

Report on Detailed Site Investigation (Contamination)

Surface & Civil Alignment Works (SCAW) Package for Sydney Metro - Western Sydney Airport (SMWSA) Area of Environmental Concern (AEC) 35, 43A Luddenham Road, Orchard Hills

Prepared for CPB Contractors Pty Limited & United Infrastructure Pty Limited Joint Venture (CPBUI JV)

Project 204814.01 March 2023

Document History

Document details

Project No.	204814.01	Document No.	DSI.004.Rev1	
Document title	ent title Report on Detailed Site Investigation (Contamination)			
	Surface & Civil Ali	gnment Works (SCAW) Package for Sydney Metro -	
	Western Sydney A	Airport (SMWSA)		
0'(Area of Environme	ental Concern (AEC) 3	5, 43A Luddenham Road,	
Site address	Orchard Hills			
Depart property of for	CPB Contractors I	Pty Limited & United In	frastructure Pty Limited	
Report prepared for	Joint Venture (CP	BUI JV)	-	
File name	204814.01.DSI.004.Rev1 AEC35			

Document status and review

Status	Prepared by	Reviewed by	Date issued
Draft A	_	_	18 October 2022
Draft B	-	_	31 October 2022
Revision 0	_	_	12 December 2022
Revision 1	_	_	14 March 2023

Distribution of copies

Status	Electronic	Paper	Issued to
Draft A	1	-	
Draft B	1	-	
Revision 0	1	-	
Revision 1	1	-	

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature		Date
Author	CONTAM	14 March 2023
Reviewer	STORY STORY	14 March 2023

Executive Summary

Douglas Partners Pty Ltd (DP) has been engaged by CPB Contractors Pty Limited & United Infrastructure Pty Limited Joint Venture (CPBUI JV) to complete this Detailed Site Investigation (Contamination) (DSI) for the Sydney Metro - Western Sydney Airport (SMWSA) Surface and Civil Alignment Works (SCAW) package at Area of Environmental Concern (AEC) 35.

Technical Paper 8: Contamination, prepared as part of Sydney Metro - Western Sydney Airport, Environmental Impact Statement (EIS), documents areas of environmental concern identified for the Sydney Metro - Western Sydney Airport project. The objective of the DSI is to assess the suitability of AEC 35 which will be disturbed for SCAW activities, and to determine whether further investigation and / or management is required. The site is shown on Drawing AEC35-1, Appendix A. The potential source of contamination for AEC 35 was identified in the EIS to be: Potential farm waste burial area.

The scope of work included soil sampling from 19 locations using an excavator; soil sampling from one location using a hand auger, soil sampling of a stockpile, installation and development of three groundwater monitoring wells, sampling from four groundwater monitoring wells, and laboratory analysis of soil and groundwater samples for potential contaminants and parameters.

At test pits and the hand auger borehole for the current investigation, fill was encountered to depths ranging from 0.1 m to 0.5 m. Fill materials comprised silty clay or gravelly silty clay, sandy clay and clayey sand. A trace of glass was noted in the fill at two locations. Fill was underlain by clay and / or silty clay to test pit termination depths of between 0.9 m and 2.5 m.

A stockpile (AEC35SP) was observed to comprise approximately 100 m³ of pale brown, pale grey and red-orange clay with rootlets and wood. Piles of waste materials were observed on the ground surface at two locations as shown on Drawing AEC35-1, Appendix A. Waste materials included gas cylinders, metals, wood, plastics and glass bottles.

For the groundwater monitoring well boreholes for the current investigation, fill was encountered to depths ranging from 0.15 m to 0.6 m. Fill materials comprised silty sand. Fill was underlain by silty clay to depths of up to 5.09 m; and silty clay was underlain by siltstone from a depth of 4.5 m to a depth of 7.5 m at AEC35BH01. Measured groundwater depths were between 0.5 m and 2.17 m below ground level.

For soil samples for the current investigation, concentrations of chemicals for all analysed soil samples were below the Site Assessment Criteria (SAC); and asbestos was not detected in any analysed sample. For previous investigations, concentrations of contaminants are below the SAC except for TRH >C₁₆-C₃₄ and benzo(a)pyrene in the sample from SMGW-BH-B106, depth 0.2 m (although the recorded benzo(a)pyrene concentration is significantly less than high reliability ecological guidelines from CRC CARE, *Risk-based Management and Remediation Guidance for Benzo(a)pyrene. Technical Report no.* 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, 2017). Fill containing waste materials (including metal, a jerry can, glass, white fibres, hose, fishing wire, green substance and rubbish waste) was recorded to a depth of 3.95 m at this location.

For groundwater samples for the current investigation, TRH >C₁₀-C₁₆, TRH >C₁₆-C₃₄, and TRH >C₃₄-C₄₀ were identified in the sample from SMGW-BH-B106. It is considered that the likely source of TRH in groundwater at SMGW-BH-B106 is from the fill containing waste materials at this location.

Concentrations of ammonia were recorded above the recreational aesthetic guideline at groundwater monitoring wells SMGW-BH-B106 and AEC35BH01. It is noted that it is possible (but not known) that the fill containing waste materials at SMGW-BH-B106 is contributing to the ammonia concentrations recorded at these wells.

With respect to fill, concentrations of chemical contaminants were below the CT1 criteria for general solid waste except for:

- TRH C₁₀-C₃₆ in the sample from SMGW-BH-B106, depth 0.2 m. The concentration is below the CT2 criterion for restricted solid waste; and
- Benzo(a)pyrene in the sample from SMGW-BH-B106, depth 0.2 m. The concentration is below the SCC2 criterion for general solid waste, however, TCLP (toxicity characteristic leaching procedure) was apparently not undertaken.

For analysed fill samples, results for metals, TRH, BTEX, PAH and pH were below the associated criteria for excavated natural material (ENM) except for benzo(a)pyrene and TRH C_{10} - C_{36} in the sample from SMGW-BH-B106, depth 0.2 m.

With respect to natural soil samples, concentrations of chemical contaminants were within what are considered to be background levels and are considered to be consistent with the definition of virgin excavated natural material (VENM) except for TRH C₁₀-C₄₀ in the sample from SMGW-BH-B106, depth 4-4.45 m.

For the stockpile (AEC35SP), concentrations of chemical contaminants were below the CT1 criteria for general solid waste and concentrations of metals, TRH, BTEX, PAH were below the associated criteria for ENM.

The position of SMGW-BH-B106 is on the proposed rail alignment where excavation is required (to an approximate depth of 2 m). It is understood that, as the fill at SMGW-BH-B106 is uncontrolled fill, it will need to be excavated (i.e., it cannot remain *in situ*) as it is not geotechnically suitable for the proposed development. Given this, it is recommended that:

- Once the material is excavated and stockpiled (and sorted, if required), an environmental consultant
 is to assess the material by inspection, sampling and analysis. A geotechnical engineer should
 assess and confirm that the uncontrolled fill has been removed (and provide written documentation
 confirming the removal);
- Following this assessment, material that is considered as not suitable for reuse for SCAW is to be given a waste classification for off-site disposal by the environmental consultant;
- Materials designated for off-site disposal will need to be disposed at a licensed landfill;
- Any liquid / water emanating from the fill (either at its original location or from the stockpile) is to be collected and assessed for disposal purposes; and
- Records of the excavation and waste tracking (of solid and liquid waste) are to be documented.

The plan for the above-listed recommendations, including validation, should be documented in a remediation action plan.

An unexpected finds protocol is to be in place for suspected contamination finds encountered during the excavation works.

Waste materials (such as gas cylinders, metals, wood and plastic) observed on the ground surface should be appropriately disposed to a licenced landfill.

It is considered that the site can be made suitable for the proposed development subject to the above recommendations.

Table of Contents

			Page
1.	Intro	ductionduction	1
2.	Site	Identification and Proposed Development	1
3.	Scop	oe of Work	2
4.	Site	Condition and Environment Information	3
5.	Prev	rious Investigation Data	4
6.		ential Contamination Sources and Preliminary Conceptual Site Model	
7.		lwork	
7.	7.1	Data Quality Objectives	
	7.2	In situ Soil Sampling	
	7.3	Stockpile Sampling	
	7.4	Groundwater Monitoring Well Installation and Development	
	7.5	Groundwater Well Sampling	11
8.	Labo	pratory Analysis	11
	8.1	Soil Samples from In situ Test Locations	11
	8.2	Soil Samples from Stockpile	12
	8.3	Groundwater Samples	12
9.	Site	Assessment Criteria	12
10.	Field	l Work Results	13
	10.1	Test Pits and Hand Auger Borehole	13
	10.2	Stockpile and Waste Materials	13
	10.3	Groundwater Well Boreholes	13
	10.4	Groundwater Sampling	14
11.	Disc	ussion of Laboratory Analytical Results	15
	11.1	Soil and Stockpile Samples	15
	11.2	Groundwater Samples	15
	11.3	•	
	11.4	Data Quality Assurance and Quality Control	18
12.	Cond	clusion	18
13	Limit	tations	19

Appendices

Appendix A: Drawing

Appendix B: Notes About this Report

Appendix C: Logs and Summary of Results from Previous Investigation

Appendix D: Data Quality Objectives

Appendix E: Laboratory Certificates and Chain of Custody

Appendix F: Site Assessment Criteria

Appendix G: Test Pit Logs and Borehole Logs

Appendix H: Field Sheets and Calibration Certificates

Appendix I: Summary of Results for Current Investigation

Appendix J: Data Quality Assurance and Quality Control

Appendix K: Site Photographs

Report on Detailed Site Investigation (Contamination)

Surface & Civil Alignment Works (SCAW) Package for Sydney Metro - Western Sydney Airport (SMWSA)

Area of Environmental Concern (AEC) 35, 43A Luddenham Road, Orchard Hills

1. Introduction

Douglas Partners Pty Ltd (DP) has been engaged by CPB Contractors Pty Limited & United Infrastructure Pty Limited Joint Venture (CPBUI JV) to complete this Detailed Site Investigation (Contamination) (DSI) for the Sydney Metro - Western Sydney Airport (SMWSA) Surface and Civil Alignment Works (SCAW) package at Area of Environmental Concern (AEC) 35.

Technical Paper 8: Contamination, prepared as part of Sydney Metro - Western Sydney Airport, Environmental Impact Statement (EIS), documents areas of environmental concern identified for the Sydney Metro - Western Sydney Airport project. The objective of the DSI is to assess the suitability of AEC 35 which will be disturbed for SCAW activities, and to determine whether further investigation and / or management is required. The site is shown on Drawing AEC35-1, Appendix A.

This report must be read in conjunction with all appendices including the notes provided in Appendix B.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013); and
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land, 2020 (NSW EPA, 2020).

It is understood that the site will be subject to a Site Audit by Melissa Porter, a NSW Environment Protection Authority (EPA) Site Auditor accredited under the *Contaminated Land Management Act 1997*.

2. Site Identification and Proposed Development

Table 1 provides a summary of information for site identification. The site covers two areas which are within the SCAW package, as shown on Drawing AEC35-1, Appendix A.

Table 1: Site Identification Information

Item	Details
Site Address (from SIX Maps)	43A Luddenham Road, Orchard Hills, NSW
Legal Description (from SIX Maps)	(Part of) Lot 42, Deposited Plan 738126
Approximate area of site (AEC 35)	Western area: 0.41 ha Eastern area: 0.33 ha Total area: 0.74 ha
Zone (from ePlanning Spatial Viewer)	RU2: Rural Landscape; and Not zoned along proposed rail line.
Local Government Area	Penrith City Council

The SCAW package relates to the proposed construction of approximately 10 km of rail alignment between Orchard Hills and the Western Sydney International (future) Airport consisting of a combination of viaducts and surface rail. Areas alongside the proposed rail alignment will be used by contractors or for staging and maintenance for the Metro.

