

Handling Sensitive Data
with Generative AI and
other Databricks Workloads
Dr. Alan L. Dennis, Avanade

 Page 2

 © 2024 Avanade Inc. All Rights Reserved

Overview of the Document
This document aims to document and address common challenges with sensitive data using the

Databricks platform. We provide an overview of the problem, discuss the challenges of using synthetic

data, and provide definitions to remove ambiguity in this context. We discuss the possible solutions and

present a recommended solution. The pillars of the solution are discussed, along with a detailed

discussion of the solution’s elements. A visual representation of the outline of the paper is presented in

Figure 1.

Figure 1: Mind Map of Sensitive Data Approaches with Databricks (read clockwise)

Challenges with Sensitive Data
There was a time when a student’s grades were posted outside their instructor’s office by listing the

student’s identifier and grade. Often, that student identifier was also their social security number. As

you know, the world has moved on. Today, we approach privacy from a very different perspective.

Organizations must balance the risk of data exfiltration with the desire to perform Lakehouse-based

analytics.

Overview of the Problem
There are significant penalties for failure to control data adequately. They range from punitive financial

penalties to brand devaluation. The basic problem is that some data requires specialized handling. The

nature of sensitive data is explored in this section, followed by the challenges associated with utilizing

offshore resources, common challenges, and typical solutions.

Sensitive Data
Sensitive data requires special architectures, processing, and tools. When dealing with sensitive data,

the cost of failure is very high. While sensitive data fundamentally differs from other data types, it must

have additional safeguards.

 Page 3

 © 2024 Avanade Inc. All Rights Reserved

Offshore Resources
Offshore resources are attractive for many projects because of their lower cost and because they

operate in a different time zone, enabling work to continue around the clock. However, onboarding

offshore resources in highly restricted environments can be challenging. This friction is caused by data

handling restrictions and statutory compliance.

In larger software construction efforts, it is common to have a mixture of on and offshore team

members. This blend allows for more favorable billing rates, potentially increasing productivity and

enabling follow-the-sun development. However, many organizations often struggle to onboard offshore

resources due to regulatory concerns. Often, data movement must be restricted to ensure that the data

does not leave a geographic location.

Common Challenges
The challenges associated with processing sensitive data span multiple industries. Healthcare is often at

the top of people’s minds due to high-profile regulations, such as the Health Insurance Portability and

Accountability Act (HIPAA). Other governance controls exist, such as the California Confidentiality of

Medical Information Act (CMIA) and the California Privacy Rights Act (CPRA). Other industries, such as

higher education, have governance with similar ends, such as the Family Educational Rights and Privacy

Act (FERPA). These controls protect sensitive data and carry significant penalties to ensure regulated

organizations remain compliant.

Data has a lifecycle. It starts with the data’s creation and typically ends at deletion. Some regulations,

such as the General Data Protection Regulation (GDPR), may require the propagated deletion of data in

response to an individual’s request. Historically, this type of processing has been a challenge for data

platforms and systems.

Identification of sensitive data may be challenging. Certain types of data are explicitly named as

sensitive data in regulations. Often, the field names in a database may make it challenging to determine

if a particular field contains sensitive data. On an ongoing basis, examination of the contents is often

required to identify and address sensitive information.

Certain types of data, such as unstructured data (such as healthcare provider notes), are particularly

difficult to handle. Later in this paper, we discuss approaches to reducing data exfiltration risk. Free-

form text is challenging in that identifying sensitive data is difficult, as are techniques to enable the data

to remain helpful while making it difficult to identify the individual.

Cross-organization collaboration and data sharing is often difficult. It is common for organizations to

engage with partners to perform data processing. The need to work securely with external organizations

is important enough that Databricks created Clean Rooms, which will be discussed later in this

document.

Generative Artificial Intelligence (GenAI) brings its own set of sensitive data issues. For GenAI to be

effective (as with other types of learning), it must be exposed to Actual data. This means that the

security model governing Actual data must allow for the use of the data while ensuring that a GenAI

model is not exposed to sensitive data. Considerable research is being performed to address the goal of

 Page 4

 © 2024 Avanade Inc. All Rights Reserved

benefiting from the revolutionary innovation that GenAI brings while minimizing the introduction of

novel vulnerabilities [1].

We have discussed many of the challenges associated with sensitive data. Next, we will discuss some

common approaches to address these impediments.

Common Solutions
Software engineering has long used a multiple-environment approach. The idea of this approach is to

have environments for purposes. Production environments are where tested and validated activities are

executed while closely monitored. The goal of software engineering activities is to reach production and

then execute as expected without failure once having reached production. We will talk more about

environments later, but for now, it is common to see a three-environment configuration comprising

development (Dev), quality assurance (QA), and production (Prod).

Figure 2: Traditional Three-Environment Approach

Ideally, each environment has its distinct version of source data. However, this is often not the case.

Organizations often copy data from production to development and QA to address this gap, as

demonstrated in Figure 2. While this copy occurs, operations are often performed to remove or modify

sensitive data. For the purposes of this paper, we call this Sensitive Data Protection Mechanism (see

definition). Additionally, it is common for sampling to occur, reducing the number of records in QA and

Dev to a fraction of the records in the production environment. This aims to reduce cost and processing

time.

Generally, access to an environment is based on the role an individual has been assigned and is

performing. For example, a tester will likely have access to QA and Prod but not Dev. Likewise, a

 Page 5

 © 2024 Avanade Inc. All Rights Reserved

developer will have access to Dev but likely not to QA or Prod. Ideally, access control should be managed

by group membership; unfortunately, teams sometimes manage access at an individual level.

Access to data assets, such as files and tables, may be governed by group membership. The idea is that

an individual can see a certain table but should not be able to see all tables unless there is a business

need. Often, changes to access are relatively static. Once an individual has gained access to a data asset,

it may be rare for review if that individual or group should continue to have access. Restrictions that are

more granular than table-level are not common in many of these situations. In part because big data

processing platforms historically lacked fine-grain controls (FGAC).

