Acute Stroke Imaging

Wayne S. Kubal, MD FASER

University of Arizona

ACR Education Center 2025

Learning Objectives

- Review the CT and MR appearance of acute ischemic brain injuries.
- Discuss treatment options for acute ischemic brain injuries.
- Appreciate the impact of some of the newer imaging techniques.
- Case based approach.

Epidemiology of Stroke

- Ischemic stroke is the third leading cause of death in the USA
- Thrombolytic therapy is beneficial in select patients with acute ischemia
- Unfortunately, only a small minority of patients receive thrombolytic therapy
- Goal of imaging is to improve outcome
- The challenge is to select the patients who may benefit

Stroke: Pathophysiology

Brain Attack

- Acute CNS injury with abrupt onset
- First imaging NCCT
 - Hemorrhage?
 - Ischemic stroke mimic?
 - Treatable (less than 1/3 of MCA distribution) ischemic stroke?
- Need for additional imaging
 - Rapid imaging and interpretation are essential
 - Time is brain!
 - Depends upon the imaging and therapeutic options

Time is Brain!

- In a typical large vessel ischemic stroke, the patient loses:
 - 1,900,000 neurons per minute
 - 14,000,000,000 synapses per minute
 - 7.5 miles of myelinated fibers per minute

Imaging for Stroke Therapy

- NCCT
- NCCT + CTA
- NCCT + CTA + CTP
- NCCT + CTA + DWI
- NCCT + DWI + MRA + MRP

Imaging: NCCT

- Is there an infarct?
 - Direct signs
 - Indirect signs
- Infarct size
 - ASPECTS score
- Is there an alternative diagnosis?
 - Neoplasm?
- Is there hemorrhage?
 - If there is hemorrhage; no therapy

Imaging: NCCT

- Dense MCA sign
 - Thrombus in MCA
 - Longer thrombus implies poorer outcome
 - Describe the clot length in your report
 - Therapy is usually clot retrieval for clot > 8mm.

Srinivasan, Ashok, et.al. RadioGraphics 26:S75-95 (2006)

Right Sided Weakness: CT

- Initial CT shows dense MCA
- IV thrombolysis results in hemorrhage
- Proximal, long clots do poorly with IV

Case: Unresponsive Pt: CT

What is the abnormality?

Case: Unresponsive Pt: CTA

Thrombus at the basilar tip

Case: Ataxia, R/O Stroke: CT

Ataxia in a teenager

Case: Ataxia: FLAIR

- Ataxia in a teenager
- MR limited by dental artifact
- Increased signal in pons
- Pons obscured on DWI

Case: Ataxia: CTA

- Ataxia in a teenager
- Absent filling of mid basilar artery

Case: Ataxia: CTA

Clot within the basilar artery

Case: Ataxia: Angiography

- Ataxia in a teenager
- Clot was retrieved, patient recovered

Imaging: NCCT

- Dot sign
 - Thrombus in dstal (M2) MCA branch

Srinivasan, Ashok, et.al. Radiographics 26:Sup 1 (2006)

Right Sided Weakness: CT

Dense left MCA branch (dot sign)

Right Sided Weakness: CT

A few days later L MCA stroke is apparent

Imaging: NCCT

- Obscuration of lentiform sign
 - Implies ischemia or infarct in the territory of lenticulostriate arteries arising from M1

Srinivasan, Ashok, et.al. RadioGraphics 26:75-95 (2006)

Imaging: NCCT

- Insular ribbon sign
 - Decreased density in insular cortex
 - Implies MCA ischemia or infarct
- Partial obscuration of lentiform

06)

Srinivasan, Ashok, et.al. RadioGraphics 26:75-95 (2006)

Case Global Anoxia: CT

- Patient S/P arrest
- R/O anoxia
- Loss of grey-white differentiation in basal ganlia

Case Global Anoxia: CT

- Patient S/P arrest
- R/O anoxia
- Pseudo-subaracnoid hemorrhage
 - Engorged venous structures appear in comparison to the hypodense brain

Imaging: NCCT

- Patient presents with left hemiparesis
- Is there ischemia or infarct?