Cardno, Human Health and Ecological Risk Assessment, Spoil Re-use Sydney Metro and Western Sydney Airport, 29 June 2021 (80021888 SMSWA HHERARev3-Issued.docx) (Cardno, 2021b) (HHERA) provides (simple) conceptual site models (CSMs) for different general future land uses for the overall SMWSA project. The two general future land uses associated with the SCAW component of the project are considered to be:

- The rail corridor which will include the rail line, embankments / noise barriers, a stabling yard and maintenance facility and Luddenham station; and
- Passive open space. These are areas immediately adjacent to the rail corridor that may be used for bike / commuter paths. It is presumed that there is an absence of buildings in areas of passive open space.

AEC 35 will be part of an area used as a stabling yard and rail line (i.e., rail corridor usage), although a small part of the site (on the western fringe) may be part of passive open space.

Development of the site will likely include stripping of topsoil across the entire site and cut for rail lines and stabling yard. Stripped and cut soil from the site will be subject to reuse elsewhere within the greater SCAW area. Soil to raise ground levels (if required) may be sourced from off-site.

3. Scope of Work

The scope of work for the DSI was generally based on DP, Sampling and Analysis Quality Plan (SAQP), Surface & Civil Alignment Works (SCAW) Package for Sydney Metro - Western Sydney Airport (SMWSA) Area of Environmental Concern (AEC) 35, 43A Luddenham Road, Orchard Hills, August 2022, (204814.01.SAQP.003.DftA). It is noted that the site for the DSI includes the entire AEC 35 area, however, the site for the purposes of preparing the SAQP covered the majority (but not all) of AEC 35.

In addition, a stockpile was encountered during field work. Therefore, the scope for the DSI was expanded to include an additional (*in situ*) soil sampling point and stockpile sampling.

The scope of work was as follows:

- Collection of soil samples from test pits at 19 locations using an excavator;
- Collection of soil samples at one location using a hand auger;
- Collection of soil samples from a stockpile using an excavator;
- Using a drilling rig, installation of groundwater monitoring wells at three locations;
- Development of each of the three groundwater monitoring wells;
- Sampling of each of the three installed groundwater monitoring wells and an existing groundwater monitoring well (SMGW-BH-B106);
- Analysis of selected soil samples for potential contaminants and soil parameters;
- Analysis of groundwater water samples for potential contaminants and water parameters; and
- Preparation of this DSI including an assessment of analytical and field results.

4. Site Condition and Environment Information

Table 2 provides a summary of information relating to the site condition and environment.

Table 2: Site Condition and Environment Information

Item	Details
Geology	Bringelly Shale: comprising shale, carbonaceous claystone, claystone, laminate, fine to medium-grained lithic sandstone, rare coal and tuff for the majority of the site. (Penrith 1:100 000 Geology Sheet)
Soil landscape	Blacktown soil landscape which comprises residual soils. (Penrith 1:100 000 Soils Landscape Sheet).
Topography	The eastern part of the site is at approximately 42 m relative to Australian Height Datum (AHD). The western part of the site is at approximately 40 m AHD. Slopes at and around the site are generally down to the north and west.
Salinity	The site is at an area of moderate salinity potential. (Department of Infrastructure Planning and Natural Resources, Salinity Potential in Western Sydney Map).
Acid sulfate soils	The site is not within an area or close to an area associated with a risk of acid sulfate soils (NSW Acid Sulfate Soil Risk map).
Surface water and surface water bodies	Farm dams are located close to the site, with the nearest one located approximately 10 m to the south of the western area. Blaxland Creek is located approximately 340 m to the northwest of the site.

Item	Details
	Rainfall at the site is expected to infiltrate permeable surfaces. Runoff at the eastern area may flow to the north or west including towards the adjacent dam. Runoff at the western area is expected to flow to the west and northwest, generally towards Blaxland Creek.
Groundwater flow direction and discharge	Based on topography, shallow groundwater (if any) is expected to flow to the northwest and potentially discharge into Blaxland Creek.
Registered groundwater bores	Registered groundwater bore GW110455 (WaterNSW) is located approximately 150 m to the southwest of the western part of the site. The bore was installed in 2009 to depth of 44.4 m at the Patons Lane Landfill for monitoring purposes. Clay to a depth of 4.8 m was underlain by shale.
Site land use	The site is used for pastural paddocks (EIS).
Surrounding land use	Surrounding land is used for pastural paddocks. Dams, a horse track and a shed are in the land surrounding land (EIS).
Site Features	The site forms part of pastural paddocks (EIS).
Information from historical aerial photographs	The land at and surrounding the site appears to have been pastoral land since 1955. There appeared to be potential farm tip waste burial areas (including at AEC 35) (EIS).
	There were no NSW EPA regulated sites (under the Contaminated Land Management Act 1997) located within a 1 km radius of the site (EIS).
	There were no sites notified to the NSW EPA (under the <i>Contaminated Land Management Act 1997</i>) within a 1 km radius of the site (EIS).
NSW EPA records	The Patons Lane Landfill, located at 129 Patons Lane, Orchard Hills, approximately 140 m to the southwest of the site, is licensed (EPL 20814 and EPL 21259) under the <i>Protection of the Operations Act 1997.</i> The Patons Lane Landfill was formerly licensed to Orchard Holdings (NSW) Pty Ltd under EPL 11706 for land based extractive activity until 2012. In 2007 Orchard Holdings (NSW) Pty Ltd was issued with a clean-up notice due to unlawfully receiving soil and demolition waste at the quarry (EIS).
	There were no NSW EPA PFAS investigation sites within a 2 km radius of the site (EIS).

5. Previous Investigation Data

The following reports provide contamination data for the site:

- Golder and Douglas Partners, Sydney Metro Greater West, Factual Contamination Report Preliminary Site Investigation, 19 February 2021 (19122621-003-Rev3) (Golder-DP, 2021a); and
- Golder and Douglas Partners, Sydney Metro Western Sydney Airport, Groundwater Monitoring Report - Phase 1-4 Locations, 3 August 2021 (19122621-019-R-GWMR13 Rev0) (Golder- DP, 2021b).

Table 3 summarises the sample locations for the site, the associated soil / rock profile, as well as groundwater monitoring well information and groundwater depths. Sample locations are indicated on Drawing AEC35-01, Appendix A. Table 4 lists the laboratory tests undertaken for contaminants and (relevant) soil parameters for soil samples. Table 5 lists the laboratory tests undertaken for groundwater samples.

Table 3: Sample Location, Profile and Groundwater Wells

Sample Location	Test Pit / Borehole	Date	Soil / Rock Profile	Groundwater Well Details	Groundwater Depth (m)
SMGW-TP- B316 (at the western part of the site)	Test pit	9/12/2020	Silty clay fill to a depth of 0.3 m was underlain by silty clay and clay to a depth of 2.2 m, then siltstone to a depth of 3 m.	Not applicable	Not encountered
SMGW-BH- B106 (at the western part of the site)	Borehole (hand auger to 0.5 m, solid flight auger with tc-bit to 4.5 m, HQ3 core barrel to 25 m)	15 to 21/2/2020	Waste fill (including metal, a jerry can, glass, white fibres, hose, fishing wire, green substance) (with silty clay from 1.5 m) to a depth of 2.4 m underlain by silty clay fill with glass and rubbish waste to a depth of 3.95 m, then clay to a depth of 6.91 m. Clay was underlain by siltstone and interbedded and interlaminated sandstone and siltstone to a depth of 25 m.	Installed to 5 m deep. Slotted screen at 1 m to 4 m depth (in fill). Gravel pack at 0.8 to 5 m depth. Bentonite plug at 0.3 to 0.8 m depth. Gatic cover at surface. Cement bentonite grout at 9.6 to 25 m and bentonite at 5 to 9.6 m. Developed on 10/3/2020.	1.07 (on 19/2/202); 2.9 (on 20/2/2020); 3.9 (on 21/2/2020);

Table 4: Soil Sample Testing

Sample Location	Sample Depth (m)	Fill / Natural Soil	Laboratory Testing Suite
SMGW-TP-B316	0 - 0.1	Fill	Asbestos; pH; metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); total phenols; polychlorinated biphenyls (PCB); organochlorine pesticides (OCP); organophosphorus pesticides (OPP); monocyclic aromatic hydrocarbons (MAH); oxygenated compounds; carbon disulfide; fumigants; halogenated aliphatic compounds; halogenated aromatic compounds; trihalomethane; polynuclear aromatic hydrocarbons (PAH); total recoverable hydrocarbons (TRH); benzene, toluene, ethylbenzene, xylenes, naphthalene (BTEXN); and per- and poly-fluoroalkyl substances (PFAS).

Sample Location	Sample Depth (m)	Fill / Natural Soil	Laboratory Testing Suite
	0.4 - 0.5	Natural	Asbestos; pH; (8) metals; total cyanide; ammonia; OCP; OPP; MAH; oxygenated compounds; carbon disulfide; fumigants; halogenated aliphatic compounds; halogenated aromatic compounds; trihalomethane; PAH; TRH; BTEXN; and PFAS.
	1 - 1.1	Natural	pH; (8) metals; OCP; OPP; PAH; TRH; and BTEXN.
	2.6 - 2.7	Natural Rock	pH; (8) metals; OCP; OPP; PAH; TRH; BTEXN; and PFAS.
SMGW-BH-B106	0.2	Fill	(8) metals, OCP, OPP, PAH, TRH, and BTEXN.
	4.0 - 4.45	Fill	(8) metals, OCP, OPP, PAH, TRH, and BTEXN.

Table 5: Groundwater Sample Testing

Sample Location	Sample Date	Laboratory Testing Suite
27/4/2020		pH; electrical conductivity (EC); total dissolved solids (TDS); total suspended solids (TSS); alkalinity; sulfate; chloride; dissolved major cations; hardness; dissolved and total metals (aluminium, arsenic, beryllium, barium, cadmium, chromium, copper, cobalt, nickel, lead, zinc, mercury, manganese, molybdenum, selenium, strontium, vanadium, boron, iron); fluoride; ammonia; nitrite; total kjeldahl nitrogen; total nitrogen; total phosphorus; reactive phosphorus; ionic balance; methane; monocyclic aromatic hydrocarbons (MAH); oxygenated compounds; carbon disulfide; fumigants; halogenated aliphatic compounds; halogenated aromatic compounds; trihalomethanes; PAH; TRH; BTEXN; and PFAS.
SMGW-BH- B106	27/5/2020	pH; EC; TDS; TSS; alkalinity; sulfate; chloride; dissolved major cations; hardness; dissolved and total (19) metals; fluoride; ammonia; nitrite; total kjeldahl nitrogen; total nitrogen; total phosphorus; reactive phosphorus; ionic balance; and sulfate reducing bacteria.
	30/06/2020	pH; EC; TDS; TSS; alkalinity; sulfate; chloride; dissolved major cations; hardness; dissolved and total (19) metals; fluoride; ammonia nitrite; total kjeldahl nitrogen; total nitrogen; total phosphorus; reactive phosphorus; ionic balance; and sulfate reducing bacteria.
	31/7/2020	pH; EC; TDS; TSS; hardness; alkalinity; sulfate; chloride; dissolved major cations; dissolved and total (19) metals; fluoride; ammonia; nitrite; nitrate; total kjeldahl nitrogen; total phosphorus; reactive phosphorus; and ionic balance.
	26/8/2020	pH; EC; TDS; TSS; alkalinity; sulfate; chloride; dissolved major cations; hardness; dissolved and total (19) metals; fluoride; ionic balance; and sulfate reducing bacteria.