Some organizations may track the access of data assets by their employees. The idea is to monitor the

data assets being accessed and determine if the individual has a business reason for the activity. For

example, does the employee have a business reason to look at the medical records of a specific

individual? This approach’s challenge is that it may be difficult to determine if an activity has a business

purpose during access, so the logs are only useful during remediation, not providing prevention.

Some organizations utilize remote desktop connectivity to a virtual desktop infrastructure (VDI). The

goal is to restrict behaviors closer to the data, such as accessing email, cloud storage, and other egress

points. The challenge with these approaches is that as the environment becomes more secure, it often

makes the users of the environment less productive. For example, many data engineers rely on websites

for code snippets. While not allowing access to the internet may seem like a way to secure data, it may

result in significant decreases in productivity and software and, in turn, data quality. Sometimes, this

approach includes physical controls, resulting in an environment reminiscent of a sensitive

compartmented information facility (SCIF). These facilities do not allow employees to bring cell phones

and other electronics to reduce an employee’s ability to mishandle information. Related to this

approach is Databricks’ Clean Rooms [2], which provides a security-first approach to data handling.

We have discussed the problem of handling secure data. Next, we will introduce concise definitions of

terms. Having clear definitions is important when discussing concepts.

Definitions
Words often have overloaded meaning. For example, if someone says, “We have a production issue,” it

may be unclear exactly what that means. Is the problem related to a production environment or

production data? We introduce specific terminology for the remainder of this paper to address term

overloading.

Actual Data
The term Actual is used to refer to data that came from a production system. Actual data may contain

sensitive data (PHI, PII, etc.). Data derived from Actual data is still Actual, even if sampled, masked,

anonymized, or pseudonymized.

Sensitive Data
For the purposes of this paper, sensitive data refers to data that is regulated and deemed identifying.

This includes Personally Identifiable Information (PII) - Information that can be used to identify an

individual, such as their name, address, phone number, email address, social security number, or other

 Page 6

 © 2024 Avanade Inc. All Rights Reserved

unique identifier [3]. Sensitive data will always be Actual data, while Actual data may or may not be

Sensitive.

TYPE OF FIELD DESCRIPTION

NAME The first and last name of an individual

PERSONAL IDENTIFICATION NUMBERS Social Security Number, passport, Driver’s
License, taxpayer ID number, patient
identification number, financial account number,
or credit card number

PERSONAL ADDRESS INFORMATION Street or email address

PERSONAL TELEPHONE NUMBERS Phone numbers that can be used to reach the
individual

PERSONAL CHARACTERISTICS Photographic images, fingerprints, handwriting

BIOMETRIC DATA Retina Scans, voice signatures, facial geometry

INFORMATION IDENTIFYING PERSONALLY
OWNED PROPERTY

Vehicle Identification Number (VIN) or title
number

ASSET INFORMATION Static Internet Protocol (IP) or Media Access
Control (MAC) addresses

Table 1: Types of PII data

Additionally, Protected Health Information (PHI) is also referred to as sensitive data [4]. PHI is

information about an individual’s health status, provision of health care, or payment for health care.

Examples of PHI data are in Table 2.

TYPE OF FIELD DESCRIPTION

NAME The first and last name of an individual

ADDRESS Geographic regions that are smaller than a state,
street address, city, county, and zip code

DATES Birth, death, admission, and discharge

TELEPHONE AND FAX NUMBERS Phone numbers that can be used to reach the
individual

EMAIL ADDRESS An individual’s email address

SOCIAL SECURITY NUMBER Identifier issued by the Social Security
Administration

MEDICAL RECORD NUMBER A key used by some medical record
administration systems

HEALTH PLAN BENEFICIARY NUMBER A key used by health insurance or similar
services

ACCOUNT NUMBER A key often used for financial purposes

CERTIFICATE OR LICENSE NUMBER

VEHICLE IDENTIFIERS AND SERIAL NUMBERS Includes License Plates

 Page 7

 © 2024 Avanade Inc. All Rights Reserved

DEVICE IDENTIFIERS AND SERIAL NUMBERS Includes Medium Access Control (MAC) Address
and Electronic Serial Number (ESN) number

WEB URL A link to an individual’s web page or resources

INTERNET PROTOCOL (IP) ADDRESS A potentially static unique number related to an
individual’s web access

FINGER OR VOICE PRINT Includes other biometric elements

PHOTOGRAPHIC IMAGES Not restricted to images of the face

ANY OTHER CHARACTERISTIC THAT COULD
UNIQUELY IDENTIFY THE INDIVIDUAL

Table 2: Types of PHI data

There are many other ways of discussing sensitive data [5]. For our purposes, we will simplify the

taxonomy to data that is sensitive and data that is not.

Sensitive Data Protection Mechanism
Having identified sensitive data, we need a way to handle it. The purpose of the mechanism is to handle

sensitive data for compliance and to reduce potential exposure. There is a high-level decision: do you

want to retrieve the original value after applying the mechanism? If you do, then you want to use

pseudonymization techniques. Otherwise, use anonymization.

Figure 3: Sensitive Data Protection Mechanism

We will cover many of these approaches in the following sections. The contents of Figure 3 and the

associated ontology are purposeful simplifications of the field. The goal is to keep things simple.

 Page 8

 © 2024 Avanade Inc. All Rights Reserved

Synthetic
Synthetic data is created algorithmically without using Actual data. It may be based on characteristics of

Actual, such as range, standard deviation, number of categories or distinct values, etc. Because of the

randomness of creating synthetic data, it is unsuitable for data analysis, such as Machine Learning (ML)

or Artificial intelligence (AI) workloads.

When dealing with synthetic data, it is important that it is never combined with actual data unless it is

being used for anonymization. Two simple rules can reduce the chance of unintentional commingling:

Synthetic data should never enter an Actual environment, and Actual data should never enter a

Synthetic environment.