Srinivasan, Ashok, et.al. RadioGraphics 26:S75-95 (2006)

Imaging: NCCT

- Right hemiparesis
- Ischemia or infarct?
 - Narrowed WW from 80 HU to 10 HU
 - Partial obscuration of lentiform and likely involvement of posterior limb of IC

Srinivasan, Ashok, et.al. RadioGraphics 26:S75-95 (2006)

Imaging: NCCT ASPECTS

- ASPECTS 10-point scale
 - 6 cortical areas, insula, lentiform, caudate, IC
 - Low ASPECTS score portends poor outcome

Kunst MM, Schaefer PL. Radiol Clin NA 49:1-26 (2011)

Imaging: NCCT ASPECTS

- ASPECTS 10-point scale
 - 6 cortical areas, insula, lentiform, caudate, IC
 - M1, insula, lentiform are abnormal
 - ASPECTS score: 10 3 = 7

Imaging: Arteries

- Are the vessels patent?
 - -CTA, MRA
 - Patients with large vessel arterial occlusions do better with clot retrieval
 - Patients with good arterial collaterals have more salvageable brain and do better
 - —"Malignant pattern" of poor arterial collaterals is associated with larger infarcts and poorer functional outcomes

Grading: Arterial Collaterals

Grade 1 fig A, Grade 2 fig B, Grade 3 fig C

Yeo et al. AJNR 36:289-94 (2015)

Grading: Arterial Collaterals

- No opacification fig A
- Decreased opac. fig B
- Equal opacification
- Increased opac. fig C
- Exuberant opac. Fig D

Yeo et al. AJNR 36:289-94 (2015)

Grading: Arterial Collaterals

- Less than 50% of MCA fig A
- More than 50% of MCA fig B

Imaging: NCCT & CTA

- Dense MCA sign, long clot
- CTA shows carotid summit & M1 occlusion
 - Poor collaterals, "malignant pattern"
 - Note the thick MIPs and coronal reformats

Srinivasan, Ashok, et.al. RadioGraphics 26:S75-95 (2006)

Case: Poor Arterial Collaterals

Loss of L insular ribbon

Case: Poor Arterial Collaterals

- CTA shows cutoff of L M1 & poor collaterals
 - "Malignant pattern" c/w poor outcome

Case: Poor Arterial Collaterals

- LICA angiogram confirms LMCA occlusion
- Angiographically successful clot retrieval

Case: Poor Arterial Collaterals

- Post treatment CT shows:
 - Large L MCA infarct
 - Mass effect with subfalcine herniation

Case AMS: CT

 Patient "altered" following placement of right central line; R/O infarct

Case AMS: CT

 Initial CT appeared abnormal; wide windowing confirms intravascular gas

Case AMS: DWI

 DWI shows extensive right cortical restricted diffusion and brain swelling

Case AMS: CT & MR F/U

 Two days later CT and T2 MR show right hemispheric infarct

Imaging: CT Perfusion

- Infuse 40cc of IV contrast
- Repeatedly scan selected brain regions
- Obtain time density curves
 - Artery, vein, parenchyma

Analysis of time density curves

- Deconvolution analysis
 - Time to peak (TTP)
- Width at half max
 - Mean transit time (MTT)
- Area under curve
 - Cerebral blood volume (CBV)
- Cerebral blood flow (CBF) = CBV/MTT

Autoregulation

- Viable brain shows intracranial vasodilitation in response to decreased perfusion pressure
 - Normal or increased CBV
 - Normal to decreased CBF
- Infarcted brain cannot autoregulate
 - Decreased CBV
 - Decreased CBF

Cerebral Autoregulation

Medhok, Debbie et. al. Current Neurology and Neuroscience Reports 18 (2018)

"Old Time" CT Perfusion

- MTT & CBF show decreased perfusion
- CBV shows smaller abnormality

MTT – CBV = penumbra MTT / CBV = mismatch ratio

Srinivasan, Ashok, et.al. RadioGraphics 26:S75-95 (2006)

Ischemic Penumbra

- Infarct core is dead brain
 - Measured by DWI
 - CBF (< 30%) on CTP
- Brain at risk is ischemic
 - Tmax (> 6 sec)
- Brain at risk Core =
 Mismatch volume or
 Ischemic penumbra

Summers, Debbie, Malloy, Rachel. Journal of Radiology Nursing 30(3):104-115 (2011)

- No hemorrhage
- Decreased cortical density in posterior L MCA distribution
- Basal ganglia appear preserved
- ASPECTS = 8

- TTP, MTT, CBF, CBV parameter maps
- MTT CBV = penumbra ("Old Time"!)

 More modern protocols use a decrease of CBF by 30% to estimate infarct core

d'Esterre, CD et al. Stroke 46:3390-3397 (2015)

- CBF map shows decreased perfusion on L
- Use the decreased perfusion to estimate infarct core?!

- Most modern protocols estimate the ischemic penumbra by comparing the increased TMAX (> 6 seconds), brain at risk, with the decreased CBF (< 30%), core
- TMAX = Time for contrast to move from proximal large vessel to brain parenchyma
- TMAX (> 6 s) CBF (< 30%) = penumbra
- Really need Al!