Sample Location	Sample Date	Laboratory Testing Suite	
	15/2/2021	pH; EC; TDS; TSS; hardness; alkalinity; sulfate; chloride; dissolved major cations; dissolved and total (19) metals; fluoride; ammonia; nitrite; nitrate; total kjeldahl nitrogen; total phosphorus; reactive phosphorus; ionic balance; and sulfate reducing bacteria.	

Test pit and borehole logs and results tables extracted from Golder-DP (2021a) and Golder-DP (2021b) are provided in Appendix C. The analytical results are summarised in Tables C1 to C5, Appendix C. It is noted that Golder-DP (2021a) and Golder-DP (2021b) were factual reports and did not provide an assessment of results with respect to the proposed development. Therefore, the analytical results are discussed in Section 11.

6. Potential Contamination Sources and Preliminary Conceptual Site Model

The potential source of contamination for AEC 35 as identified in the EIS to be: *Potential farm waste burial area.*

For AEC 35, contaminants of potential concern (CoPC) were identified in the EIS to comprise: heavy metals, nutrients, TRH, semi-volatile organic compounds (SVOC), volatile organic compounds (VOC), asbestos, biological hazards and aesthetic impacts. DP notes that specific metals, SVOC and VOC were not listed in the EIS.

Table 6 summarises the potential source of contamination and what are considered to be the contaminants of potential concern for the DSI. Note that biological hazards (presumably animal waste and animal parts) and aesthetic impacts are to be initially assessed by visual means.

Table 6: Potential Source of Contamination and Contaminants of Potential Concern

Potential Source of Contamination	Contaminants of Potential Concern		
Buried farm waste	 Metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) Total recoverable hydrocarbons (TRH) Benzene, toluene, ethylbenzene and xylenes (BTEX) Polycyclic aromatic hydrocarbons (PAH) Organochlorine pesticides (OCP) Organophosphorus pesticides (OPP) Polychlorinated biphenyls (PCB) Phenols Asbestos Volatile organic compounds (VOC) (for groundwater) 		

A Conceptual Site Model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site may become contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e., it enables an assessment of the potential source - pathway - receptor linkages (complete pathways). The preliminary conceptual site model for the proposed development of the site is presented in Table 7.

Table 7: Preliminary CSM

Potential Contamination Source	Potential Exposure Pathway	Potential Receptors
	Ingestion and direct contactInhalation of dustInhalation of vapours	 Construction workers (for the proposed development) Future site workers including maintenance workers (post-development) Pedestrians and commuters
	Inhalation of dustInhalation of vapours	- Adjacent site users
Buried farm waste.	Surface run-off Leaching of contaminants into groundwater and lateral migration of groundwater	- Surface water bodies
	Leaching of contaminants into groundwater	- Groundwater
	Ingestion, inhalation and direct contact	- Terrestrial ecosystems
	- Direct contact	- In ground structures

Although *Table B2: Activities associated with PFAS contamination more broadly* of Appendix B of HEPA, *PFAS National Environmental Management Plan* (NEMP) (HEPA, 2020) lists '*Agriculture: Potentially used as an adjuvant or active ingredient in fertilisers and pesticides...*', it is considered that investigation for PFAS is not warranted given that crops did not appear to be established at the site, and, thus, there is a low probability that substantial fertiliser application has occurred. In addition, PFAS concentrations in soil samples from SMGW-TP-B316 and the groundwater sample from SMGW-BH-B106 (27 April 2020) were below laboratory limits (see Section 11).

7. Fieldwork

7.1 Data Quality Objectives

The DSI was devised with reference to the seven-step data quality objective process which is provided in Appendix B Schedule B2, NEPC (2013). The data quality objective process is outlined in Appendix D.

7.2 In situ Soil Sampling

Based on the CSM and data quality objectives (DQO), a broad grid sampling strategy was adopted to provide data for *in situ* soil across the site. Ten soil sample points were adopted for each area of AEC 35 including AEC35TP01 to AEC35TP09 and AEC35HA20 at the western area and AEC35TP10 to AEC35TP19 at the eastern area. Sample densities were based on the minimum recommended sample densities listed in Table A of NSW EPA, *Sampling Design Guidelines*, 1995 (NSW EPA, 1995). A total of twelve sample points at the western area (including previous sample locations SMGW-BH-B106 and SMGW-TP-B316) meets the recommended sample density of 11 to 12 sample points for a 0.41 ha area. Ten sample points at the eastern area meets the recommended sample density of 10 sample points for a 0.33 ha area. Sampling from test pits (at AEC35TP01 to AEC35TP19) was carried out on 28 to 29 July 2022. Sampling using a hand auger (at AEC35HA20) was carried out on 21 September 2022. It is noted that the majority of soil sampling was conducted prior to the release of NSW EPA, *Contaminated Land Guidelines Sampling design part 1 - application*, 2022 in August 2022 (NSW EPA, 2022), however, recommended sample densities in NSW EPA (2022) are the same for the size of each area mentioned above.

It is noted that the number of sampling points was (one) greater than that proposed in the SAQP (19 sampling points) given the slightly larger area for the investigation. It is also noted that a hand auger was used instead of an excavator at one soil sample point given that an excavator was not available at that location at the time of sampling and that the probability of deep / significant fill was considered to be unlikely at that location at the time of sampling.

Soil sampling was carried out in accordance with DP standard operating procedures. The general soil sampling and sample management procedure adopted is as follows:

- Collect soil samples from excavator bucket returns or the hand auger including at the surface / near surface and regular depth intervals (approximately every 0.5 m) and / or at changes of strata;
- Transfer samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;

- Collect replicate samples in zip-lock bags for screening using a photo-ionisation detector (PID);
- For fill/topsoil samples, collect ~500 ml samples in zip-lock bags (for asbestos analysis);
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for crosscontamination;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

As trace glass (anthropogenic material) was noted in the surficial fill at AEC35TP11 and AEC35TP14, bulk soil samples from these two locations, from a depth of 0-0.1 m, were subject to screening / sieving for asbestos containing materials (ACM). A bulk fill sample from nearby test pit, AEC35TP12, depth 0-0.1 m, was also subject to screening / sieving for ACM. The screening / sieving procedure is as follows:

- Weigh each bulk (10 L) sample;
- Screen each bulk sample through a ≤7 mm aperture sieve;
- Weigh all retrieved potential ACM fragments; and
- Calculate the asbestos concentration (% w/w) in soil as per the procedure described in NEPC (2013).

7.3 Stockpile Sampling

Stockpile sampling (of stockpile SP35SP) was undertaken on 29 July 2022. Soil sampling was carried out with the use of an excavator in accordance with DP standard operating procedures. The general soil sampling and sample management procedure adopted is as follows:

- Collect soil samples from the excavator bucket returns from different locations / depths of the stockpile at a rate of one sample per 25 m³ of stockpile (generally as per NEPC, 2013);
- Transfer samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- Collect ~500 ml samples in zip-lock bags (for asbestos analysis);
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for crosscontamination;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

Four stockpile samples were collected (AEC35SP-1 to AEC35SP-4).

It is noted that stockpile sampling was not proposed in the SAQP as the stockpile was identified at the time of field work.

7.4 Groundwater Monitoring Well Installation and Development

Boreholes for groundwater monitoring wells (AEC35BH01 to AEC35BH03) were drilled to depths of between 3.8 m and 7.5 m using a track-mounted drilling rig, with a solid flight auger with tc-bit attachment, on 19 to 22 August 2022. AEC35BH01 was positioned at a (hydrogeological) down-gradient location at the western area. AEC35BH03 was positioned at an up-gradient location and AEC35BH02 was positioned at a down-gradient location at the eastern area. The wells were positioned as per proposed locations in the SAQP.

Monitoring wells were constructed using class 18 uPVC machine slotted screen and blank sections with screw threaded joints. The screened section of each well was backfilled with a washed sand filter pack to approximately 0.5 m above the screened interval. Each well was completed with a hydrated bentonite plug of at least 0.5 m thick and then grout to the surface (except for AEC35BH01 which had a bentonite plug up to the ground surface).

The three groundwater monitoring wells were developed on 25 August 2022 using a Twister (plastic) pump.

7.5 Groundwater Well Sampling

Groundwater sampling of the existing groundwater monitoring well (SMGW-BH-B106) and the three installed groundwater wells (AEC35BH01 to AEC35BH03) was carried out on 8 September 2022 in accordance with DP standard operating procedures. The sampling method adopted is as follows:

- Measure the static water level using an electronic interface probe;
- Lower the well-dedicated tubing into the well at a depth that is at the screened section of the well:
- Set up the peristatic pump to draw water at a low rate that produces laminar flow;
- Measure physical parameters by continuously passing the purged water through a flow cell;
- Following stabilisation of the field parameters using a water quality meter, collect samples in laboratory-prepared bottles minimising headspace within the sample bottle and cap immediately. Samples for metals analysis are filtered in the field using a 0.45 µm filter (prior to bottling of the sample);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

8. Laboratory Analysis

8.1 Soil Samples from *In situ* Test Locations

Fill samples from the majority of test locations were analysed at a NATA accredited laboratory for COPC comprising: metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), TRH, BTEX, PAH, OCP, OPP, PCB, total phenols and asbestos (in 500 mL soil) as fill was considered to have a greater risk of contamination compared to the observed underlying natural soil.

Natural soil samples from seven sample locations were analysed to obtain data for the natural soil profile. The natural soil samples were analysed for metals, TRH, BTEX, PAH, OCP, OPP, PCB and total phenols. A natural soil sample from AEC35TP03 was also analysed for asbestos.

Three soil samples were analysed for pH and cation exchange capacity (CEC) for the calculation of EIL.

Laboratory certificates and chain of custody are provided in Appendix E.

8.2 Soil Samples from Stockpile

Three stockpile samples (AEC35SP-1 to AEC35SP-3) were analysed for COPC comprising: metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), TRH, BTEX, PAH, OCP, OPP, PCB, total phenols and asbestos (in 500 mL soil). One stockpile sample (AEC35SP-4) was analysed for metals, TRH, BTEX, PAH and asbestos.

8.3 Groundwater Samples

A groundwater sample from each sample location (AEC35BH01 to AEC35BH03 and SMGW-BH-B106) were analysed for COPC including metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), PAH, TRH, BTEX, VOC, OCP, OPP, PCB and phenols. Hardness was also analysed for the calculation of hardness adjusted default guideline values (DGV).

9. Site Assessment Criteria

Tier 1 Site Assessment Criteria (SAC) for the assessment of soils and groundwater, informed by the CSM, at the site are listed in Appendix F.

The majority of the site will form part of the rail corridor land usage as it is part of the proposed stabling yard and rail line, and a small part of the site may be part of passive open space. Therefore, both SAC for rail corridor usage (land use scenario D) and passive open space (land use scenario C) have been adopted. It is also noted that soil sourced from the site may be used elsewhere within the greater SCAW area which also has similar land uses (rail corridor usage and passive open space) to which the SAC would apply.