There are many methods to generate Synthetic data [1]. In Databricks, a tried-and-true approach is to

use the Databricks Labs Data Generator [6]. This is an active research area and a topic worthy of its own

paper.

Pseudonymization
Pseudonymization is the process of changing sensitive data so that it is not identifiable but can be re-

identified later. The process is performed at a record level. The data is still considered personal data by

the General Data Protection Regulation (GDPR) [7]. Common approaches to pseudonymization include

tokenization, hashing, and masking.

Hashing

A hash function maps data from one set of values to another. It often uses techniques such as a Secure

Hashing Algorithm (SHA) or some other hash function. Often, salt values are added and stored in a

secret store (such as a key vault). There are several open-source systems available [8].

Tokenization

The idea of tokenization is to replace sensitive values with a key used in a token vault that houses the

sensitive data. This approach is useful for Artificial Intelligence or Machine Learning.

Masking

Data masking involves replacing the results of a query with a value that obstructs the Actual value. It

may be a complete mask, meaning that none of the actual data is displayed, or partial. An example of a

partial mask would be to show the last four digits of a Social Security number, such as ***-**-1234.

Note that partial masking may enable deidentification through triangulation and other big data

processing techniques by combining the masked dataset with additional datasets. In the section entitled

Fine Grained Permissions via Tags, we discuss how to leverage Databricks’ ability to mask columns and

provide high level pseudocode to implement a simplistic version of attribute-based access control.

Anonymized
Actual data that has been manipulated to be unidentifiable. Data is irreversibly modified so that the

identifying information cannot be recovered.

Anonymization mechanisms include:

● Synthetic data generation

● Data suppression

 Page 9

 © 2024 Avanade Inc. All Rights Reserved

o Exclude sensitive columns from the return of a dataset

o Exclude rows with sensitive data

o Use dynamic views to access data

● Generalization

o Categorical

o Binning

o Truncating IP addresses

o Rounding

This is not intended to be an exhaustive list. Likely there are far more mechanisms to anonymize data.

Software Engineering Environments
We must distinguish between data and software engineering environments when considering

environments. Data includes Actual data, including data that might have been sampled to reduce the

overall size. Software engineering environments are locations where work is performed. A single

software engineering environment may use multiple types of data, depending on the workload.

Databricks provides robust continuous integration and continuous deployment (CI/CD) capabilities,

enabling the promotion of artifacts across environments. Additionally, MLflow can be used to manage

the machine learning (ML) lifecycle, and other types of activities across environments.

We often refer to higher and lower environments when discussing software engineering environments.

This comes from the fact that we promote code from one environment to another. For example, we

often promote code from Development to Quality Assurance. In this scenario, Quality Assurance is a

higher environment than Development. Production is viewed as the highest environment in the

ordering, as shown in Figure 4.

Figure 4: Ordering of Software Engineering Environments

Development

Development environments (Dev) are used to construct data engineering activities and access controls.

For example, a column filtering function should be developed and tested in Dev before being applied in

high environments. Dev Environments are used to perform data engineering development. As a best

practice, Dev should never utilize Sensitive data. Ideally, Synthetic data should be used in Dev as it

reduces unnecessary risk. As long as the Synthetic data is relatively representative of Actual, data

engineering workloads should be able to be performed. Other workloads like machine learning and

artificial intelligence development often require pseudonymized data.

Quality Assurance

Quality Assurance (QA) can utilize Synthetic or Actual (anonymized) data. It is used to validate

development efforts and to ensure unit and functional tests pass.

 Page 10

 © 2024 Avanade Inc. All Rights Reserved

System Integration Test

System Integration Test (SIT) ensures that various solution parts communicate correctly. Depending on

the type and scale of the development being performed, it may not be required. Like QA, it may contain

Synthetic Actual (anonymized) data. SIT reduces the chance that system elements do not work correctly

when combined in production.

User Acceptance Test

User Acceptance Test (UAT) often contains Actual (anonymized) data to validate that the solution meets

the technical and functional requirements. It may be a distinct environment or an activity that is

performed in an environment.

Production

Production (Prod) uses Actual data captured from source systems. It is an environment with controls to

ensure changes are not made without proper processing being followed. Generally, the only time

software engineering changes are made directly in a Prod environment is when that environment is

experiencing a defect, often called a fire-fighting experience. Often, software engineering teams do not

have access to Prod environments.

Data Science and Artificial Intelligence Sandbox

Data Science (DS) and Artificial Intelligence (AI) bring unique challenges when dealing with sensitive

data. Generally, they require Actual data. One approach to this challenge is to create a workspace that is

not considered production but is used to access actual data. This workspace is where a DS or AI

practitioner will create their experiments, models, and so on. The output of some of these efforts may

enter MLOps and LLMOps workflows. Additionally, DS or AI users may need to create and persist tables

for their purpose, which often will contain sensitive data. To address these challenges, we present an

approach in Figure 5. The idea is that all users of this workspace would have a unique schema in a

Sandbox catalog. Their schema is private, with only administrators having additional access.

 Page 11

 © 2024 Avanade Inc. All Rights Reserved

Figure 5: DS, AI, and Ad Hoc Analysis Workspace

To address the challenges associated with Ai and ML, Databricks has published a whitepaper [9]. The

paper helps organizations assess and address risks associated with each of the steps in AI and ML

workstreams.

In this section, we have discussed places where individuals work. We discussed traditional data

engineering workload activities, AI, DS, and ad hoc analysis. In the next section, we discuss the

challenges associated with using synthetic data.

In this section, we presented a set of definitions that will be used throughout this paper. In the next

section, we propose a solution to the challenges associated with sensitive data.

Sensitive Data Handling Decision
We have discussed the various approaches to handling sensitive data. A fundamental question relates to

how and where sensitive data is stored. Figure 6 contains a representation of a high-level decision

making process.