- Calculates the relative CBF decreased 30%
- Calculates TMAX thresholded at 6 seconds

rCBF<30%: 12cc TMax>6s: 24cc

Mismatch Volume: 12cc
Mismatch Batio: 2.0

- Small mismatch volume 12 cc
- Target mismatch volume to treat > 15 cc
- Stroke not treated
- Follow-up DWI shows infarct

CT: AMS

- No hemorrhage
- Decreased cortical density in posterior L MCA distribution
- Basal ganglia appear preserved
- Insula involved
- ASPECTS = 5

CTP: AMS

- TTP, MTT, CBF, CBV parameter maps
- MTT CBV = penumbra ("Old Time"!)

AI: AMS

- Calculates the relative CBF decreased 30%
- Calculates Tmax thresholded at 6 seconds

rCBF<30%: 45cc TMax>6s: 90cc

Mismatch Volume: **45cc**Mismatch Batio: **2.0**

CTA: AMS

 CTA shows no large vessel occlusion (LVO)

AMS

- CTA showed no LVO
- Patient was outside the time window for IV thrombolysis
- Follow-up CT shows evolving infarct

Imaging: Ischemic Penumbra

- Is there "salvageable" brain?
 - -CTP, MRP
 - –If there is no substantial (usually > 15 ml) of ischemic penumbra (mismatch volume); not rational to risk hemorrhage due to thrombolytic therapy
 - –If there is a large penumbra; is therapy indicated outside the accepted "time window"?

Treatment: IV Thrombolysis

- IV t-PA within 3.0 hrs.
 - NINDS trial
- IV t-PA within 4.5 hrs.
 - ECASS-3 trial
- IV t-PA within 9.0 hrs.
 - "Guided by perfusion imaging"
 - EXTEND trial

Stroke Alert: NCCT

- CT showed a left MCA infarct
- ASPECTS = 4
- CTA showed an M2 branch occlusion

Stroke Alert: CTP

- Core infarct of 14 cc
- Brain at risk of 65cc

TMax>6s: 65cc

Mismatch Volume: **51cc**Mismatch Ratio: **4.6**

Treatment follow-up with MR

- MRA showed restoration of flow in L M2 branch
- MRP shows increased CBF in L temporal lobe
- "Luxury perfusion"
- No hemorrhagic conversion

Treatment Beyond 4.5 Hours

- IV thrombolysis (perfusion imaging)
- Clot retrieval (up to 8 hrs)
- Possibly in select populations determined by imaging (is there no time limit?)
 - Imaging is brain
 - No benefit from thromboembolectomy (2013)
 - Endovascular treatment was found to result in better clinical outcomes (5 studies 2014-15)

IA Intervention Trials 2014-15

TRIAL	INCLUSION CRITERIA	IMAGING
MR CLEAN	Vessel occlusion	CT, CTA
ESCAPE	Vessel occlusion, Good collaterals	CT, CTA
EXTEND IA	Vessel occlusion, Small core < 70cc, Mismatch > 1.2	CT, CTA, CTP
SWIFT PRIME	Vessel occlusion, Small core < 70cc, Mismatch > 1.8	CT, CTA, CTP/MRP
REVASCAT	Vessel occlusion	CT, CTA/MRA

All 5 trials showed benefit from thromboembolectomy Each trial used different selection criteria

IA Intervention Trials 2014-15

- Since the goal of these trials was to show benefit from thromboembolectomy in appropriately selected patients, were some patients excluded who might have benefitted?
- What about late thromboembolectomy?
- The selection criteria are controversial and are a topic for continuing research.

IA Intervention Trials 2018

TRIAL	INCLUSION CRITERIA	IMAGING
DAWN (2018)	6-24 hours post ictus Core volume to clinical mismatch	CTP, DWI, MRP
DEFUSE 3 (2018)	6-16 hours post ictus, Small core volume < 70cc, Core volume to ischemic volume mismatch > 1.8	CTP, DWI, MRP

Trials showed benefit from late thromboembolectomy in appropriately selected patients.

Let's focus on infarct size.

Imaging: Infarct Size

- Is there a large infarct core?
 - -CT (ASPECTS), CTP (CBF < 30%), DWI
 - -Greater than 1/3 MCA territory
 - -Greater than 72 cc of tissue
 - —If large infarct
 - Poor outcome despite Rx

Gonzalez. J of MRI 36:259-271 (2012)

Right Sided Weakness: CT

- L insular ribbon sign (loss of gray-white)
- How big is the infarct?

