Traumatic Brain Injuries

Wayne Kubal MD, FASER

University of Arizona

ACR Education Center 2025

Learning Objectives

- Review the CT and MR appearance of common traumatic brain injuries
- Understand how pathophysiology and anatomy determine the imaging appearance
- Discuss which imaging options offer the greatest sensitivity for diagnosing TBI

Epidemiology of TBI

- 52,000 deaths
- 200,000
 hospitalization /
 lasting disability
- 1,740,000 physician visit / temporary disability

Etiology of TBI

Etiology of TBI

- MVA
 - Young adults
 - Often alcohol related
- Falls
 - Very young
 - Elderly

3D CT Depressed Skull Fracture

- Improved delineation of:
 - Depression
 - Comminution
 - Associated facial fractures

CT: ? TBI in a Child

Skeletal Survey

3D CT Linear Skull Fracture

Decreased Incidence of TBI

- Airbags
- Seat belts
- Decreased alcohol consumption
- Helmets for recreational activities

Decreased Mortality for TBI

- 1950's: intracranial pressure (ICP) monitoring
 - Increased ICP > poor outcome
- 1960's & 1970's: emergent CT
 - Defines primary injury and guides intervention
- 1980's to present: MRI, DWI and DTI
 - Identifies subtle, non-hemorrhagic injury

Indications for Emergent CT

- Canadian Rule (CCHR) & New Orleans Criteria
 - Sensitivity = 97-100%
- "No set of clinical predictors have yet been put together that is capable of identifying all patients who are safe to be discharged without a CT scan"

New Criteria for Emergent CT

- Blood test for TBI (i-STAT TBI plasma test)
 - Results available within 15 minutes
 - "A negative result can be used to rule out the need for a head CT scan"
- VR and AI test for TBI
 - Virtual Reality Military Operational
 Neuropsychological Assessment, or VRMONA
 - VR headset & handheld controllers paired with Al technique (deep neural network learning)

Primary Brain Injury

- Applied force strains brain beyond structural tolerance resulting in injury
 - Force = direct contact
 - Compressive strain > contusion
 - Force = translational acceleration
 - Tensile strain > contra-coup hematoma
 - Force = rotational acceleration
 - Shear strain > diffuse axonal injury

Secondary Brain Injury

- Pathophysiologic cascade following initial injury
 - Cellular damage and edema
 - Repair and phagocytosis
 - Vascular proliferation
 - Gliosis

Anatomy of Fluid Spaces

- Subarachnoid between pia and arachnoid
 - Contains Circle of Willis

Anatomy of Fluid Spaces

- Subdural between arachnoid and dura
 - Contains cortical veins

Anatomy of Fluid Spaces

- Epidural between dura and skull
 - Contains middle meningeal artery

Subdural Hematoma (SDH)

- Serosanguineous fluid collection (CECT)
 - Ruptured cortical veins
- Common over convexity
 - Along dural reflections
- Considerable extent
 - Loose connection of arachnoid and dura
- Crescentic configuration

Subdural Hematoma (SDH)

Subdural Hematoma (SDH)

- Evolving CT appearance
 - Acute (1st week)
 - 98% hyperdense
 - Subacute (2-3 weeks)
 - Iso to hypodense
 - Chronic (> 3 weeks)
 - Hypodense
 - Hyperdense if repeated microhemorrhage

- Acute CT appearance
 - Most common uniform high density
 - 40% mixed density
 - active bleeding
 - early clot retraction
 - CSF mixing from arachnoid tear

- CT after a few hours
 - Usual follow-up is about 6 hours in a stable patient
 - In the interval the SDH has increased slightly in size and become more uniformly dense

- CT after a week
 - Now nearly isodese compared with brain
 - Density is slightly heterogeneous
 - early clot retraction
 - CSF mixing from arachnoid tear

- CT after a month
 - SDH hypodense compared with brain
 - SDH hyperdense compared with CSF

- CT after two months
 - SDH continues to decrease in density
 - SDH is starting to decrease in volume with decreased mass effect

Recurrent SDH

- Asymptomatic patients are typically treated conservatively
- Surgery is reserved for patients who are symptomatic and/or with large SDH
- Treatment of chronic or recurrent SDH via middle meningeal artery (MMA) embolization has been reported