 Page 12

 © 2024 Avanade Inc. All Rights Reserved

Figure 6: Sensitive data decisions

One choice is to store all sensitive fields in a different set of tables. The idea is to deconstruct a table

containing sensitive data into table two or more tables. One of the tables would contain non-sensitive

data and a key to join with the sensitive-data-containing tables. The benefit of this approach is that the

sensitive data can be physically stored in a different location. If that approach is not desired, the next

key decision is to preserve the original values. If preservation of those sensitive values is required, then a

form of pseudonymization is required (such as hashing, tokenization, etc.). The final decision presented

is if we want to store the sensitive values in such a way that the Unity Catalog security model is

enforced, regardless of if Databricks is used to access the data. This is relevant when interacting with

other data platforms or applications. It is not a best practice to enable access directly to the physical

files.

Solution
There are many possible solutions to the problem we have outlined. We will present two variations of a

solution. The variation accommodates the situation where shore development is being done in a distinct

and segregated environment. We start this discussion by considering the pillars of the solution. Without

these technologies, these solutions would not be possible. Then, we discuss the alternatives.

Pillars of the Solution
This solution relies on Databricks Unity Catalog, Azure’s Entra Id (formerly Azure Active Directory), and

Azure DevOps repositories. We will discuss the contributions of each element to our solution and

provide details on the features and functions being utilized.

 Page 13

 © 2024 Avanade Inc. All Rights Reserved

Databricks Unity Catalog
What appears to be a minor change sometimes is revolutionary. The adoption of Unity Catalog is one of

those changes. While introducing a catalog level to Databrick’s organizational structure seems like a

minor change, Unity Catalog offers considerably more benefits to organizations. Not only does it provide

better organizational capabilities, but it can also be leveraged to enable previously impossible things.

Groups

It has been consistently shown that using a group-based access control mechanism is a good way to

manage access and permissions [10, 11]. Using System for Cross-domain Identity Management (SCIM),

users and groups for Entra Id (Azure Active Directory) can be used to secure data assets.

Tags

Unity Catalog supports applying tags to catalogs, schemas, tables, volumes, views, columns, and

registered models [12]. Following a familiar pattern, tags have a key and value. The key can be up to 255

characters, while the value can be 1000 characters. A taggable item can have up to 20 tags associated

with it. We will discuss tags in greater detail in the section on Fine Grained Permissions via Tags.

Three Level Organization

Databricks’ Unity Catalog brings three levels of organization. This replaces the Hive Metastore’s two-

level system. The addition of the catalog level enables more ways to organize data. There are multiple

elements to organize, as shown in Figure 7. We present an approach to organizing data assets, but we

concede there are multiple strategies, with the best approach differing by situation.

One key element to use during organization is the source of the data. This is a high-level value item and

should be used to identify synthetic data instead of Actual data. There are alternatives to including this

classification in the organization, such as using Unity Catalog Tags. Still, given the impact of incorrectly

denoting data, we include it in the organizational approach. The values for this are Actual or Synthetic.

There are additional variations, such as Actual data that has been pseudorandomized before storage.

Previously, we discussed software engineering environments, such as production and development. As

these environments might have purpose-built data, we include the designation in the organization.

Other workloads, such as Data Science exploration or Machine Learning experiments, may have their

environment designation.

The designation of the Medallion zone (Bronze/Silver/Gold) is important as it tells us what has been

done to data for it to be in that zone. For example, we know that Silver data has had duplicates removed

and business rules applied and can be used for business purposes without worry.

The source system is an important designation before data is in the Gold zone. It tells us about the high-

level original system from which the data came. Once we begin performing Silver-to-Silver and Silver-to-

Gold transformations, we often have data from multiple systems, requiring us to utilize a different

naming convention.

The most specific information we have is the name of the digital asset. Often, this is a Table name or a

detailed name related to the origin of the data. For example, we often have Accounts and Orders tables.

 Page 14

 © 2024 Avanade Inc. All Rights Reserved

Knowing the source Table name is important when dealing with Bronze and Silver items, as we often use

them to validate ingestion and refinement. When we move to Silver-to-silver-produced data items

(intermediate transformations), the name is more important as a way to reduce the chances of

duplicate tables being produced. When dealing with Gold items, the name should relate to the business

purpose for which they were constructed.

Figure 7: Elements used during data asset organization

We have discussed the various elements that need to be part of an organizational approach, and now

we will present one way.

 Page 15

 © 2024 Avanade Inc. All Rights Reserved

Organization Approaches

There are multiple ways to utilize a three-level namespace. Multiple chapters, if not books have been

written on the topic. What we present here should serve as a starting point for your organization’s

journey, not something to be viewed as the only solution. We present a simple approach in Figure 8.

Figure 8: Simple Ingestion-based Organizational Mapping

We combine together the elements that make up Catalog, Schema, and Table using an underscore, as

shown in Figure 9. Then, we can combine using the traditional format, `Catalog`.`Schema`.`Table`. Note

that this approach is appropriate when handling Bronze data and Silver data derived directly from

Bronze data (not intermediate silver to silver transformations).

Figure 9: Example of using mapping

Once data has been cleansed and de-duplicated, the next step of processing often involves using

intermediate tables. These tables are often populated using Silver to Silver transformations. For

intermediate Silver and Gold data we recommend a slightly different organizational approach, as

presented in Figure 10.

Figure 10: Organization based on Data Products

 Page 16

 © 2024 Avanade Inc. All Rights Reserved

In this case, we replace Source and Sub Source elements with Domain and Sub Area. Examples of

Domain include intermediate or data product. For example, we may want to group together

intermediate tables related to the customer entity, as shown in Figure 11.

Figure 11: Organization based on data product creation

Revisiting the Data Science and Artificial Intelligence Sandbox discussed earlier, we can organize cross-

organizational groups in a similar fashion, as shown in Figure 12.

Figure 12: Cross-organization groups

While there are many opinions on how things should be organized, it is important that your organization

establishes a standard that is strictly adhered to. While there are other means to find the purview and

lineage of data, it is best that information is transparently and consistently communicated.