10. Field Work Results

10.1 Test Pits and Hand Auger Borehole

The test pit logs and the hand auger borehole log for this assessment are included in Appendix G and should be referenced for detailed soil descriptions. In summary:

- Fill was encountered to depths ranging from 0.1 m to 0.5 m. Fill materials comprised silty clay or gravelly silty clay, sandy clay and clayey sand. A trace of glass was noted in the fill at AEC35TP11, depth 0-0.1 m, and AEC35TP14, depth 0-0.2 m. Anthropogenic materials were otherwise not observed in fill; and
- Fill was underlain by clay and / or silty clay to test pit termination depths of between 0.9 m and 2.5 m.

No ACM was recovered from screening/sieving of fill samples from AEC35TP11, AECTP12 and AEC35TP14. The record of asbestos samples is provided in Appendix H.

PID results were less than 5 ppm, indicating a low potential for the presence of volatile contaminants. The PID calibration certificates are provided in Appendix H.

No signs of gross contamination (e.g., odours, staining or potential asbestos-containing materials) were observed during sampling. No signs of animal waste were observed during sampling.

Free groundwater was observed at AEC35TP11 (depth 0.5 m) and AEC35TP4 (depth 0.45 m). Free groundwater was not observed at other test pits or the hand auger borehole.

10.2 Stockpile and Waste Materials

The stockpile (AEC35SP) was observed to comprise approximately 100 m³ of medium to high plasticity, pale brown, pale grey and red-orange clay with rootlets and wood. The stockpile was covered in grass (see Photographs 1 and 2, Appendix K). No signs of contamination or animal waste were observed in the sampled soil. The location of the stockpile is shown on Drawing AEC35-1, Appendix A.

Piles of waste materials were observed on the ground surface at two locations as shown on Drawing AEC35-1, Appendix A. Waste materials included gas cylinders, metals, wood, plastics and glass bottles (see Photographs 3 and 4, Appendix K). (The waste materials were not sampled).

10.3 Groundwater Well Boreholes

The borehole logs with monitoring well construction details are provided in Appendix H and should be referenced for detailed soil descriptions. In summary:

- Fill was encountered to depths ranging from 0.15 m to 0.6 m. Fill materials comprised silty sand. No anthropogenic materials were observed in the fill;
- Fill was underlain by silty clay to depths of up to 5.09 m; and
- Silty clay was underlain by siltstone from a depth of 4.5 m to a depth of 7.5 m at AEC35BH01.

No signs of contamination were noted whilst drilling.

Water seepage was observed at each borehole whilst drilling including at a depth of 6.5 m at AEC35BH01, 3.7 m at AEC35BH02, and 2.5 m at AEC35BH03.

10.4 Groundwater Sampling

Measured groundwater levels are summarised in Table 8.

Table 8: Groundwater Levels

	Prior to Well Development on 25 August 2022		Prior to Well Sampling on 8 September 2022	
Borehole	Groundwater Depth (m bgl)	Groundwater Level (m AHD)	Groundwater Depth (m bgl)	Groundwater Level (m AHD)
AEC35BH01	2.17	36.23	2.09	36.31
AEC35BH02	0.60	40.80	0.55	40.85
AEC35BH03	0.56	41.74	0.50	41.80
SMGW-BH-B106	N/A	N/A	1.40	38.03

Groundwater levels indicate that groundwater flows to the northwest. It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary with time

The water from development of AEC35BH01 was observed to be dark brown, cloudy, and have no odour. The water from development of AEC35BH02 was observed to be brown, cloudy and have no odour. The water from development of AEC35BH03 was observed to be orange-brown, cloudy and have no odour.

No phase separated hydrocarbons were identified in any of the wells from use of the interface dipmeter prior to sampling. The water sampled from AEC35BH01 was observed to be grey, clear and have no odour. The water sampled from AEC35BH02 was observed to slightly cloudy, grey and have no odour. The water sampled from AEC35BH03 was observed to moderately cloudy, red-brown and have no odour. The water sampled from SMGW-BH-B106 was observed to be slightly cloudy, grey and have no odour.

The groundwater field sheets and water quality meter calibration record are provided in Appendix H.

11. Discussion of Laboratory Analytical Results

11.1 Soil and Stockpile Samples

Analytical results for soil samples including stockpile samples for the current investigation are summarised in Table I1, Appendix I, against the most conservative (Tier 1) SAC (see Appendix F). Analytical results for previous sample locations compared to the SAC are shown in Tables C1 and C3, Appendix C.

For the current investigation, concentrations of chemicals for all analysed soil samples were below the SAC for all CoPC analysed. Asbestos was not detected in any analysed sample. It is noted that concentrations of TRH, BTEX, PAH, OCP, OPP, PCB and total phenols were less than the practical quantitation limits (PQL).

For previous sample locations (SMGW-BH-B106 and SMGW-TP-B316), concentrations of contaminants are below the SAC except for:

- TRH >C₁₆-C₃₄ in the sample from SMGW-BH-B106, depth 0.2 m. The concentration (10,800 mg/kg) exceeds:
 - o The health screening level (HSL) for direct contact for public open space (5300 mg/kg);
 - o The ecological screening level (ESL) for public open space (1300 mg/kg);
 - o The ESL for a commercial / industrial land use (2500 mg/kg);
 - o The management limit for public open space (5000 mg/kg); and
 - o The management limit for commercial/industrial sites (5000 mg/kg).
- Benzo(a)pyrene in the sample from SMGW-BH-B106, depth 0.2 m. The concentration (1.8 mg/kg) exceeds the ESL for public open space (0.7 mg/kg) and commercial / industrial site (1.4 mg/kg). This benzo(a)pyrene concentration is significantly less than high reliability ecological guidelines (33 mg/kg for public open space and 172 mg/kg for a commercial / industrial land use) from CRC CARE, Risk-based Management and Remediation Guidance for Benzo(a)pyrene. Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, 2017 (CRC CARE, 2017). It is considered, therefore, that this benzo(a)pyrene concentration (alone) does not trigger the need for remediation.

It is noted that concentrations of BTEX, OCP, OPP, total phenols, PCB, VOC and PFAS were less than the practical quantitation limits in soil samples from the previous investigation (test pit SMGW-TP-B316).

11.2 Groundwater Samples

Analytical results for groundwater samples for the current investigation are summarised in Table I2, Appendix I, against the SAC. Previous investigation results compared to the SAC are shown in Table C5, Appendix C. Although groundwater levels were typically less than 2 m from the ground surface, health screening levels (HSL) for vapour intrusion at depth 2 m to <4 m are shown as a general reference. Default guideline values (DGV) for metals have been adjusted for hardness where possible.

For the current investigation, concentrations of metals were below the SAC except for:

- Concentrations of copper in samples from SMGW-BH-B106 (7 μg/L), AEC35BH01 (2 μg/L and 3 μg/L) and AEC35BH02 (28 μg/L) which exceeded the default guideline value (DGV) (1.4 μg/L). These concentrations are considered likely to be representative of background copper concentrations in groundwater, particularly given that copper concentrations in tested fill / soil samples are low;
- The concentration of nickel in the sample from AEC35BH02 (220 μg/L) which exceeded the health guideline for recreational water (200 μg/L). This concentration is considered likely to be representative of background nickel concentrations in groundwater particularly given that nickel concentrations in tested fill / soil samples are low; and
- The concentration of zinc in the sample from AEC35BH02 (710 µg/L) which exceeded the DGV (256 µg/L). This concentration is considered likely to be representative of background zinc concentrations in groundwater particularly given that zinc concentrations in tested fill/soil samples are low.

For the current investigation, concentrations of PAH and VOC (including BTEX) were below the SAC. Low concentrations of chloroform in the sample from AEC35BH02 and naphthalene (0.01 μ g/L) in the sample BD2/20220908 (from AEC35BH03) were recorded. Concentrations of OPP, OCP, PCB and phenols were less than the PQL and the SAC. Concentrations of TRH above the PQL included:

- TRH >C₁₀-C₁₆ (130 µg/L), TRH >C₁₆-C₃₄ (6900 µg/L) and TRH >C₃₄-C₄₀ (210 µg/L) in the sample from SMGW-BH-B106. A fill sample from this location (depth 0.2 m) was recorded to contain TRH >C₁₆-C₃₄ and TRH >C₃₄-C₄₀. A natural soil sample (depth 4-4.45 m) from this location was recorded to contain detectable TRH >C₁₀-C₁₆. It is considered that the likely source of TRH in groundwater at SMGW-BH-B106 is from the fill containing waste materials at this location, particularly as the monitoring well screen (1 m to 4 m depth) was installed within the fill profile (which meant that water entering the well was directly from the fill profile rather than the surrounding natural soil profile); and
- TRH >C₁₀-C₁₆ (70 μg/L) and TRH >C₁₆-C₃₄ (200 μg/L) in the replicate sample (BD2/20220908) from AEC35BH03. It is noted that concentrations of TRH in the primary sample from AEC35BH03 were less than the PQL. It is also noted that TRH >C₁₀-C₁₆ and TRH >C₁₆-C₃₄ was not identified in soil at nearby soil sampling locations. The detected TRH concentrations, albeit low concentrations, in groundwater at AEC35BH03 may be as a result of an off-site source. The recorded concentrations of TRH >C₁₀-C₁₆ and TRH >C₁₆-C₃₄ at AEC35BH03 are considered to be present a low risk to human receptors.

For the current investigation, concentrations of ammonia were below the SAC except for:

- The concentration of ammonia (as N) in the sample from SMGW-BH-B106 (650 μg/L) which exceeded the recreational aesthetic guideline (382 μg/L); and
- The concentrations of ammonia (as N) in the samples from AEC35BH01 (1500 μg/L) which exceeded the recreational aesthetic guideline and the freshwater DGV for pH 8 (900 μg/L). It is noted, however, that the measured groundwater pH at AEC35BH01 was 6.5. According to the Ammonia technical brief (on the ANZG, Australian and New Zealand Guidelines for Fresh and Marine Water Quality website), the freshwater trigger value for pH 6.5 is 2460 μg/L (compared to 900 μg/L for pH 8). Concentrations of ammonia were below the freshwater trigger value.

It is noted that it is possible (but not known) that the fill containing waste materials at SMGW-BH-B106 is contributing to the above-listed ammonia concentrations at SMGW-BH-B106 and AEC35BH01.

For previous rounds of groundwater sampling at SMGW-BH-B106:

- Concentrations of sodium, chloride, sulfate exceeded the aesthetic drinking water guidelines.
 These concentrations are considered likely to be representative of background conditions as these chemicals are naturally occurring;
- Concentrations of ammonia (0.67 mg/L to 1.31 mg/L) exceeded the recreational aesthetic guideline
 and, in two cases, the freshwater DGV for pH 8. Concentrations of ammonia were, however, below
 the freshwater trigger value for pH 6.5;
- Concentrations of PFAS were below the PQL (and the SAC);
- Concentrations of PAH, TRH, VOC and BTEX were below the PQL (and the SAC); and
- Concentrations of (filtered) aluminium, cobalt, manganese, chromium, copper and zinc exceeded
 the DGV. Concentrations of aluminium and iron also exceeded the aesthetic drinking water
 guideline. It is considered that the recorded concentrations for these metals are likely to be
 representative of background conditions.

11.3 Preliminary Waste Classification Comments

Table I3, Appendix I, presents the results for soil for the current investigation against criteria from NSW EPA, Waste Classification Guidelines, 2014 (NSW EPA, 2014) and NSW EPA, The excavated natural material order 2014. Tables C2 and C4, Appendix C, present the analytical results for the previous investigation against the same criteria as well as NSW EPA, Addendum to the Waste Classification Guidelines (2014) - Part 1: classifying waste, 2016.