Right Sided Weakness: DWI

Diffusion Imaging (DWI)

- DWI is based on measurements of the diffusion of water molecules
 - Water molecules move more freely in the interstitial space than in the intracellular space
 - When water moves from the interstitial space to the intracellular space diffusion becomes restricted
 - We see this change as cytotoxic edema

New Seizure: NCCT

- Is this an MCA infarct?
- Let's get an MRI

New Seizure: DWI & ADC

- DWI is not all that bright!?
- ADC is bright; no restricted diffusion

New Seizure: FLAIR & T2

- T2 is bright while FLAIR has some dropout
- T2/FLAIR mismatch sign indicates a glioma

New Seizure: Pre & Post T1

- There is no contrast enhancement
- Findings consistent with low grade glioma

Imaging with DWI, MRP, MRA

- Acute stroke protocol
 - 6-7 minutes imaging time
- DWI, ADC, T2, FLAIR, and GRE
- CE MRA
- MR perfusion
 - TTP, MTT, CBF, CBV, T max
- CE T1

Nael et al. Radiology 242:600-09 (2007)

Nael et al. Stroke 44:664-70 (2013)

Imaging with MR

- DWI / ADC
 - Confirm infarct, infarct size
- GRE
 - Subtle hemorrhage, venous thrombosis
- FLAIR
 - Infarct age; useful in "wake up strokes"
- MRA of brain and neck
- MR perfusion

MR Perfusion: Dynamic Susceptibility Contrast (DSC)

- Infuse IV (Gadolinium) contrast
- T2* sequence to scan whole brain
- Contrast induces a hypointense signal

L Weakness: DWI & ADC

DWI & ADC
 are abnormal
 in entire R
 MCA
 including the
 lentiform
 nucleus

Infarct volume > 72 ml.

L Weakness: MRA

- MRA shows no flow in R MCA c/w LVO
- There are a few distal collaterals
 - Poor collaterals

AMS, R/O Stroke: DWI & ADC

- Abnormal
 DWI and
 ADC in L ACA
 territory
- ? Acuity

AMS, R/O Stroke: FLAIR

- FLAIR abnormality is similar to the DWI abnormality
- Infarct is likely subacute
- More likely to hemorrhage if treated

Kufner et al. European Journal of Neurology 20:281-285 (2013)

AMS, R/O Stroke: GRE

- Despite the imaging findings, the patient was treated with IV tPA
- Follow-up GRE shows hemorrhagic conversion

TIA, R/O Stroke: DWI

- DWI is normal
- Are we done?
- No!
- Look for poorly perfused brain at risk

TIA, R/O Stroke: TTP

 TTP map shows delayed perfusion in the left posterior watershed

TIA, R/O Stroke: CBF

- CBF is nearly symmetric
- There is delayed perfusion on the left, but no significant decreased flow

Cases of Acute Stroke

- Currently using Tmax as the perfusion parameter to estimate brain at risk
 - Most predictive of tissue viability and outcome
 - Threshold (>6 sec) helps us to be consistent
- Compare with DWI to determine penumbra
 - T max DWI = volume mismatch (penumbra)

- DWI shows L basal ganglia and L posterior watershed infarcts
- Look for hypoperfused brain at risk

- Tmax shows extensive area at risk
- Tmax DWI = Large mismatch
- Suspect L MCA abnormality

- MRA shows L M1 occlusion
 - Poor collaterals

- DWI: small infarct involving R motor cortex
- FLAIR: WM disease but no hyperintensity at the acute infarct

- Tmax shows a small area at risk
- Tmax DWI = small volume mismatch (penumbra)

 Contrast enhanced MRA shows a critical R M1 stenosis

- DWI shows L ACA infarct
- Flair shows minimal hyperintensity

- Contrast enhanced MRA shoes no LVO
- Hypoplastic R A1 is a common variant

- TTP, MTT, CBF, CBV, Tmax parameter maps
- Matched defect?

 Mismatch volume is less than 1 cc.

- DWI & ADC show an R MCA infarct
- On FLAIR slight hyperintensity at the infarct

 Tmax & CBF demonstrate a matched defect with no penumbra

Contrast

 enhanced MRA
 shows a proximal
 R ICA occlusion

- DWI & ADC show a L MCA infarct
- FLAIR shows contralateral WM disease and hyperintensity at the infarct

- GRE: small petechial hemorrhage
- T max: small penumbra posterior to infarct

 Contrast enhanced MRA shows a high-grade L M1 stenosis

Summary

- NCCT: hemorrhage, large stroke, other dx
- CTA: proximal vs distal, collaterals
- CTP: penumbra = Tmax CBF (< 30%)
- DWI/ADC: confirm stroke, stroke volume
- FLAIR: hyperintense?
- GRE: subtle hemorrhage?
- MRP: penumbra = Tmax (> 6 sec) DWI
- MRA: proximal vs distal, collaterals

Thanks!