System and Environment Organization

It is important to understand that while we include the environment in the catalog name, it does not

mean that only production systems/workspaces can access that data. The general approach should be

that the owning workspace should create and maintain the data while other environments can read the

data. For example, it is not uncommon for a data engineer in a development workspace to need to

validate a value in a production catalog as part of a defect investigation.

 Page 17

 © 2024 Avanade Inc. All Rights Reserved

Permission via Grants on Catalogs, Schemas, and Tables

The permissions model in Unity Catalog relies on groups and users being granted access. These rules can

be used to create complex access control patterns. An important step in this process is to plan your

organization’s data isolation model [13]. The basic idea is to ensure that users only access data via a role

grant. Ideally, these systems should have a form of automated request and approval via a workflow-

based system. For example, a user who needs access to a particular table should create a request routed

to that item’s data steward for approval. This process should also ensure that there is a time period

associated with the access. Typically, grants should be based on roles that users are performing and

should be adjusted when a user takes on a new role or leaves the organization. Access control at a table

level is adequate for many situations; however, there are times when a finer-grained approach is

required. For that, we will discuss a simplified attribute-based access control solution in the next

section.

Fine Grained Permissions via Tags

While Databricks works to complete an attribute-based access control (ABAC) solution, we can use Unity

Catalog’s Tags to lay the groundwork for the eventual solution. The approach is to apply tags to columns

that contain sensitive data. For now, we treat PHI and PII as generic sensitive items. The tag’s value is

the name of the group the current user must be in to see the sensitive values. Keep in mind that tagged

items are determined using INFORMATION_SCHEMA tables. Tags can be combined with Column masks

using a code generation and programmatic application approach. The content presented here should be

viewed as a starting point to implement your solution.

Columns containing Sensitive (PII, PHI, etc.) have the following tags:

● s_groupname – the name of the AD Group that the current member must be in to see the

column

● If a tag exists on CATALOG or SCHEMA with the name “environment”, it is prefixed to

s_groupname

● s_filter – if user is not part of expanded s_groupname, then if NULL, column filter returns

null instead of value; otherwise, the contents of s_filter are used (ex: ***-**-****)

● Once Tags are applied or changed, code is executed that processes all column mask operations

Pseudocode

● Determine if the environment is set (check Catalog and Schema)

● For each table in catalog & schema of interest that has column tags

o Check if a Mask already exists in Information_Schema.column_masks for the table

and column

▪ If so, remove it and remove the associated SQL UDF Function

o Create an SQL UDF function –

▪ based on environment, catalog, schema, table, and column that checks for

membership of the user in the group named by (environment +

s_groupname’s value)

▪ If the user is not in the group

● return NULL if s_filter is empty, not present, or contains ”NULL”.

 Page 18

 © 2024 Avanade Inc. All Rights Reserved

● Otherwise, convert the value of s_filter to the data type of the

column and return it.

o Apply the SQL UDF Function as a Column Filter

o Optionally, create a view that excludes the columns that are tagged with s_groupname

and the tags contain values.

Microsoft Entra Id (Azure Active Directory)
Microsoft Entra Id, formerly known as Azure Active Directory, is a significant part of the solution

discussed here. It provides identity and access management for Azure Databricks’ solutions. While Entra

ID provides many features and functions, we are primarily concerned with its user and group

management capabilities.

As discussed earlier, users should never be granted access to data assets directly. Groups should be

nested to reduce the number of grants required. Organize groups to provide granular controls, while

minimizing group management. This will require a detailed design and take considerable effort to reach

consensus within an organization.

Often, the group organization follows the organization’s functional organization. There are challenges

with this approach, such as the effort required to adopt new organizational structures when a

reorganization occurs.

Azure DevOps Repositories
One of the key elements of modern software engineering is the utilization of automation during

development and code promotion. We recommend automating your continuous integration and

continuous delivery (CI/CD) processes [14]. Ensure metadata, security related code, and code related to

fine grained security control are developed and promoted following SDLC principles.

Databricks Git folders, an updated way of interacting with git repositories, allows for flexible code

organization [15]. Previously, links to repositories were required to be placed in a certain location within

the workspace. The updated feature simplifies code management and provides flexibility or code

organization.

Solution Alternatives
There are multiple ways to organize software development environments, unity catalog configurations,

and group memberships to address the challenges presented by managing sensitive data.

Flow of Actual Data
The fundamental question to answer is: “Should data of any kind flow from an Actual environment to a

development environment?” If it is acceptable, then the next step is to select the appropriate sensitive

data protection mechanism. If not, then use Synthetic in Development, never flowing data from Actual

environments to Synthetic, and vice versa.

Production and Pre-Production Environment
Starting with two workspaces (Production and Pre-Production – sometimes called Stage), we can discuss

the elements of the environments. Data processing related workspaces and environments will contain

 Page 19

 © 2024 Avanade Inc. All Rights Reserved

mechanisms to ingest and refine data using the Medallion architecture [16]. We recommend using a

metadata-driven ingestion and refinement asset, similar to Avanade’s Metadata Driven Management

Framework (MDMF). Such assets store information required to perform an operation in a data store,

rather than using hand-coded notebooks. You can see the metastore, metadata-driven notebook, and

the CI/CD publish process in Figure 13.

Figure 13: Production and Pre-Production

We also recommend levering Lakehouse Monitoring, in particular the PII Detection capabilities are

relevant to this discussion. You may consider using multiple tools, such as Dynamo.AI. This will help

ensure that sensitive data did not escape tagging or segregation.

Production environments combine production catalogs with production Databricks workspaces.

Production environments utilize production sources. Many organizations lack representative data

 Page 20

 © 2024 Avanade Inc. All Rights Reserved

sources for all environments, as such, we are certain that production sources will exist while other

environments (such as dev) may not have source systems. Instead, data is often copied from a

production catalog to a non-production catalog, often applying sampling and sensitive data handling.

When making that copy, we need to decide if we will copy from the Bronze tables or go to the source

systems directly. Copying from the source systems is likely better, however, it may introduce additional

load on those systems. The reason a development environment exists is to provide a location to perform

data engineering development (such as populating metadata stores), and then promote that work

product to an environment to test it for accuracy and to test the promotion and deployment process.