With respect to fill, concentrations of chemical contaminants were below the CT1 criteria for general solid waste except for:

- TRH C₁₀-C₃₆ in the sample from SMGW-BH-B106, depth 0.2 m (10,800 mg/kg). This concentration is below the CT2 criterion for restricted solid waste; and
- Benzo(a)pyrene in the sample from SMGW-BH-B106, depth 0.2 m (1.8 mg/kg). This concentration
 is below the SCC2 criterion for general solid waste, however, TCLP (toxicity characteristic leaching
 procedure) was apparently not undertaken.

PFAS concentrations were less than PQL in fill samples.

For analysed fill samples, results for metals, TRH, BTEX, PAH and pH were below the associated criteria for excavated natural material (ENM) except for benzo(a)pyrene and TRH C_{10} - C_{36} in the sample from SMGW-BH-B106, depth 0.2 m. (The concentration of zinc in this sample also exceeded the maximum average concentration for ENM).

With respect to natural soil samples, concentrations of chemical contaminants were within what are considered to be background levels and are considered to be consistent with the definition of virgin excavated natural material (VENM), as defined in *Protection of the Environment Operations Act 1997* except for:

• TRH C₁₀-C₄₀ in the sample from SMGW-BH-B106, depth 4-4.45 m (250 mg/kg). The source of the TRH is considered likely to be from the overlying fill. The concentration of TRH C₁₀-C₃₆ in this sample is below the CT1 criterion for general solid waste.

For the stockpile (AEC35SP), concentrations of chemical contaminants were below the CT1 criteria for general solid waste and concentrations of metals, TRH, BTEX, PAH were below the associated criteria for ENM.

11.4 Data Quality Assurance and Quality Control

The data quality assurance and quality control (QA / QC) results are included in Appendix J. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI), it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

12. Conclusion

Soil contamination was not revealed from soil sampling for the current investigation. For a previous investigation, fill containing waste materials (including metal, a jerry can, glass, white fibres, hose, fishing wire, green substance and rubbish waste) to a depth of 3.95 m was encountered at borehole SMGW-BH-B106. A concentration of TRH >C16-C34 above SAC was identified from analysis of a sample of this fill (in the previous investigation). In the current investigation, TRH was identified in the groundwater at SMGW-BH-B106 and is considered to be sourced from the fill containing waste materials (particularly as the well screen was within the fill profile). The position of SMGW-BH-B106 is on the proposed rail alignment where excavation is required (to an approximate depth of 2 m). It is understood that, as the fill at SMGW-BH-B106 is uncontrolled fill, it will need to be excavated (i.e., it cannot remain *in situ*) as it is not geotechnically suitable for the proposed development. Given this, it is recommended that:

- Once the material is excavated and stockpiled (and sorted, if required), an environmental consultant
 is to assess the material by inspection, sampling and analysis. A geotechnical engineer should
 assess and confirm that the uncontrolled fill has been removed (and provide written documentation
 confirming the removal);
- Following this assessment, material that is considered as not suitable for reuse for SCAW is to be given a waste classification for off-site disposal by the environmental consultant;
- Materials designated for off-site disposal will need to be disposed at a licensed landfill;
- Any liquid / water emanating from the fill (either at its original location or from the stockpile) is to be collected and assessed for disposal purposes; and
- Records of the excavation and waste tracking (of solid and liquid waste) are to be documented.

The plan for the above-listed recommendations, including validation, should be documented in a remediation action plan (RAP).

It is noted that tested in situ fill, soil and rock materials that are to be excavated at the site, other than those identified at SMGW-BH-B106, are considered suitable for use at the site. Despite this, an unexpected finds protocol is to be in place for suspected contamination finds encountered (between test locations) during the excavation works. This can be documented in the RAP.

Waste materials (such as gas cylinders, metals, wood and plastic) observed on the ground surface should be appropriately disposed to a licenced landfill.

It is considered that the site can be made suitable for the proposed development subject to the above recommendations.

13. Limitations

Douglas Partners (DP) has prepared this report (or services) for the SCAW package for SMWSA. The work was carried out under a Service Contract. This report is provided for the exclusive use of CPBUI JV for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and / or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

Asbestos has not been detected in laboratory analysis of soil samples. Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints, or to parts of the site being inaccessible and not available for inspection / sampling, or to vegetation preventing visual inspection and reasonable access. It is therefore considered possible that hazardous building materials (HBM), including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

The assessment of atypical safety hazards arising from this advice is restricted to the (environmental) components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Douglas Partners Pty Ltd

Appendix A

Drawing

Appendix B

Notes About this Report

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes.
 They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix C

Logs and Summary of Results from Previous Investigation

Sampling Methods Douglas Partners The sample of the samp

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)	
Coarse gravel	19 - 63	
Medium gravel	6.7 - 19	
Fine gravel	2.36 – 6.7	
Coarse sand	0.6 - 2.36	
Medium sand	0.21 - 0.6	
Fine sand	0.075 - 0.21	

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in line grained soils (>33 /6 lines)			
Term	Proportion	Example	
	of sand or		
	gravel		
And	Specify	Clay (60%) and	
		Sand (40%)	
Adjective	>30%	Sandy Clay	
With	15 – 30%	Clay with sand	
Trace	0 - 15%	Clay with trace	
		sand	

In coarse grained soils (>65% coarse)

- with clavs or silts

- with clays of sills			
Term	Proportion of fines	Example	
And	Specify	Sand (70%) and Clay (30%)	
Adjective	>12%	Clayey Sand	
With	5 - 12%	Sand with clay	
Trace	0 - 5%	Sand with trace clay	
		Sidy	

In coarse grained soils (>65% coarse)

- with coarser fraction

With Coarser fraction			
Term	Proportion	Example	
	of coarser		
	fraction		
And	Specify	Sand (60%) and	
		Gravel (40%)	
Adjective	>30%	Gravelly Sand	
With	15 - 30%	Sand with gravel	
Trace	0 - 15%	Sand with trace	
		gravel	

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition - Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa				
Very low	VL	0.6 - 2	0.03 - 0.1				
Low	L	2 - 6	0.1 - 0.3				
Medium	M	6 - 20	0.3 - 1.0				
High	Н	20 - 60	1 - 3				
Very high	VH	60 - 200	3 - 10				
Extremely high	EH	>200	>10				

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description								
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.								
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible								
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.								
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.								
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.								
Fresh	FR	No signs of decomposition or staining.								
Note: If HW and MW o	annot be differentia	ted use DW (see below)								
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.								

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sampleB Bulk sampleD Disturbed sampleE Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished ro rough sl slickensided sm smooth vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Talus

Graphic Syr	nbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
A. A. A. I	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil		Laminite
* * * * * * * * * * * * * * * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × ; × × × ;	Dacite, epidote
	Silty sand		Tuff, breccia
	Gravel		Porphyry
). O. o. O.	Sandy gravel		
	Cobbles, boulders		

Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane)

Heptachlor

0.05

0.05

10

mg/kg

mg/kg

Table C1- Summary of Soil Results for SMGW-BH-B016																
														Location_Code		B106
															BH-B106/0.2-0.2	BH-B106/4.0-4.45
														Sample_Depth_Range		4-4.45
													1	Sample Date	17/02/2020	17/02/2020
					uci for								Na			
					HSL for	HSL C	HSL D	EU D. b.	EIL Industrial	ECL Dublis	ESL	Management	Management			
			HIL C	HIL D	Vapour	Direct	Direct	EIL Public	/	ESL Public	Commerical	Limits Public	Limits Commercial/			
					Intrusion D,	Contact	Contact	Open Space	Commercial	Open Space	/ Industrial	Open Space	Industrial			
nalyte	Units	EQL			Clay, 0 to <1m								industrial			
Aiscellaneous Parameters																
Moisture Content (dried @ 40°C)	%	0.1													27.6	13.5
PHs	70	0.1										 			27.0	15.5
PH C6 - C9 Fraction F1	mg/kg	10													<10	<10
PH C10-C36	mg/kg	50													10800	260
RHs	0, 0															
RH C6 - C10 Fraction F1	mg/kg	10										800	800		<10	<10
RH C6 - C10 Fraction Less BTEX F1	mg/kg	10			310	5100	26000			180	215				<10	<10
RH >C10 - C16 Fraction F2	mg/kg	50								120	170	1000	1000		<50	<50
RH >C10 - C16 Fraction Less Naphthalene (F2)	mg/kg	50			NL	3,800	20,000								<50	250
RH >C16 - C34 Fraction F3	mg/kg	100				5,300	27,000			1300	2500	3500	5000		10,800	250
RH >C34 - C40 Fraction F4	mg/kg	100				7,400	38,000			5600	6600	10,000	10,000		640	<100
RH+C10 - C40 (Sum of total) (Lab Reported)	mg/kg	50													11400	250
BTEXN																
enzene	mg/kg	0.2			4	120	430			65	95				<0.2	<0.2
oluene	mg/kg	0.5			NL	18,000	99,000			105	135				<0.5	<0.5
thylbenzene	mg/kg	0.5			NL	5300	27,000			105	135				<0.5	<0.5
ylenes (m & p)	mg/kg	0.5													<0.5	<0.5
ylene (o)	mg/kg	0.5													<0.5	<0.5
ylenes (Sum of total) (Lab Reported)	mg/kg	0.5			NL	15,000	81,000			45	95				<0.5	<0.5
otal BTEX	mg/kg	0.2			NII	1000	11 000	170	270						<0.2	<0.2
laphthalene	mg/kg	0.1			NL	1900	11,000	1/0	370						<0.1	<0.1
leavy Metals			200	2000				100	100						12	
arsenic Gadmium	mg/kg mg/kg	0.4	300 90	3000 900				100	160			+	1		12 <1	<5 <1
Chromium (III+VI)	mg/kg	1	300	3600				410	230						24	6
Copper	mg/kg	1	17,000	240,000			-	160	230						12	52
ead	mg/kg	1	600	1500				1100	1800			 			16	15
Mercury	mg/kg	0.1	80	730					2000						<0.1	<0.1
Nickel	mg/kg		1200	6000				110	180						<2	9
inc	mg/kg	1		400,000				350	510						157	57
Organochlorine Pesticides	<u> </u>														•	•
-BHC	mg/kg	0.05													<0.25	<0.05
ldrin	mg/kg	0.05													<0.25	<0.05
vieldrin	mg/kg	0.05													<0.25	<0.05
ldrin & Dieldrin (Sum of total) (Lab Reported)	mg/kg	0.05	10	45											<0.08	<0.05
-ВНС	mg/kg	0.05													<0.25	<0.05
is-Chlordane	mg/kg	0.05													<0.25	<0.05
amma-Chlordane	mg/kg	0.05													<0.08	<0.05
rans-Chlordane	mg/kg	0.05													<0.25	<0.05
hlordane (Sum of Total)	mg/kg	0.05	70	530											<0.25	<0.05
-BHC	mg/kg	0.05													<0.25	<0.05
4-DDD	mg/kg	0.05													<0.25	<0.05
4-DDE	mg/kg	0.05						400	C40						<0.25	<0.05
4-DDT	mg/kg	0.1	400	2000				180	640						<1	<0.2
DT+DDE+DDD (Sum of total) (Lab Reported)	mg/kg	0.05	400	3600											<0.08	<0.05
ndosulfan	mg/kg	0.05	340	2000											<0.15	<0.05
ndosulfan I	mg/kg	0.05 0.05													<0.25	<0.05
ndosulfan II	mg/kg mg/kg	0.05													<0.25 <0.25	<0.05 <0.05
ndosulfan sulphate ndrin	mg/kg mg/kg	0.05	20	100											<0.25	<0.05
ndrin aldehyde	mg/kg	0.05	20	100											<0.25	<0.05
ndrin ketone	mg/kg	0.05													<0.25	<0.05
PUC (Lindons)	/ı.	0.05													-0.25	<0.03

