

Data Processing

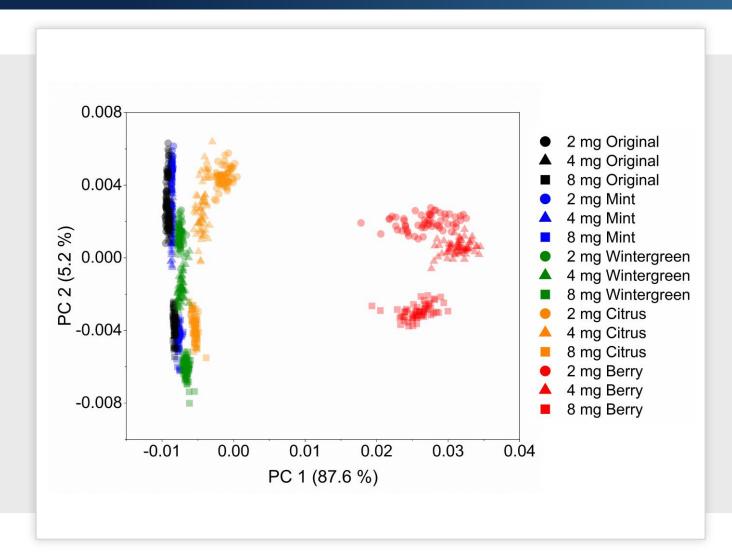
- Asymmetric Least Squares smoothing (AsLS):
 Remove baseline variation and fluorescence background
- Normalization: Scaling characteristic variables



Nicotine Pouch Samples

Total: 1800 pouches **Training Set: 180 pouches Prediction Set: 180 pouches 5 Flavor variants** 3 Nicotine levels 2 mg 2 mg 2 mg 2 mg 2 mg 2 mg 2 mg/pouch Original 120 pouches 20 pouches 20 pouches 20 pouches 20 pouches 20 pouches 20 pouches Mint 4 mg 4 mg 4 mg 4 mg 4 mg 4 mg Wintergreen 4 mg/pouch 120 pouches Citrus 20 pouches 20 pouches 20 pouches 20 pouches 20 pouches 20 pouches 8 mg 8 mg 8 mg 8 mg 8 mg 8 mg **Berry** 8 mg/pouch 120 pouches 360 Pouches 20 pouches 20 pouches 20 pouches 20 pouches 20 pouches 20 pouches per flavor **Training set: 900 pouches Prediction set: 900 pouches**

Raman Spectral Features of Nicotine Pouches with Five Different Flavors


Raw Raman Spectra Collected from the Training Set

- 180 spectra per flavor
- 2 mg in green, 4 mg in blue, 8 mg in red
- No additional preparation steps

FLUORESCENCE BACKGROUND in Citrus and Berry nicotine pouches

Average normalized spectra for each flavor group EFFECTIVELY REDUCE the fluorescence background

Principal Component Analysis (PCA) of The Training Set

Distribution of the 1st and 2nd Principal Component (PC) scores

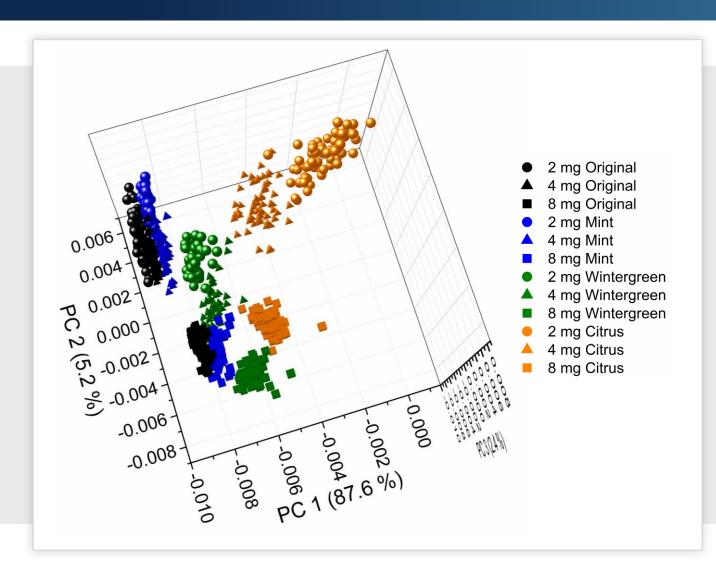
Two distinct clusters on the PC domain

NICOTINE POUCHES

LEFT:

Original (black)

- Mint (blue)
- Wintergreen (green)
- Citrus (orange)


RIGHT:

Berry (red)

- Different spectral features of Berry nicotine pouches in the 700-400 cm-¹ range
- Sub-groups corresponding to the different nicotine levels are identifiable within the Berry nicotine pouch cluster

