Oral Toxicity Evaluation of Tobacco Products in a Buccal Epithelial-Fibroblast Co-culture Tissue Model

Xuefei Cao¹, M.T. Farcas¹, J. Molignano², Y., Prepelitskaya¹, J. Oldach², M.M. Gutierrez¹

¹Altria Client Services, Richmond, VA; ²MatTek Corporation, Ashland, MA

Oct 22, 2025

---Agenda

Introduction

Objective & Experimental Design

Results

Conclusions

г

Tobacco Harm Reduction Framework

CONSTITUENT REDUCTION

Product
Design and
Control

Chemical
and Physical
Characterization

THE PRODUCT

- Chemistry Manufacturing and Controls
- Product Stability
- Chemical Characterization

INDIVIDUAL RISK REDUCTION

Toxicology and Risk Assessment Subjects

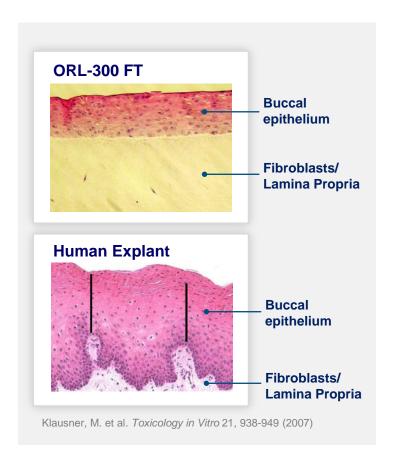
EXPOSURE and HEALTH RISK

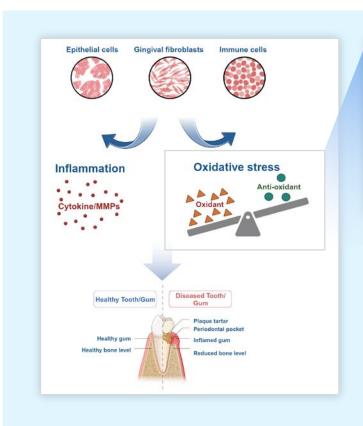
- Toxicology & Risk Assessment
- Health Risk assessment (Absolute and Relative)
- Human Studies
- Human Factors Assessment

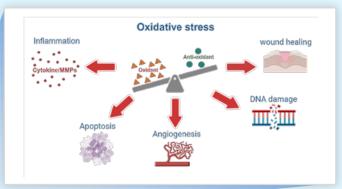
POPULATION HARM REDUCTION

Perception and Behavior Assessment

Risks and Benefits to Health of the Population


IMPACT on the **POPULATION**


- Risk Perceptions (Absolute and Relative)
- Impact of Product on Users
- Impact on Non-Users
- Overall Impact on the Population
- Environmental Assessment



Study Objective

OBJECTIVE: Develop an in vitro oral testing platform with enhanced biological relevance for evaluating and differentiating the toxicity of tobacco products

ENDPOINTS

- Oxidative stress
- Inflammatory responses
- Cytotoxicity
- DNA damage
- Morphological changes

Г

Experimental Design

TEST ARTICLES (TA)

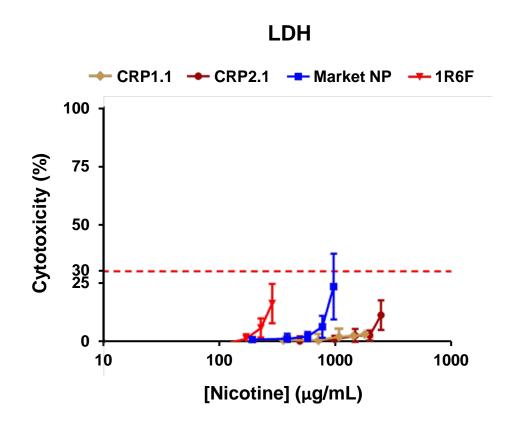
- CRP1.1 (CORESTA snus reference)
- CRP2.1 (CORESTA moist snus reference)
- Market NP (cinnamon-flavor, 3 mg)
- 1R6F reference tobacco condensate in ethanol

TEST CONCENTRATIONS

- Oral products: 20%, 40%, 60%, 80%, 100% (v/v) complete artificial saliva (CAS) extract
- 1R6F: 1.5%, 4%, 6%, 8%, 10% (v/v) ethanol condensate

[Nicotine] (μ g/mL \pm SD)