< 0.25

< 0.25

< 0.05

< 0.05

0.05 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0	10 400	HIL D 80 2500	HSL for Vapour Intrusion D, Clay, 0 to <1m	HSL C Direct Contact	HSL D Direct Contact	EIL PUDIIC	EIL Industrial / Commercial	ESL PUDIIC		Management	Management Limits	Field_ID BH-B106/0.2-0 Sample_Depth_Range 0.2-0.2 Sample Date 17/02/2020	0.2 BH-B106/4.0-4.45 4-4.45 17/02/2020
0.05 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0	10	80	Vapour Intrusion D,	Direct		EIL PUDIIC	_	ESL PUDIIC			_		
0.05 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0	10	80	Vapour Intrusion D,	Direct		EIL PUDIIC	_	ESL PUDIIC			_	Sample Date 17/02/2020	17/02/2020
0.05 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0	10	80	Vapour Intrusion D,	Direct		EIL PUDIIC	_	ESL PUDIIC			_		
0.05 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0		80	Clay, 0 to 1111							Limits Public Open Space	Commercial/ Industrial		
0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05											iliuustilai		
0.1 0.05 0.05 0.05 0.05 0.05 0.05												<0.25	
0.05 0.05 0.05 0.05 0.05 0.05	400	2500										<0.2	
0.05 0.05 0.05 0.05 0.05												<1	<0.2
0.05 0.05 0.05 0.05 0.05													
0.05 0.05 0.05 0.05												<0.25	< 0.05
0.05 0.05 0.05												<0.25	
0.05 0.05												<0.25	< 0.05
0.05												<0.25	< 0.05
	250	2000										<0.25	5 <0.05
0.05												<0.25	
0.05												<0.25	5 <0.05
0.05												<0.25	5 <0.05
0.05												<0.25	5 <0.05
0.05												<0.25	< 0.05
0.05												<0.25	< 0.05
0.05												<0.25	< < 0.05
0.05												<0.2	< 0.05
0.05												<0.25	< < 0.05
0.2												<1	<0.2
0.2												<1	<0.2
0.1												<1	<0.2
0.05												<0.25	< 0.05
0.05												<0.25	5 <0.05
												•	-
0.1												<0.5	<0.5
0.1												<0.5	
								0.7	1.4				
	3	40											
	3	40											
	3												
- 3.5	3	_											
0.5		1											
			NII	1000	11 000	170	270						
			INL	1900	11,000	1/0	3/0						
0.1	200	4000											
-	0.1 0.1 0.05 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.05 0.5 0.5 3 0.5 3 0.5 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.05 0.5 3 40 0.5 3 40 0.5 3 40 0.5 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.05 0.5 3 40 0.5 3 40 0.5 0.1 0.5 0.1	0.1 0.1 0.05 3 40 0.5 3 40 0.5 3 40 0.5 3 40 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.05 0.5 0.5 3 40 0.5 3 40 0.5 3 40 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.05 <	0.1 0.1 0.05 <	0.1 0.1 0.0 0.7 0.05 0.5 0.7 0.7 0.5 3 40 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.1 0.0 0.0 0.7 1.4 0.05 3 40 0.7 1.4 0.5 3 40 0.0	0.1 0.1 0.0 0.7 1.4 0.05 3 40 0.7 1.4 0.5 3 40 0.5	0.1 0.05 0.7 1.4 0.5 3 40 0.7 1.4 0.5 3 40 0.7 1.4 0.5 3 40 0.7 1.4 0.5 3 40 0.7 1.4 0.5 3 40 0.7 1.4 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.5 0.5 0.7 1.4 0.5 0.5 1.8 1.8 1.8 1.8 1.9

Location_Code

B106

							2400	1 2406
						LocCode		B106
							BH-B106/0.2-0.3	BH-B106/4.0-4.45
						Sample_Depth_Range		4-4.45
						Sample Date	17/02/2020	17/02/2020
			CT1 General Solid	CT2 Restricted	ENM (absolute	ENM (maximum		
			Waste	Solid Waste	maximum	average		
Analyte	Units	EQL	Truste.	Jona Waste	concentration)*	concentration)*		
Miscellaneous Parameters		1						
Moisture Content (dried @ 40°C)	%	0.1					27.6	13.5
TRHs	, ,							
TRH C6 - C10 Fraction F1	mg/kg	10					<10	<10
TRH C6 - C10 Fraction Less BTEX F1	mg/kg	10					<10	<10
TRH >C10 - C16 Fraction F2	mg/kg	50					<50	<50
TRH >C10 - C16 Fraction Less Naphthalene (F2)	mg/kg	50					<50	<50
TRH >C16 - C34 Fraction F3	mg/kg	100					10800	250
TRH >C34 - C40 Fraction F4	mg/kg	100					640	<100
TRH+C10 - C40 (Sum of total) (Lab Reported)	mg/kg	50					11400	250
TPH Group - Waste Classification								
C6 - C9	mg/kg	10	650	2600			<10	<10
C10 - C14	mg/kg	50					<50	<50
C15 - C28	mg/kg	100					6760	150
C29-C36	mg/kg	100					4030	110
+C10 - C36 (Sum of total)	mg/kg	50	10000	40000	500	250	10,800	260
BTEXN								
Benzene	mg/kg	0.2	10	40	0.5	NA	<0.2	<0.2
Toluene	mg/kg	0.5	288	1152	65	NA 	<0.5	<0.5
Ethylbenzene	mg/kg	0.5	600	2400	25	NA	<0.5	<0.5
Xylenes (m & p)	mg/kg	0.5					<0.5	<0.5
Xylene (o)	mg/kg	0.5	1000	4000	45	NA.	<0.5	<0.5
Xylenes (Sum of total) (Lab Reported) Total BTEX	mg/kg	0.5 0.2	1000	4000	15	NA	<0.5 <0.2	<0.5 <0.2
Naphthalene	mg/kg mg/kg	0.2					<0.5	<0.5
Heavy Metals	IIIg/kg	0.1					<0.5	VU.5
Arsenic	mg/kg	4	100	400	40	20	12	<5
Cadmium	mg/kg	0.4	20	80	1	0.5	<1	<1
Chromium (III+VI)	mg/kg	1	100 ##	400 ##	150	75	24	6
Copper	mg/kg	1	100	400	200	100	12	52
Lead	mg/kg	1	100	400	100	50	16	15
Mercury	mg/kg	0.1	4	16	1	0.5	<0.1	<0.1
Nickel	mg/kg	1	40	160	60	30	<2	9
Zinc	mg/kg	1			300	150	157	57
Organochlorine Pesticides								
a-BHC	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
Aldrin	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
Dieldrin	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
Aldrin & Dieldrin (Sum of total) (Lab Reported)	mg/kg	0.05	<50 **	<50 **			<0.08	<0.05
b-BHC	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
cis-Chlordane	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
gamma-Chlordane	mg/kg	0.05	<50 **	<50 **			<0.08	<0.05
trans-Chlordane	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
Chlordane (Sum of Total)	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
d-BHC	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
1,4-DDD	mg/kg	0.1	<50 **	<50 **			<0.25	<0.05
4,4-DDE	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
4,4-DDT	mg/kg	0.05	<50 **	<50 **			<1	<0.2
DDT+DDE+DDD (Sum of total) (Lab Reported)	mg/kg	0.05	<50 **	<50 **			<0.08	<0.05
Endosulfan	mg/kg	0.05					<0.15	<0.05
Endosulfan I Endosulfan II	mg/kg	0.05 0.05	60	240			<0.25 <0.25	<0.05 <0.05
Endosulfan sulphate	mg/kg mg/kg	0.05					<0.25	<0.05
Endrin	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
Endrin aldehyde	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
Endrin aldenyde Endrin ketone	mg/kg	0.05	130	\30			<0.25	<0.05
g-BHC (Lindane)	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
Heptachlor	mg/kg	0.05	<50 **	<50 **			<0.25	<0.05
				.50			-0.23	10.00
Heptachlor epoxide	mg/kg	0.1	<50 **	<50 **			<0.25	<0.05

						LocCode	B106	B106	
							BH-B106/0.2-0.3	BH-B106/4.0-4.45	
						Sample_Depth_Range		4-4.45	
						Sample Date		17/02/2020	
Analyte	Units	EQL	CT1 General Solid Waste	CT2 Restricted Solid Waste	ENM (absolute maximum concentration)*	ENM (maximum average concentration)*			
Methoxychlor	mg/kg	0.2					<1	<0.2	
Organophosphorus Pesticides		-					_	, ,,,	
Azinophos methyl	mg/kg	0.05					<0.25	<0.05	
Bromophos-ethyl	mg/kg	0.05					<0.25	<0.05	
Carbophenothion	mg/kg	0.05					<0.25	<0.05	
Chlorfenvinphos	mg/kg	0.05					<0.25	<0.05	
Chlorpyrifos	mg/kg	0.05	4	16			<0.25	<0.05	
Chlorpyrifos-methyl	mg/kg	0.05		-			<0.25	<0.05	
Demeton-S-methyl	mg/kg	0.05					<0.25	<0.05	
Diazinon	mg/kg	0.05					<0.25	<0.05	
Dichlorvos	mg/kg	0.05	250 ⁺	1000 ⁺			<0.25	<0.05	
Dimethoate	mg/kg	0.05	250 ⁺	1000 ⁺			<0.25	<0.05	
Ethion	mg/kg	0.05	250 ⁺	1000 ⁺			<0.25	<0.05	
Fenamiphos	mg/kg	0.05	230	1000			<0.25	<0.05	
Fenthion	mg/kg	0.05	250 ⁺	1000 ⁺			<0.25	<0.05	
Malathion	mg/kg	0.05	250 ⁺	1000 ⁺			<0.25	<0.05	
Methyl parathion	mg/kg	0.2	250 ⁺	1000 ⁺			<1	<0.2	
Monocrotophos	mg/kg	0.2	230	1000			<1	<0.2	
Parathion	mg/kg	0.1					<1	<0.2	
Pirimphos-ethyl	mg/kg	0.05					<0.25	<0.05	
Prothiofos	mg/kg	0.05					<0.25	<0.05	
PAHs								•	
Acenaphthene	mg/kg	0.1					<0.5	<0.5	
Acenaphthylene	mg/kg	0.1					<0.5	<0.5	
Anthracene	mg/kg	0.1					<0.5	<0.5	
Benz(a)anthracene	mg/kg	0.1					<0.5	<0.5	
Benzo(a) pyrene	mg/kg	0.05	0.8	3.2	1	0.5	1.8	<0.5	
Benzo(a)pyrene TEQ (half LOR)	mg/kg	0.5					2.2	0.6	
Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5					2.5	1.2	
Benzo(a)pyrene TEQ (zero)	mg/kg	0.5					1.9	<0.5	
Carcinogenic PAHs (as BaP TEQ)	mg/kg						2.217	<1.21	
Benzo[b+j]fluoranthene	mg/kg	0.5					<0.5	<0.5	
Benzo(g,h,i)perylene	mg/kg	0.1					<0.5	<0.5	
Benzo(k)fluoranthene	mg/kg	0.5					0.5	<0.5	
Chrysene	mg/kg	0.1					3.9	<0.5	
Dibenz(a,h)anthracene	mg/kg	0.1					<0.5	<0.5	
Fluoranthene	mg/kg	0.1					<0.5	<0.5	
Fluorene	mg/kg	0.1					<0.5	<0.5	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1					<0.5	<0.5	
Naphthalene	mg/kg	0.1					<0.5	<0.5	
Phenanthrene	mg/kg	0.1					<0.5	<0.5	
Pyrene	mg/kg	0.1					0.6	<0.5	
PAH (Sum of Common 16 PAHs - Lab Reported)	mg/kg	0.5	200	800	40	20	6.8	<0.5	