Principal Component Analysis (PCA) of The Training Set

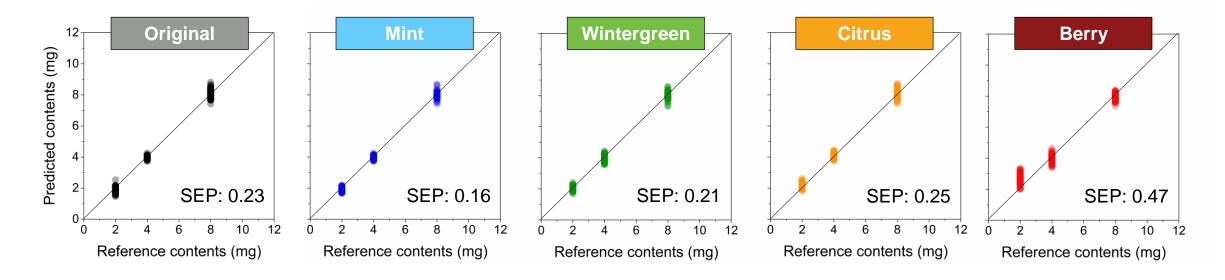
Three-dimensional domain of 1st, 2nd, and 3rd PCs

NICOTINE POUCHES:

Original, Mint, Wintergreen, and Citrus

Within the clusters of Citrus (orange) and Wintergreen (green) nicotine pouches:

Sub-groups
 corresponding to the
 nicotine levels of 2 mg
 (circles), 4 mg (triangles),
 and 8 mg (squares) can be
 distinguished


Within the clusters of the Original and Mint nicotine pouches:

 8 mg nicotine pouches (squares) formed isolated sub-groups

The spectral features of the nicotine pouch products are sufficiently descriptive to differentiate their flavors and quantify the nicotine levels

Quantitative Determination of Nicotine Content in Nicotine Pouches

Partial Least Squares (PLS) Regression

- Individual PLS models for each flavor group using the training sets
- The reference values for PLS → The labeled nicotine contents (i.e., 2, 4, and 8 mg per pouch)
- Cross-validated by leave-one-batch-out cross-validation

Prediction of Nicotine Content

- Predict the nicotine content of the corresponding nicotine pouches in the prediction set → Standard errors of prediction (SEPs) were assessed
- Original, Mint, Wintergreen, and Citrus SEPs: 0.16 to 0.25 mg
- Berry SEP: 0.47 mg

Residual Fluorescence Interference in 2 mg Nicotine Pouches

 In the case of 2 mg Berry and Citrus pouches, the estimation of nicotine contents deviates upward from the diagonal line representing 100% prediction accuracy

Quantitative Determination of Nicotine Content in Nicotine Pouches

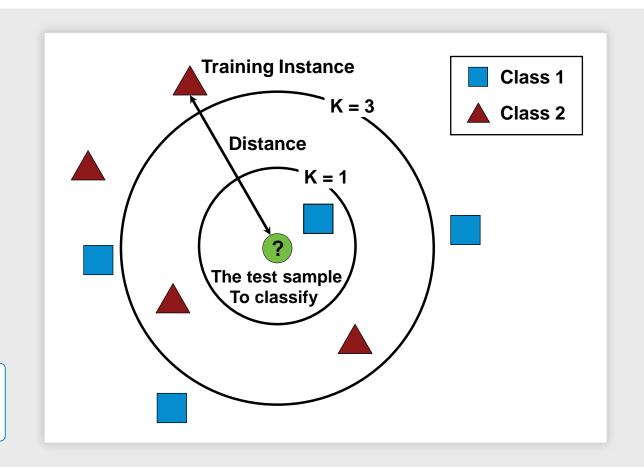
Flavor	Nicotine Content (mg)	Number of Factors	SECV (mg)	SEP (mg)	Percent (%) Accuracy
	2				93.1
Original	4	5	0.21	0.23	99.4
	8				101.3
	2				95.7
Mint	4	6	0.18	0.16	99.8
	8				99.9
	2				102.5
Wintergreen	4	4	0.21	0.21	99.0
	8				100.5
	2				108.8
Citrus	4	5	0.20	0.25	102.3
	8				100.6
	2				133.0
Berry	4	4	0.26	0.47	100.2
	8				99.4

Accuracy is based on the labeled nicotine contents, Factor: Compressed summaries of the spectral features most related to the concentration, SECV: Standard Error of Cross Validation, SEP: Standard Error of Prediction

Г

Flavor Discrimination of Nicotine Pouches

k-Nearest Neighbor (k-NN)


- Simple machine learning method used for classification
- Supervised learning: Training examples with a class label (e.g., flavor)
- Finding the "k" closest data points (neighbors) to predict an unlabeled data point
- *k* → Number of data points to include
- Closeness: A distance metric that measures similarity between data points

Flavor Discrimination

• k-NN model: k = 3, Euclidean distance metric

The discrimination accuracy was 100%

All flavor groups of the nicotine pouches were correctly identified

Conclusion

Raman Spectroscopy

a rapid, direct, and non-invasive technique for characterizing nicotine pouch products

- Accurate nicotine quantification and flavor classification were accomplished using chemometric tools
- Fluorescence background decreased prediction accuracy of nicotine content of 2 mg Berry product

Ways to address:

Employing longer- Developing more sophisticated wavelength laser algorithms to suppress Raman excitation fluorescence background spectroscopy

Rapid, direct, and non-invasive characterization of nicotine pouch products

for routine testing and quick assessment during product development

Acknowledgements

Prof. Hoeil Chung, Ph. D.

Analytical Spectroscopy Laboratory http://asl.hanyang.ac.kr/
Department of Chemistry,

Hanyang University, Seoul, South Korea

Yoonji Kim | Haeseong Jeong

Fadi Aldeek, Ph. D.

Oral Product Assessment Group, Analytical Sciences,

Altria Client Services, Richmond, VA, USA

THANK YOU!