Pure Synthetic Data in Lower-Level Environments
The proposed solution has multiple environments. We name those environments based on the types of

data they typically process. The Synthetic environment contains generated data while the Actual

Environment contains Actual data. The Actual data may include sensitive information. All environments

are linked via Unity Catalog, sharing the same Unity Catalog metastore.

The data in the Synthetic environment is created based on the table definitions from the Actual

environment. Ideally, the synthetic data generation approach takes into account information about the

data it is emulating. For example, if the data contains time-series data, the generated Synthetic data

should follow similar patterns as the Actual data. Alternatively, systems such as Tonic.AI can be used to

create Synthetic data that is similar to Actual data.

A key concept with Synthetic data is that it should not be used in an Actual environment. Ideally,

Synthetic and Actual data never leave their respective environments.

Unity Catalog controls access in all instances based on environments, user role, and permissions. Lastly,

all environments leverage the same DevOps Repositories, enabling infrastructure as code, access related

software development, and software and data engineering code to be promoted through the software

development lifecycle. As you can see in Figure 14, the architecture is similar to the Actual environments

except for having a Data Generator.

 Page 21

 © 2024 Avanade Inc. All Rights Reserved

Figure 14: Synthetic Data Environments

We have the building blocks for our proposed solution. Next, we will discuss how they can be combined.

Architectural Variations

There are two variations of this Synthetic Lower Environment and Actual Higher Environment approach.

The core issue is that sometimes the Synthetic environment is physically located in a different Azure

region than the Actual environment, as shown in Figure 15. For example, it is not uncommon for

offshore developers performing data engineering activities to access environments containing Synthetic

data. Once those activities have passed testing, they are deployed to the Actual environment.

Alternatively, you may have all resources within the same Azure Region.

 Page 22

 © 2024 Avanade Inc. All Rights Reserved

Figure 15: Different Azure Regions

A slightly different approach occurs if we combine the traditional three environment Actual

environment with a Synthetic environment with two areas, as Shown in Figure 16. This can occur when

adding a Synthetic environment to a legacy three stage environment. Utilizing CI/CD and other forms of

automation can reduce the time and effort to promote across the various environments.

 Page 23

 © 2024 Avanade Inc. All Rights Reserved

Figure 16: Two Synthetic and Three Actual Environments

In this section we have introduced an approach for combining Synthetic data with Actual in multiple

regions. In the next section, we will discuss the approach and evaluate the recommendation in detail.

Recommendation
The recommendation is to use Synthetic data in lower environments. Avoid commingling Actual and

Synthetic data unless it is part of a sensitive data protection mechanism or you are creating additional

data during AI-related activities.

For data engineering activities, only use Synthetic data in Dev. This will minimize exposure. Additionally,

synthetic data created with the intent of validation can simplify unit testing. Focusing on the creation of

synthetic data so that it causes the data engineering flows to test the edge cases is an additional

potential benefit of synthetic data. Additionally, you should use a separate workspace for development

activities. Ideally, that workspace would share the same Entra ID, DevOps Repository, and Unity Catalog

as your production workspace. All workspaces should be linked to the same DevOps Repository. This will

ensure consistency during development, testing, and deployment to production.

Recommended Solution Benefits
The obvious benefit of this approach is that Actual data will not be used during development. While

there may be data-specific issues that only manifest with Actual data, the likelihood of those instances

only appearing in production can be minimized by creating Synthetic data that emulates the problematic

data. This solution enables onboarding resources in geographic regions that might be problematic

otherwise.

 Page 24

 © 2024 Avanade Inc. All Rights Reserved

Unity Catalog Contributions
Unity Catalog contributes significantly to this solution. In particular, Unity Catalog’s course and fine-

grained access controls underpin the solution. Unity Catalog’ centralized governance model ensures

consistent and holistic security.

Another significant contribution of Unity Catalog is the ability to access data from alternative

environments, such as a Data Scientist’s sandbox. The model enables us to move past how our data is

constructed and focus on realizing business value.

In this section we discussed the recommended solution. Next, we revisit synthetic data and discuss the

challenges associated with constructing and using it.

Challenges with Synthetic Data
There are several challenges associated with the construction and utilization of synthetic data. When

constructing relational data, the synthetic data must adhere to the constraints associated with the data

model. For example, if a column has a unique constraint, we must ensure that duplicate data is not

created. Often, tables have a foreign key relationship. In this case, we must populate the tables in the

appropriate order and ensure that the keys match. These challenges are easily addressed but should be

considered when constructing or selecting a synthetic data generation system.

Workloads that attempt to detect patterns in data are challenging with synthetic data. For example, if

we attempt to predict a value based on several features, pseudo-randomly generated data will likely

result in no convergence or unreliable outcomes. Likewise, generalization is not very likely if we train a

model using synthetic data.

However, if we use an approach where training occurs in each environment after promotion, synthetic

data is an appropriate choice. In that case, we perform software engineering activities and then perform

the training using Actual data in a higher environment.

As previously mentioned, creating synthetic data can be challenging. In the next section, we discuss a

framework for creating synthetic data.

Synthetic Data Generation Libraries
The generation of synthetic data can be a challenging endeavor. This section discusses the tools

available to create synthetic data, both open-source and paid. We provide a brief discussion of each.

There are multiple open-source projects associated with generating synthetic data. In this section, we

discuss a few. We start with a commonly used library, Faker.

Faker
The Python Faker library was first released on December 23, 2010. It has become the go-to for creating

synthetic or fake data; you can find the documentation at https://faker.readthedocs.io/en/master/.