Notes

*: Only criteria exceeding the absolute maximum concentration is highlighted

**: Criterion of <50 mg/kg for the sum of Scheduled Chemicals

+: CT1 criterion of 250 mg/kg and CT2 criterion of 1000 mg/kg for the sum of Moderately Harmful Pesticides

##: Criteria for chromium VI

Table C3- Summary of Soil Results for SMGW-TP-B316																			
															LocCode	SMGW-TP-B316	SMGW-TP-B316	SMGW-TP-B316	SMGW-TP-B316
															Sample ID	SMGW-TP-B316_0-0.1		_	
															Sample Depth Range		0.4-0.5	1.1-1.3	2.6-2.7
															Sample Date	9/12/2020	9/12/2020	9/12/2020	9/12/2020
															Lab Report Number	ES2044077	ES2044077	ES2044077	ES2044077
			HIL C	HIL D	HSL for Vapour Intrusion D, Clay, 0 to <1m	HSL C Direct Contact	HSL D Direct Contact	EIL Public Open Space	EIL Industrial / Commercial	ESL Public Open Space	ESL Commerical / Industrial	Ecological Guideline Direct Exposure	Ecological Guideline Indirect Esposure	Management Limits Public Open Space	Management Limits Commercial/ Industrial				
Analyte	Units	EQL			1						ļ							T	
Moisture Content	%	0.1														13.4	14.5	14.6	10.5
Other Paramters		Ia .	_			1													
pH (Lab)	pH_Units	s 0.1		-							1					5.5	4.9	5.1	5.6
Ammonia as N		4.									1					-	<20	-	-
Cyanide Total	mg/kg	1	240	1500												-	<1	-	-
Asbestos Asbestos (1 = asbestos detected, 0 = no asbestos detected) Asbestos Fines (1 = asbestos detected, 0 = no asbestos detected)	g/kg Fibres	5														0	0	-	-
Sample weight (dry)	σ	0.1														72.6	128	-	_
Metals/Metalloids		0.1										•				72.0	1 120		
Arsenic	mg/kg	4	300	3000				100	160							13	<5	28	18
Cadmium	mg/kg	0.4	90	900												<1	<1	<1	<1
Chromium (III+VI)	mg/kg	1	300	3600				410	670							15	4	10	5
Copper	mg/kg	1	17,000	240000				160	230							14	9	28	66
Lead	mg/kg	1	600	1500				1100	1800							13	8	18	34
Mercury	mg/kg	0.1	80	730												<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	1200	6000				110	180							2	<2	6	37
Zinc	mg/kg	1	30,000	400,000				350	510							16	<5	18	141
Total Recoverable Hydrocarbons																			
C6-C10	mg/kg	10												800	800	<10	<10	<10	<10
C6-C10 less BTEX (F1)	mg/kg	10			310	5100	26,000	215 ⁶		180	215					<10	<10	<10	<10
C10-C16	mg/kg	50								120	170			1000	1000	<50	<50	<50	<50
F2-NAPHTHALENE	mg/kg	50			NL	3800	20,000	170 ⁶								<50	<50	<50	<50
C16-C34	mg/kg	100				5300	27,000	1700 ⁶		1300	2500			3500	5000	<100	<100	<100	<100
C34-C40	mg/kg	100				7400	38,000	3300 ⁶		5600	6600			10000	10000	<100	<100	<100	<100
C10 - C40 (Sum of total)	mg/kg	50														<50	<50	<50	<50
Total Petroleum Hydrocarbons (Waste Classification)																			
C6 - C9	mg/kg	10														<10	<10	<10	<10
C10 - C14	mg/kg	50														<50	<50	<50	<50
C15 - C28	mg/kg	100														<100	<100	<100	<100
C29-C36	mg/kg	100														<100	<100	<100	<100
+C10 - C36 (Sum of total)	mg/kg	50														<50	<50	<50	<50
BTEX																			
Benzene	mg/kg	0.2			4	120	430	75 ^b		65	95					<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	0.5			NL	18,000	99,000	135 °		105	135					<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	0.5			NL	5300	27,000	165 ^b		105	135					<0.5	<0.5	<0.5	<0.5
Xylene (m & p)	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Xylene (o)	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Xylene Total	mg/kg	0.5			NL	15,000	81,000	95 ′		45	95					<0.5	<0.5	<0.5	<0.5
Total BTEX	mg/kg	0.2														<0.2	<0.2	<0.2	<0.2
Organochlorine Pesticides																			
4,4-DDE	mg/kg	0.05														< 0.05	<0.05	< 0.05	<0.05
a-BHC	mg/kg	0.05														<0.05	<0.05	< 0.05	<0.05
Aldrin	mg/kg	0.05														<0.05	<0.05	< 0.05	<0.05
Aldrin + Dieldrin	mg/kg	0.05	10	45												<0.05	< 0.05	< 0.05	< 0.05
b-BHC	mg/kg	0.05														<0.05	<0.05	< 0.05	<0.05
chlordane	mg/kg	0.05	70	530												<0.05	<0.05	< 0.05	<0.05
Chlordane (cis)	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Chlordane (trans)	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
d-BHC	mg/kg	0.05					-									<0.05	< 0.05	<0.05	<0.05
DDD	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
DDT	mg/kg	0.2	,,,,				-	180	640							<0.2	<0.2	<0.2	<0.2
DDT+DDE+DDD	mg/kg	0.05	400	3600												< 0.05	<0.05	<0.05	<0.05
Dieldrin Fades ifee	mg/kg	0.05	240	2000												<0.05	<0.05	<0.05	<0.05
Endosulfan	mg/kg	0.05	340	2000												<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Endosulfan II	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Endosulfan sulphate	mg/kg	0.05	20	100			-									<0.05	<0.05	<0.05	<0.05
Endrin	mg/kg	0.05	20	100												<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Endrin ketone	mg/kg	0.05					-									<0.05	<0.05	<0.05	<0.05
g-BHC (Lindane)	mg/kg	0.05	10													<0.05	<0.05	<0.05	<0.05
Heptachlor	mg/kg	0.05	10	50												<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	mg/kg	0.05	400	2500												<0.05	<0.05	<0.05	<0.05
Methoxychlor Ovrananhornhorus Bostisidos	mg/kg	0.2	400	2500												<0.2	<0.2	<0.2	<0.2
Organophosphorus Pesticides	m = /1 -	0.05														-0.0F	-0.0F	20.0F	20 OF
Azinophos methyl	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Carbophenothion	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Chlorywifes	mg/kg	0.05	250	2000												<0.05	<0.05	<0.05	<0.05
Chlorpyrifos methyl	mg/kg	0.05	250	2000												<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	mg/kg	0.05 0.05														<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Demeton-S-methyl	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05

															Sample ID	SMGW-TP-B316_0-0.1	1 SMGW-TP-B316 0.4-0.5	SMGW-TP-B316_1.1-1.3	SMGW-TP-B316 2.6-2.7
															Sample Depth Range	0-0.1	0.4-0.5	1.1-1.3	2.6-2.7
															Sample Date	9/12/2020	9/12/2020	9/12/2020	9/12/2020
															Lab Report Number	ES2044077	ES2044077	ES2044077	ES2044077
														Management	Management Limits	232044077	[13204-077	152044077	L32044077
					HSL for							Ecological	Ecological	Limits Public	Commercial/				
					Vapour	HSL C		EIL Public	EIL Industrial /	ESL Public	ESL	Guideline	Guideline	Open Space	Industrial				
			HIL C	HIL D	Intrusion	Direct	Direct	Open	Commercial	Open	Commerical	Direct	Indirect	орен орисс					
					D, Clay, 0	Contact	Contact	Space	Commercial	Space	/ Industrial	Exposure	Esposure						
Analyte	Units	EQL			to <1m										_	┥			
		0.05														-0.05	10.05	-0.05	-0.05
Diazinon	mg/kg	0.05														<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Dichlorvos Dimethoate	mg/kg mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Ethion	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Fenamiphos	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Fenthion	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Malathion	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Methyl parathion	mg/kg	0.03														<0.2	<0.2	<0.2	<0.2
Monocrotophos	mg/kg	0.2														<0.2	<0.2	<0.2	<0.2
Parathion	mg/kg	0.2														<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Prothiofos	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
Polycyclic Aromatic Hydrocarbons	1116/116	0.03														10.05	10.03	V0.03	10.03
Acenaphthene	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Acenaphthylene	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Anthracene	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Benzo(a) pyrene	mg/kg	0.5								0.7	1.4					<0.5	<0.5	<0.5	<0.5
Benzo(a) pyrene Benzo(a)pyrene TEQ (medium bound)	mg/kg	0.5	3	40						0.7	1.7					0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (interior bound)	mg/kg	0.5	3	40												1.2	1.2	1.2	1.2
Benzo(a)pyrene TEQ (lower bound)	mg/kg	0.5	3	40												<0.5	<0.5	<0.5	<0.5
Carcinogenic PAHs (as BaP TEQ)	mg/kg	1	3	40												<1.21	<1.21	<1.21	<1.21
Benzo(g,h,i)perylene	mg/kg	0.5	- 3	-10												<0.5	<0.5	<0.5	<0.5
Benzo[b+j]fluoranthene	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Chrysene	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Dibenz(a,h)anthracene	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Fluoranthene	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Fluorene	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
Naphthalene	mg/kg	0.5			NL			170	370							<0.5	<0.5	<0.5	<0.5
Phenanthrene	mg/kg	0.5			1112			170	370							<0.5	<0.5	<0.5	<0.5
Pyrene	mg/kg	0.5														<0.5	<0.5	<0.5	<0.5
PAHs (Sum of total)	mg/kg	0.5	300	4000												<0.5	<0.5	<0.5	<0.5
Phenols	6/6	0.5	500	1000												-0.0	.0.0	-0.5	-0.0
Phenolics Total	mg/kg	1														<1	-	-	_
Polychlorinated Biphenyls	111b/ Nb	1-														12		· ·	1
PCBs (Sum of total)	mg/kg	0.1	1	7												<0.1	-	-	-
Volatile Organic Compounds	10/0												•				•		•
1,2,3-trichlorobenzene	mg/kg	0.5														<0.5	<0.5	-	-
1,2,4-trichlorobenzene	mg/kg	0.5														<0.5	<0.5	-	-
1,2-dichlorobenzene		0.5														<0.5	<0.5	-	-
1,3-dichlorobenzene	mg/kg	0.5														<0.5	<0.5	-	-
1,4-dichlorobenzene	mg/kg	0.5														<0.5	<0.5	-	-
2-chlorotoluene	mg/kg	0.5														<0.5	<0.5	-	-
4-chlorotoluene	mg/kg	0.5														<0.5	<0.5	-	-
Bromobenzene	mg/kg	0.5														<0.5	<0.5	-	_
Chlorobenzene	mg/kg	0.5														<0.5	<0.5	-	-
Hexachlorobenzene	mg/kg	0.05														<0.05	<0.05	<0.05	<0.05
1,2,4-trimethylbenzene	mg/kg	0.5														<0.5	<0.5	-	-
1,3,5-trimethylbenzene	mg/kg	0.5														<0.5	<0.5	-	-
Isopropylbenzene	mg/kg	0.5														<0.5	<0.5	-	-
n-butylbenzene	mg/kg	0.5														<0.5	<0.5	=	-
n-propylbenzene	mg/kg	0.5														<0.5	<0.5	-	-
p-isopropyltoluene	mg/kg	0.5														<0.5	<0.5	-	-
sec-butylbenzene	mg/kg	0.5														<0.5	<0.5	-	-
Styrene	mg/kg	0.5														<0.5	<0.5	-	-
tert-butylbenzene	mg/kg	0.5														<0.5	<0.5	-	-
2-hexanone (MBK)	mg/kg	5														<5	<5	-	-
Methyl Ethyl Ketone	mg/kg	5														<5	<5	-	-
4-Methyl-2-pentanone	mg/kg	5														<5	<5	-	-
Carbon disulfide	mg/kg	0.5														<0.5	<0.5	-	-
Vinyl acetate	mg/kg	5														<5	<5	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.5														<0.5	<0.5	-	-
1,1,1-trichloroethane	mg/kg	0.5														<0.5	<0.5	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.5														<0.5	<0.5	-	-
1,1,2-trichloroethane	mg/kg	0.5														<0.5	<0.5	-	_
1,1-dichloroethane	mg/kg	0.5														<0.5	<0.5	-	-
1,1-dichloroethene	mg/kg	0.5														<0.5	<0.5	-	-
1,1-dichloropropene	mg/kg	0.5														<0.5	<0.5	-	_
1,2,3-trichloropropane	mg/kg	0.5														<0.5	<0.5	-	_
1,2-dibromo-3-chloropropane	mg/kg	0.5														<0.5	<0.5	-	-
1,2-dibromoethane	mg/kg	0.5														<0.5	<0.5	-	-
	p/ \\B	0.5														.0.3	٠٠.5	1	1