S/P Left MMA Embolization

CT shows dense material in MMA

SDH: Non-Accidental Trauma

- Most common intracranial abnormality in the abused child
- May see SDH's of varying ages
 - Differing densities on CT
 - Differing signal intensities on MR
 - Do <u>not</u> meet the medical-legal definitions for nonaccidental trauma

Child Abuse; Bilateral SDH's

CT

- Bilateral, extra-axial, cresentic fluid collections
- Differing densities suggest they are of different ages
- Probably <u>not</u> medical legally valid

Child Abuse; Bilateral SDH's

- MR (axial CET1, first and second echo T2)
 - Signal intensities suggest different ages

Tentorial SDH

Parafalcine SDH

Case of TBI: CT

- Extra axial blood on left
- Scattered pneumocephalus
- Skull fractures
 - Frontal
 - Skull base?

Case of TBI: Bone Detail

- Skull fractures
 - Frontal
 - Skull base
 - Foramen magnum
 - Sphenoid sinus
- Need to evaluate for a vascular injury

Case of TBI: CTA

- L ICA injury
 - Occluded at skull base
 - Probable dissection
 - Reconstitutesat thesupraclnoidsegment

Epidural Hematoma (EDH)

- Dura may separate from the skull due to direct impact especially if there is fracture
- High pressure blood collection from lacerated middle meningeal artery
 - Most common temporal and parietal
- Venous EDH in posterior fossa
 - Nost common from transverse sinus

Epidural Hematoma (EDH)

- Initial CT
 - Over 90% have associated fracture

Epidural Hematoma (EDH)

- CT shows rapid enlargement after 4 hours
 - Heterogeneous appearance indicates active bleeding
 - Biconvex due to the firm attachment of the dura to the skull

Bilobed EDH

- CT appearance
 - Bilobed, extra-axial,
 high density fluid
 collection
 - Heterogeneous appearance with swirling indicates active bleeding
 - Minimally displaced skull fracture

Venous EDH with Fracture

Post Traumatic Subarachnoid Hemorrhage (SAH)

- Bleeding from cortical veins or from extension of intraparenchymal hemorrhage
- Generally, smaller volume and more peripheral than aneurysmal bleed
- On CT, high density conforming to sulci
- Associated contusion is common

Frontal Contusion & SAH

- CT
 - Frontal contusion
 - Small subarachnoid hemorrhage
 - Small subdural hematoma
 - Minimally displaced frontal bone fracture

Frontal Contusion & SAH

Contusion

- Results when brain impacts the inner table of the skull
- Common in the anterior frontal and temporal lobes after deceleration

Contusion

 Microhemorrhages may coalesce into intraparenchymal hematoma

Contusion: CTA

- CTA shows an amorphous collection of contrast within the hematoma and not connected to an artery
- Post traumatic "spot sign"

Contusion: CTA

- Post traumatic "spot sign"
- Like the classic spot sign, it is associated with hematoma enlargement

Temporal Contusion?

- CT
 - Increased intraaxial density in the anterior right temporal lobe?
 - Possible artifact?

Contusion: MR (T1 & T2)

- Increased intra-axial signal intensity in right temporal lobe and a small SDH
- T2 shows the edema to best advantage

Subtle Contusion vs SAH

- Initial CT
 - Small high density focus in right frontal lobe
 - Where is the blood?
 - Does it conform to the sulcus?
 - Is this a contusion?

Subtle Contusion vs SAH

MR DWI

- Appears bright where diffusion is restricted i.e. cytotoxic edema in an acute infarct
- SAH should not appear bright
- Small contusion
 - Local brain swelling
 - Cytotoxic edema

- Initial CT
 - Small low density focus in left frontal lobe
 - Can this be contusion?
 - Where is the blood?