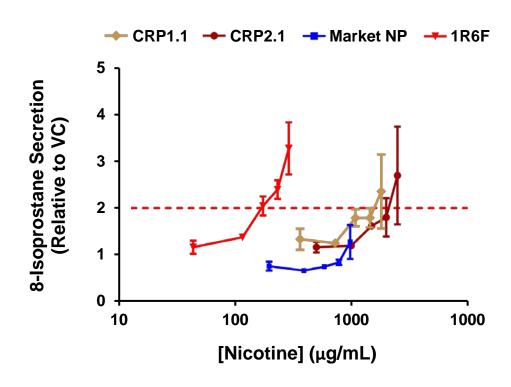

Test Article	Lowest	Highest		
CRP1.1 CAS extract	356 ± 4	1,779 ± 20		
CRP2.1 CAS extract	491 ± 2	2,454 ± 10		
Market OTDN CAS extract	192 ± 3.2	960 ± 16		
1R6F EtOH condensate	42.6 ± 0.11	284 ± 7		



ENDPOINTS

- Oxidative stress: 8-isoprostane
- Inflammatory responses: cytokine secretion
- Cytotoxicity: MTT, LDH
- DNA damage: yH2Ax
- Morphology: H&E, Ki67, fibronectin, MMP secretion

Results - Cytotoxicity



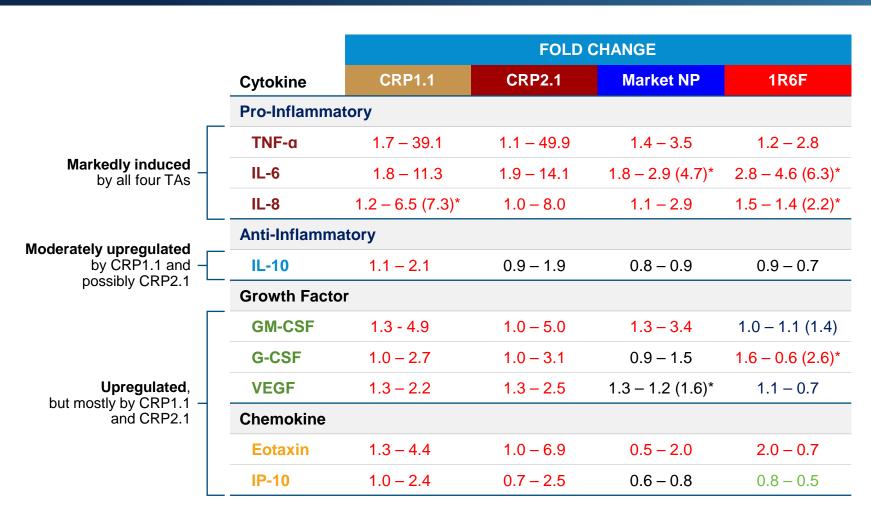
CONCLUSION: None of the TAs is cytotoxic based on both MTT and LDH assays

П

Results - Oxidative Stress by 8-Isoprostane

CONCLUSIONS:

- CRP1.1, CRP2.1, and 1R6F significantly increased 8isoprostane secretion
- The Market NP moderately increased 8-isoprostane secretion, but less than 2-fold


Results - Cytokine Functions

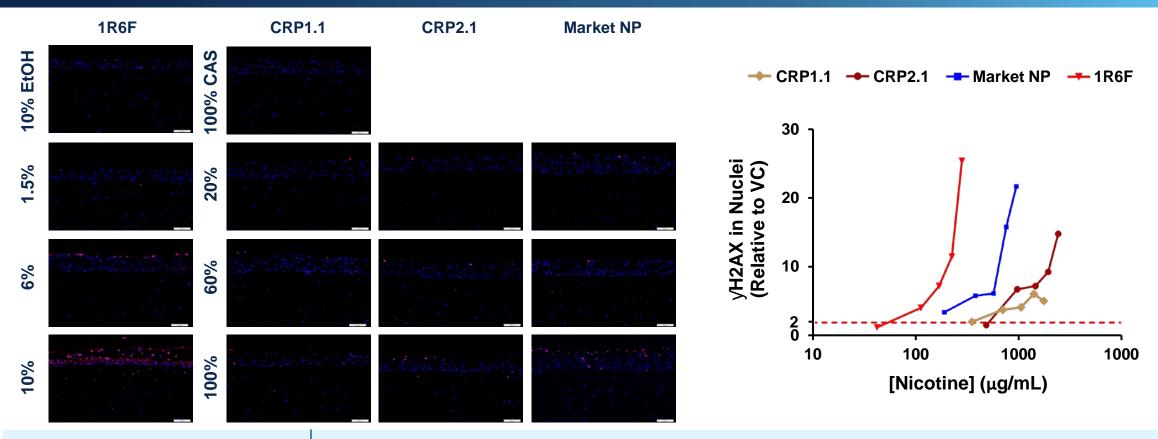
Cytokine	Impact	Implication in Oral Diseases				
Pro-Inflammatory						
TNF-a	Tissue destruction, immune activation	Increased in periodontitis, linked to tissue destruction and bone resorption				
IL-6	Chronic inflammation, bone resorption	- Increased in periodentitis & eral capeer, chronic inflammation				
IL-8	Neutrophil recruitment, tissue damage	Increased in periodontitis & oral cancer, chronic inflammation				
Anti-Inflammatory						
IL-10	Anti-inflammatory, protective	Decrease linked to unchecked inflammation in periodontitis, oral lichen planus				
Growth Factor						
GM-CSF	Immune cell recruitment	Elevated in oral inflammation				
G-CSF	Neutrophil support, mucosal healing	Involved in periodontitis by inducing bone resorption and tissue destruction				
VEGF	Angiogenesis in tumors	Increased in oral cancer				
Chemokine						
Eotaxin	Eosinophilic inflammation	Involved in oral lichen planus and periodontitis				
IP-10	T-cell recruitment, chronic inflammation	Elevated in chronic inflammatory oral conditions				