Faker uses a provider architecture, enabling robust extensibility. It integrates with Factory Boy

(https://factoryboy.readthedocs.io/), rapidly creating synthetic data within a domain. For example, if a

column that should contain email addresses is identified, there is an out-of-the-box capability to

generate them.

https://faker.readthedocs.io/en/master/

 Page 25

 © 2024 Avanade Inc. All Rights Reserved

Databricks Labs Data Generator
Given the topic and audience of this paper, it would be remiss not to discuss the Databricks Labs Data

Generator (DBLDataGen), found at https://github.com/databrickslabs/dbldatagen. DBLDataGen is a

Python library that enables synthetic data generation at scale using Spark. One experimental capability

of DBLDataGen is that it can generate data based on a schema or data. Additionally, there is a

documented process for populating multiple tables with relationships.

YData Synthetic
Pandas Profiling is a well-known way of evaluating the nature of datasets. It has recently been

rebranded YData-profiling. YData also has a synthetic data offering, available from

https://github.com/ydataai/ydata-synthetic. YData-synthetic supports various generative models,

including Generative Adversarial Network (GAN) approaches.

This section discussed some of the available open-source synthetic data generators. In the next section,

we discuss using one of these alternatives as part of a holistic approach to generate data.

Approach to Generation of Synthetic Data
We now have the building blocks for a synthetic data solution. This section discusses the high-level

approach to synthetic data generation. Then, we share a detailed pseudocode to determine the order of

processing.

High-Level Approach
Documenting simple steps is important to ensure they are not overlooked. In this section, we outline the

high-level steps needed to generate synthetic data.

Based upon a supplied source system

1. Extract the schema for source system (SQL DDL) and relationships (INFORMATION_SCHEMA)

and determine the order of processing based on relationships.

2. Profile source data system against production data, save profile data for generation.

3. Manually specify (if not able to determine programmatically)

• Truncate and regenerate or Incremental Load

• Ongoing arrival data rate or the truncate and reload frequency

• Data quality/validation rules for each table

4. Ensure the schema exists in the synthetic development source system

5. Generate data into Dev source systems using profile data.

a. For foreign key relationships, for each record, randomly assign a related record of

leverage that capability in your selected data generation tool or library

6. Validate generation

On a schedule, for specified tables

1. If set to truncate, delete all records

2. Create data for specified tables (incremental if not truncating, full load otherwise)

3. Validate generation, including primary and foreign key relationships, if present in the metadata.

https://github.com/databrickslabs/dbldatagen
https://github.com/ydataai/ydata-synthetic

 Page 26

 © 2024 Avanade Inc. All Rights Reserved

Figure 17 contains a visual representation of this approach.

Figure 17: Data Generation Process

Often, we want to generate data in an ongoing fashion. This allows us to simulate patterns that occur in

the Actual data. This might be as advanced as time series data or as simple as daily refreshes. Figure 18

holds a visual representation of the ongoing generation process.

 Page 27

 © 2024 Avanade Inc. All Rights Reserved

Detailed Pseudocode for Order of Processing
Provided here is a high-level pseudocode to determine the processing order for data generation. If you

are a non-technical person you can safely skip this section.

It considers foreign key relationships, traversing the graph dependency graph to ensure referenced

tables are populated before referring tables. Note that this approach does not handle self-referencing

relationships or longer cycles within the dependency graph. It is a depth-first search with minor tweaks.

• For each database

• Use the INFORMATION_SCHEMA metadata to construct a graph containing the

database’s tables (nodes) and relationships (edges).

• Add a property to all nodes to indicate the processing order. Initialize it to a negative

one.

• Process the graph, starting with nodes that are referenced by other nodes. Use the

vertices outDegree to determine the processing order, starting with the highest degree.

Start with a processing order of one. For each node:

• If the node has been assigned a processing order, return that value

• For each node that the node references

• Recurse, supply the node and increase the processing order

 Page 28

 © 2024 Avanade Inc. All Rights Reserved

• Using the max returned processing order, set the processing order for the

current node

• For each table that has not been processed (no references)

• Set the processing order to zero

After having assigned all tables a processing order, use that order when generating data.

Case Study
This case study is forward-looking and references a fictitious organization. It discusses a planned use of

the approach presented here.

A large not-for-profit medical organization is creating an intelligent data platform using Databricks. The

organization uses Epic to track medical information, Workday for human resource data, and various

other systems. The organization wants to leverage offshore resources but is unwilling to onboard them

into its systems.

Instead, Synthetic data is used in a separate Databricks workspace. Because of networking and other

reasons, the organization’s Unity Catalog metastore is not accessible. A new Azure subscription,

including Azure Data Lake Gen2, Databricks, and required supporting technologies, has been

provisioned.

Most data ingested by the organization is processed through Azure SQL Database tables, as this

standardizes ingestion. The Actual schema was applied to Azure SQL Database servers and tables to

emulate the Actual data source systems. Those tables were populated using an approach similar to that

outlined in the previous section.

Avanade provided MetaData Management Framework (MDMF) as an accelerator to reduce the time to

define ingestion. MDMF leverages Azure Data Factory and Azure Databricks to reduce the time to value

for data. MDMF leverages YAML Ain’t Markup Language™ (YAML) files to encode the desired module

and operations desired. For example, a YAML file may contain a list of files to ingest and, in turn,

standardize to the Bronze zone. The YAML files are versioned using Azure DevOps. When a pull request

is approved, the YAML files are used to update the control metastore for MDMF, enabling the

operations to be available.

The offshore resources could create and test YAML files for each table for a given data source, resulting

in at least 50% improvement over hand coding. Programmatic generation of the YAML files from source

metadata results in an even greater velocity of ingestion and refinement. Additionally, the promotion of

metadata is simplified. Once the offshore test team approves a set of YAML files, they are promoted to

the Actual environment, where they are deployed in the development environment. From that point,

traditional testing and acceptance processes are followed.

Conclusion
Sensitive data is inevitable in any field that interacts with people. Organizations must have a

documented plan for addressing sensitive data. In this paper, we have discussed the challenges sensitive

data brings. We presented definitions with the hope of removing ambiguity while discussing this

 Page 29

 © 2024 Avanade Inc. All Rights Reserved

challenging topic. We also presented a solution for dealing with sensitive data that relies on creating

synthetic data. We discussed the benefits of the proposed solution. Then, we discussed several open-

source libraries that generate synthetic data. A high-level approach was presented along with a detailed

pseudocode to determine the order to process tables. Lastly, we presented a case study related to

synthetic data.