T1 & T2 MR show edema

- GRE MR
 - Small hypodensity c/w hemorrhage

MR DWI

- Appears bright
 where diffusion is
 restricted i.e.
 cytotoxic edema
- The abnormality is larger than the hemorrhagic focus

Case: Initial Presentation

- Pediatric seizures
 - CT was normal
 - DWI MR showed multiple areas of restricted diffusion
 - Infection and TBI were considered

Case: Initial Presentation

Skeletal survey was normal

Case: 3 Weeks Later

- Non contrast CT
 - Encephalomalacia in areas of previous restricted diffusion
 - Extensive volume loss
 - Scalp hematomas

Case: 3 Weeks Later

Skull fractures

Case: Abusive Head Trauma

- Brain swelling and pseudo-SAH
- Bilateral retinal hemorrhages
- Global anoxic injury

Case: Abusive Head Trauma

- NM brain death study
- Blood flow to face/scalp, none to brain

- Small, sometimes hemorrhagic injuries result from shear stress when the head is rotated.
 - Theory elaborated by Holborn in 1940's

- Rotational acceleration is maximal at the brain periphery
 - Peripheral DAI is more common, less severe trauma
 - Corpus callosum or brainstem DAI is less common, more severe trauma

- CT
 - No definite abnormality

Grade II DAI: (T1 & T2)

 Hyperintensities in splenium and genu of the corpus callosum (Grade II)

Grade II DAI: (T2 & GRE)

- Small bleeds in splenium of corpus callosum (Grade II) and in basal ganglia
- Large artifact on GRE

Grade I DAI: (T2, GRE, SWI)

- SWI i.e. susceptibility weighted imaging
 - More sensitive than T2 and GRE
 - Longer imaging time

Hemorrhagic Injuries (DAI)

- CT underestimates DAI
 - Sees acute hemorrhage or large lesions
- MR more sensitive both acutely and especially chronically
 - T2 weighted sequences are sensitive
 - GRE sequences are more sensitive
 - SWI sequences are even more sensitive
 - GRE and SWI sequences are subject to extensive magnetic susceptibility artifacts

DAI?: Corpus Callosum

 No T2 prolongation and no hemorrhage in the splenium shown by T2 and GRE

Grade II DAI: (DWI, ADC)

 Subtle hyperintensities in the splenium on DWI confirmed on ADC

- GRE and SWI are sensitive for acute and chronic hemorrhage
- DWI is sensitive to cytotoxic edema and shows non-hemorrhagic lesions
- DWI obtained 0-2 days post injury correlates with initial GCS and Rankin score at discharge

Grade III DAI (T2, SWI, DWI)

- Hard to see edema on T2 or hemorrhage on SWI, only on DWI (brainstem)
- Less than half of DAI may be hemorrhagic

Axonal Injury Mechanism

Secondary Brain Injury

- Pathophysiologic cascade following initial injury
 - Cellular damage and edema
 - Repair and phagocytosis
 - Neuronal loss
 - Vascular proliferation
 - Gliosis

- Initial CT
 - Normal

- CT 24 hours later
 - Diffuse brain swelling
 - Compromised basal cisterns
 - Subfalcine herniation
 - Right frontal hematoma
 - Right subdural hematoma
 - Blurring of gray-white margin

- CT 24 hours later
 - Diffuse brain swelling
 - Compromised basal cisterns
 - Subfalcine herniation
 - Right frontal hematoma
 - Right subdural hematoma
 - Blurring of gray-white margin

CT after another 10 hours

Increased mass effect

 Effaced basilar cisterns c/w descending herniation

- New left frontal hemorrhage
- Loss of gray-white differentiation

Brain Swelling

- Since the cranium is rigid, even a small increase in volume causes a large increase in ICP
- Cellular swelling (intracellular edema)
- Disruption of blood brain barrier causes extracellular edema
- Loss of auto regulation may result in increased cerebral blood volume

Brain Herniations

- Subfalcine (1)
- Transtentorial (2)
- Uncal (3)
- Tonsillar (4)

Summary

- Review the CT and MR appearance of common traumatic brain injuries
 - EDH
 - SDH
 - -SAH
 - Contusion
 - DAI

Summary

- Understand how anatomy and pathophysiology determine the imaging appearance
 - Configuration of extra axial collections
 - CT density over time of hematomas
 - Most common locations for contusion
 - Distribution of DAI

Summary

- Discuss which imaging options offer the greatest sensitivity for diagnosing TBI
 - GRE and SWI MR sequences sensitive for acute and chronic hemorrhage
 - Diffusion MR (DWI) is sensitive to cytotoxic edema and shows non-hemorrhagic lesions

Thanks!

