Orthopedic Hardware

The nuts and bolts!

Manickam "Nicks" Kumaravel MD Sports Orthopedics and Emergency Imaging

No financial disclosures

WHO IS THIS LECTURE DESIGNED FOR?

- If your entire report reads :
 - "orthopedic hardware present in satisfactory alignment"
 - "post operative appearances as expected"
- If you tend to hit the "next study" button, when you see imaging of hardware
- If your plate & screw interpretations only include –
 "Dynamic compression & lag screws"

..... Then it will be useful!

OBJECTIVES

- Identification of hardware
 - Screws / plates & "modern & improved" hardware
 - Basics of joint replacement
- Functionality of orthopedic hardware
- Complications of orthopedic hardware

OUTLINE

- Screws
- Plates
 - Traditional
 - New and improved plates
- "Invisible" hardware
- Joint replacement
- Complications
- Spine hardware
 - Principles / Imaging / complications
- Summary

Cortical

• Fully threaded

Fully threaded self tapping

Partially threaded shaft screw

Threaded head screw

Cancellous

Partial threaded cancellous

Cannulated

Headless

Bioabsorable

PLATES

PLATES – DYNAMIC COMPRESSION

- Oval beveled holes
- Flush fit on periosteum

LOCKING PLATES – PRINCIPLES

COMBI LOCKING PLATES

- LCP Locking Compression Plate
- Has both "oval" and "locking" holes
- Advantage of using both traditional screws and locking screws
- Juxta-articular placement
- Osteoporotic bone
- Percutaneous techniques

TIMELINE

1970's DCP plates -AO

1990's Locking plates

2020's

Contoured / Reconstruction plates
Steerable fixation

2010's Variable angle locking plates

3D printed plates

INTERNAL FIXATOR ELBOW

VARIABLE ANGLE LOCKING PLATES

- Combine variable angle with locking
- Creates fixed angle fixation

LETS' PUT IT TOGETHER....

LETS LOOK AT SOME RADIOGRAPHS!

TYPICAL INTRAOPERATIVE ACTION

Tubular plate

TYPICAL INTRAOPERATIVE ACTION

INTER-FRAGMENTARY SCREW FIXATION

- Look for "notch" on cannulated screw
- Threads on head for "threaded head" screws

PLATES

SIMPLE TUBULAR PLATE

- 1/3 Tubular plate
- Bridge a fracture where there is no significant need for compression

LOCKING PLATE

- Lateral femoral condylar locking plate
- Note plate stand-off the cortex

COMBINATION LOCKING PLATE

HOW TO RECOGNIZE THE LOCKING SCREW?

VARIABLE ANGLE LOCKING PLATES

"INVISIBLE" HARDWARE

RADIOLOGISTS' NIGHTMARES!

Endo-buttons

- Things we can't see
 - "Tightropes"

INVISIBLE NIGHTMARES!

Things we can't see

COMPLICATIONS

STARTED WEIGHT BEARING EARLY!

POST ARTHRODESIS PAIN

MESMERIZING IMAGES - WOW!

WHAT ELSE IS THE HARDWARE HOLDING?

- Remember the hardware is holding more than the bone fragments
- Loss of integrity of the lateral compartment – unstable knee

UNSTABLE KNEE – POST ACL RECON

 "Interference" screw interferes between the native bone and graft

UNSTABLE KNEE – POST ACL RECON

- Fragmented screw
- Large widening of tunnels
- Granulomatous reaction

UNSTABLE KNEE – POST ACL RECON

- Graft still intact! But no longer functional.
 - Severe synovitis
 - Reactive muscle edema

ATV INJURY - COMMINUTED LAT CONDYLE

Protruding Headless screw

DIFFICULTY WEIGHT BEARING

Secondary osteosarcoma

References

- Rutherford, Elizabeth E., et al. "Lumbar spine fusion and stabilization: hardware, techniques, and imaging appearances." Radiographics 27.6 (2007): 1737-1749.
- Douglas-Akinwande, Annette C., et al. "Multichannel CT: evaluating the spine in postoperative patients with orthopedic hardware." Radiographics26.suppl_1 (2006): S97-S110.
- Petersilge, Cheryl A., et al. "Optimizing imaging parameters for MR evaluation of the spine with titanium pedicle screws." AJR. American journal of roentgenology 166.5 (1996): 1213-1218.
- Stradiotti, P., et al. "Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art." European Spine Journal 18.1 (2009): 102-108.
- Eustace, S., et al. "MR imaging of soft tissues adjacent to orthopaedic hardware: techniques to minimize susceptibility artefact." Clinical radiology52.8 (1997): 589-594.
- Berg, Bruno Vande, et al. "Multi-detector CT imaging in the postoperative orthopedic patient with metal hardware." European journal of radiology 60.3 (2006): 470-479.
- An, Howard S., and J. Alex Seldomridge. "Spinal infections: diagnostic tests and imaging studies." Clinical orthopaedics and related research 444 (2006): 27-33.
- Petscavage-Thomas, Jonelle M., and Alice S. Ha. "Imaging current spine hardware: part 1, cervical spine and fracture fixation." American Journal of Roentgenology 203.2 (2014): 394-405.
- Slone, Richard M., et al. "Spinal fixation. Part 2. Fixation techniques and hardware for the thoracic and lumbosacral spine." *Radiographics* 13.3 (1993): 521-543.

Thank you for your attention!

Medical School