г

Results - Cytokine Secretion

CONCLUSION:

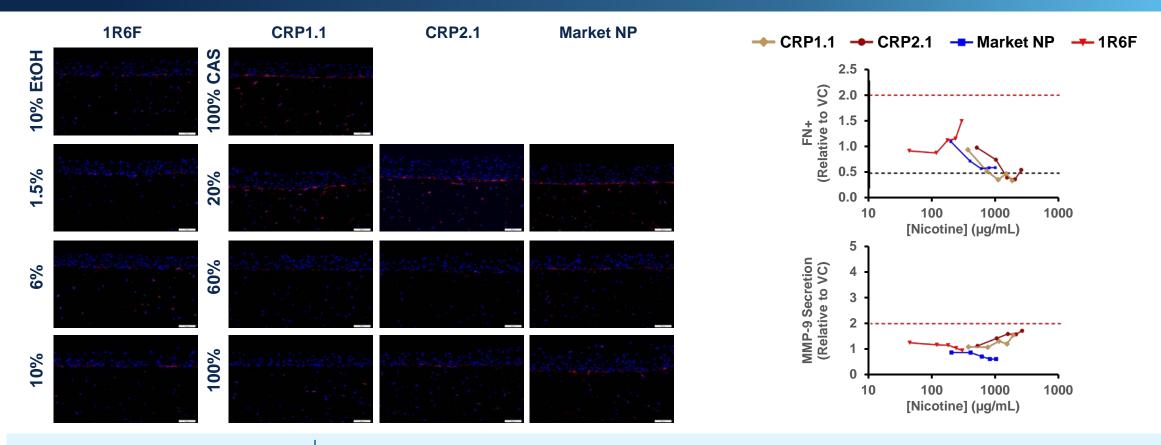
Overall, the data demonstrate clear modulation of cytokine secretion by these TAs


These findings highlight variability in cytokine profiles among the TAs, suggesting distinct inflammatory pathways activated by each TA

Red: Indicates greater than 2-fold increase; Light green: Indicates ~50% decrease.

^{*}indicates the peak responses.

Immunohistochemistry (IHC) Assessment - yH2AX



- yH2AX staining was present in both epithelium and fibroblast in 1R6F-treated cultures
- All four TAs significantly induced the expression of yH2AX
- The responses between CRP1.1 and CRP2.1 mostly overlapped

г

IHC Assessment - Extracellular Matrix (ECM) Modulation

- Fibronectin was primarily expressed in fibroblasts
- 1R6F caused a slight increase in fibronectin expression
- All three oral products reduced fibronectin expression, with CRP1.1 and CRP2.1 decreasing levels by > 50%
- CRP1.1 and CRP2.1 moderately increased MMP-9 secretion

Conclusions

	TA		Oxidative	Pro-inflammatory	Anti-inflammatory	Growth	Chemokine	DNA	ECM	
Exhibited similar response profiles		IA .	stress	F10-IIIIIaiiiiiiatory	Anti-iiiiaiiiiiatory	factor	Chemokine	damage	FN	MMP-9
		CRP1.1	†	†	†	†	†	†	ţ	+
		CRP2.1	†	†	†	†	†	†	Ţ	+
		Market NP		Ť	_	+	†	†	+	_
		1R6F	†	†	_	+	†	†	1	_
The size of the arrows indicates a magnitude of response (not drawn to scale).		All induced pro- inflammatory cytokines				All triggered DNA damage				

Collectively, the data indicate that CRP1.1 and CRP2.1 may promote more extensive inflammation and tissue remodeling compared to Market NP and 1R6F, which are primarily associated with acute pro-inflammatory and DNA-damaging effects

The observed increase in FN by 1R6F indicates potential fibrotic changes, while the interplay between FN and MMP-9, as modulated by CRP1.1 and CRP2.1 suggests possible ECM degradation

ORL-300 FT offers an advanced, biologically relevant in vitro platform for the comprehensive assessment of toxicity mechanisms induced by tobacco products