This paper only scratches the surface of how Databricks, and Unity Catalog in particular, can address

sensitive data challenges. When addressing a challenge, engaging with a firm with expertise in that

domain is often necessary. Sensitive data is no different. You should partner with a firm with extensive

experience and resources trained in Unity Catalog and other topics presented here. Given the high cost

of failure, it is essential that sensitive data processing is a priority in your organization.

 Page 30

 © 2024 Avanade Inc. All Rights Reserved

References
1. Bauer, A., et al., Comprehensive exploration of synthetic data generation: A survey. arXiv

preprint arXiv:2401.02524, 2024.
2. Databricks. Databricks Clean Rooms: Privacy-safe collaboration for data, analytics and AI. 2024;

Available from: https://www.databricks.com/product/clean-room.
3. U.S. Department of Labor. Guidance on the Protection of Personal Identifiable Information. n.d.;

Available from: https://www.dol.gov/general/ppii.
4. Moore, W. and S. Frye, Review of HIPAA, part 1: history, protected health information, and

privacy and security rules. Journal of nuclear medicine technology, 2019. 47(4): p. 269-272.
5. Majeed, A. and S. Lee, Anonymization techniques for privacy preserving data publishing: A

comprehensive survey. IEEE access, 2020. 9: p. 8512-8545.
6. Databricks. Databricks Labs Data Generator (dbldatagen). 2024; Available from:

https://github.com/databrickslabs/dbldatagen.
7. Information Commisioners Office. What is personal data? n.d.; Available from:

https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/personal-information-
what-is-it/what-is-personal-data/what-is-personal-data/.

8. Vazão, A.P., et al., Implementing and evaluating a GDPR-compliant open-source SIEM solution.
Journal of Information Security and Applications, 2023. 75: p. 103509.

9. Databricks. Introducing the Databricks AI Security Framework (DASF): An actionable framework
to manage AI security. 2024; Available from: https://www.databricks.com/blog/introducing-
databricks-ai-security-framework-dasf.

10. Databricks. Identity best practices. 2024; Available from:
https://docs.databricks.com/en/admin/users-groups/best-practices.html.

11. Francis, D., Mastering Active Directory: Design, Deploy, and Protect Active Directory Domain
Services for Windows Server 2022. 2021: Packt Publishing Ltd.

12. Microsoft. Apply tags. 2024; Available from: https://learn.microsoft.com/en-
us/azure/databricks/data-governance/unity-catalog/tags.

13. Databricks. Unity Catalog best practices. 2024; Available from:
https://docs.databricks.com/en/data-governance/unity-catalog/best-practices.html.

14. Microsoft. Best practices for operational excellence. 2024; Available from:
https://learn.microsoft.com/en-us/azure/databricks/lakehouse-architecture/operational-
excellence/best-practices.

15. Microsoft. Git Integration with Databricks Git Folders. 2024; Available from:
https://learn.microsoft.com/en-us/azure/databricks/repos/.

16. Databricks. Medallion Architecture. n.d.; Available from:
https://www.databricks.com/glossary/medallion-architecture.

https://www.databricks.com/product/clean-room
https://www.dol.gov/general/ppii
https://github.com/databrickslabs/dbldatagen
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/personal-information-what-is-it/what-is-personal-data/what-is-personal-data/
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/personal-information-what-is-it/what-is-personal-data/what-is-personal-data/
https://www.databricks.com/blog/introducing-databricks-ai-security-framework-dasf
https://www.databricks.com/blog/introducing-databricks-ai-security-framework-dasf
https://docs.databricks.com/en/admin/users-groups/best-practices.html
https://learn.microsoft.com/en-us/azure/databricks/data-governance/unity-catalog/tags
https://learn.microsoft.com/en-us/azure/databricks/data-governance/unity-catalog/tags
https://docs.databricks.com/en/data-governance/unity-catalog/best-practices.html
https://learn.microsoft.com/en-us/azure/databricks/lakehouse-architecture/operational-excellence/best-practices
https://learn.microsoft.com/en-us/azure/databricks/lakehouse-architecture/operational-excellence/best-practices
https://learn.microsoft.com/en-us/azure/databricks/repos/
https://www.databricks.com/glossary/medallion-architecture

	Overview of the Document
	Challenges with Sensitive Data
	Overview of the Problem
	Sensitive Data
	Offshore Resources
	Common Challenges
	Common Solutions

	Definitions
	Actual Data
	Sensitive Data
	Sensitive Data Protection Mechanism
	Synthetic
	Pseudonymization
	Hashing
	Tokenization
	Masking

	Anonymized
	Software Engineering Environments
	Development
	Quality Assurance
	System Integration Test
	User Acceptance Test
	Production
	Data Science and Artificial Intelligence Sandbox

	Sensitive Data Handling Decision

	Solution
	Pillars of the Solution
	Databricks Unity Catalog
	Groups
	Tags
	Three Level Organization
	Organization Approaches
	System and Environment Organization
	Permission via Grants on Catalogs, Schemas, and Tables
	Fine Grained Permissions via Tags

	Microsoft Entra Id (Azure Active Directory)
	Azure DevOps Repositories

	Solution Alternatives
	Flow of Actual Data
	Production and Pre-Production Environment
	Pure Synthetic Data in Lower-Level Environments
	Architectural Variations

	Recommendation
	Recommended Solution Benefits
	Unity Catalog Contributions

	Challenges with Synthetic Data
	Synthetic Data Generation Libraries
	Faker
	Databricks Labs Data Generator
	YData Synthetic

	Approach to Generation of Synthetic Data
	High-Level Approach
	Detailed Pseudocode for Order of Processing

	Case Study
	Conclusion
	References