LocCode SMGW-TP-B316 SMGW-TP-B316 SMGW-TP-B316

SMGW-TP-B316

															LocCode	SMGW-TP-B316	SMGW-TP-B316	SMGW-TP-B316	SMGW-TP-B316
															Sample ID	SMGW-TP-B316_0-0.1			
															Sample Depth Range	0-0.1	0.4-0.5	1.1-1.3	2.6-2.7
															Sample Date	9/12/2020	9/12/2020	9/12/2020	9/12/2020
					_										Lab Report Number	ES2044077	ES2044077	ES2044077	ES2044077
				HS	L for							Ecological	Ecological	Management Limits Public	Management Limits Commercial/				
				Va	pour	HSL C	HSL D	EIL Public	EIL Industrial /	ESL Public	ESL	Guideline	Guideline		Industrial				
			HIL C	HIL D Intr	usion	Direct	Direct	Open	Commercial	Open	Commerical	Direct	Indirect	Орен зрасе	iliuustiiai				
				D, C	lay, 0	Contact	Contact	Space	Commercial	Space	/ Industrial	Exposure	Esposure						
Analyte	Units	EQL		to	<1m											-			
		0.5														<0.5	<0.5	-	-
•	mg/kg	0.5														<0.5	<0.5	_	-
	mg/kg	0.5														<0.5	<0.5	-	-
	mg/kg	0.5														<0.5	<0.5	-	-
Bromodichloromethane	mg/kg	0.5														<0.5	<0.5	-	-
	mg/kg	0.5														<0.5	<0.5	-	-
	mg/kg	5														<5	<5	-	-
	Ů, Ü	0.5														<0.5	<0.5	-	-
	mg/kg	0.5			-											<0.5	<0.5	-	-
	mg/kg	0.5														<5 <0.5	<5 <0.5	-	-
	mg/kg mg/kg	5.5														<0.5 <5	<0.5	-	-
		0.5														<0.5	<0.5	-	-
	mg/kg	0.5														<0.5	<0.5	-	-
	mg/kg	0.5														<0.5	<0.5	-	-
		0.5														<0.5	<0.5	-	-
Dichlorodifluoromethane	mg/kg	5														<5	<5	-	-
	mg/kg	0.5														<0.5	<0.5	-	-
	5, 0	0.5														<0.5	<0.5	-	-
	Ů, Ü	0.5														<0.5	<0.5	-	-
	mg/kg	0.5			-											<0.5	<0.5	-	-
	mg/kg mg/kg	5 0 E			-											<5 <0.5	<5 <0.5	-	-
		0.5														<0.5	<0.5		-
		0.5														<0.5	<0.5	_	_
	mg/kg	0.5														<0.5	<0.5	-	-
	mg/kg	5														<5	<5	-	-
Per- and Polyfluoroalkyl Substances																			
		0.0005														< 0.0005	<0.0005	-	<0.0005
	mg/kg	0.0005														<0.0005	<0.0005	-	<0.0005
		0.0005														<0.0005	<0.0005	-	<0.0005
	mg/kg	0.0005														<0.0005	<0.0005	-	<0.0005
	mg/kg mg/kg	0.0002 0.0005			-											<0.0002 <0.0005	<0.0002 <0.0005	-	<0.0002 <0.0005
	mg/kg	0.0003			-											<0.0003	<0.0003	-	<0.0003
	mg/kg	0.0005														< 0.0005	<0.0005	_	<0.0002
, ,	mg/kg	0.0005														<0.0005	<0.0005	-	<0.0005
	mg/kg	0.0002														<0.0002	<0.0002	-	<0.0002
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE Alcohol)	mg/kg	0.0005														< 0.0005	<0.0005	-	< 0.0005
	mg/kg	0.0002														<0.0002	<0.0002	-	<0.0002
	mg/kg	0.0002														<0.0002	<0.0002	-	<0.0002
	mg/kg															<0.0002	<0.0002	-	<0.0002
	Ů, Ü	0.0002 0.0002										1	0.01			<0.0002 <0.0002	<0.0002 <0.0002	-	<0.0002 <0.0002
	mg/kg	0.0002										1	0.01			<0.0002	<0.0002	-	<0.0002
		0.0002														<0.001	<0.001	-	<0.002
		0.0002														<0.0002	<0.0002	-	<0.0002
	mg/kg	0.0002														<0.0002	<0.0002	-	<0.0002
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0002														<0.0002	<0.0002	-	<0.0002
	mg/kg	0.0002	10	50								10				<0.0002	<0.0002	-	<0.0002
	mg/kg	0.0002														<0.0002	<0.0002	-	<0.0002
	mg/kg	0.0002														<0.0002	<0.0002	-	<0.0002
Perfluoroundecanoic acid (PFUnDA)	mg/kg	0.0002														<0.0002	<0.0002	-	<0.0002
		0.0002 0.0002														<0.0002 <0.0002	<0.0002 <0.0002	-	<0.0002 <0.0002
FECHUOLOGIUELANOIL ACIU (PETEDA)	ma/ka															_		-	_
	mg/kg mg/kg															<0.0005	<0.0005	_	<0.0005
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0005														<0.0005 <0.0002	<0.0005 <0.0002	-	<0.0005 <0.0002
Perfluorotetradecanoic acid (PFTeDA) Sum of PFAS	mg/kg		1	20												<0.0005 <0.0002 <0.0002	<0.0005 <0.0002 <0.0002		<0.0005 <0.0002 <0.0002

Notes:
-: Not analysed

									Lo	cCode	SMGW-TP-B316	SMGW-TP-B316	SMGW-TP-B316	SMGW-TP-B316
									San	nple ID	SMGW-TP-B316_0-0.1	SMGW-TP-B316_0.4-0.5	SMGW-TP-B316_1.1-1.3	SMGW-TP-B316_2.6-2.7
										epth Range	0-0.1	0.4-0.5	1.1-1.3	2.6-2.7
									Samı	ole Date	9/12/2020	9/12/2020	9/12/2020	9/12/2020
										ort Number	ES2044077	ES2044077	ES2044077	ES2044077
			NSW EPA	NSW EPA	TCLP1	NSW EPA	NSW EPA	TCLP2	NSW 2014	NSW 2014				
			2014	2014	General Solid	1	2014	Restricted	Excavated	Excavated				
					Waste (µg/l		Restricted	Solid Waste	Natural	Natural				
			Waste (CT1)	Waste SCC1	or mg/l)^#	Solid Waste	Solid Waste	(µg/l or	Material	Material				
Analyte	Units	EQL	1			CT2	SCC2	mg/I)^#	(Absolute	(Max				
									Max)	Average)				
Moisture Content	%	0.1							-	-	13.4	14.5	14.6	10.5
Asbestos														
Asbestos (1 = asbestos detected, 0 = no asbestos detected)	Fibres	5									0	0	-	-
Asbestos Fines (1 = asbestos detected, 0 = no asbestos detected)	Fibres	5									0	0	-	-
Sample weight (dry)											72.6	128	-	-
Other Parameters										5. 0				
pH (Lab)	pH_Units								4.5 to 10	5 to 9	5.5	4.9	5.1	5.6
Ammonia as N	mg/kg	20	220	5000	16	1200	22000	C4			-	<20	-	-
Cyanide Total	mg/kg	1	320	5900	16	1280	23600	64			-	<1	-	-
Metals/Metalloids	ma/ka	14	100	500	5	400	2000	20	40	20	13	<5	28	18
Arsenic Cadmium	mg/kg mg/kg	0.4	20	100	1	80	400	4	40 1	0.5	<1	<1	<1	18 <1
Chromium (III+VI)	mg/kg mg/kg	1			5	400 ~		20	150	75	15	4	10	5
` '	mg/kg	1	100~	1900~	-	400	7600 ~	-	200	100	14	9	28	66
Copper Lead	mg/kg mg/kg	1	100	1500	5	400	6000	20	100	50	13	8	18	34
Mercury	mg/kg mg/kg	0.1	4	50	0.2	16	200	0.8	100	0.5	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	40	1050	2	160	4200	8	60	30	2	<2	6	37
Zinc	mg/kg	1	-	1030	-	-	4200	-	300	150	16	<5	18	141
Total Recoverable Hydrocarbons	IIIg/ Ng	ļ±		_			_	_	300	150	10	.5	10	141
C6-C10	mg/kg	10									<10	<10	<10	<10
C6-C10 less BTEX (F1)	mg/kg	10									<10	<10	<10	<10
C10-C16	mg/kg	50									<50	<50	<50	<50
F2-NAPHTHALENE	mg/kg	50									<50	<50	<50	<50
C16-C34	mg/kg	100									<100	<100	<100	<100
C34-C40	mg/kg	100									<100	<100	<100	<100
C10 - C40 (Sum of total)	mg/kg	50									<50	<50	<50	<50
Total Petroleum Hydrocarbons (Waste Classification)														
C6 - C9	mg/kg	10	650	650	N/A	2600	2600	N/A	-	-	<10	<10	<10	<10
C10 - C14	mg/kg	50							-	-	<50	<50	<50	<50
C15 - C28	mg/kg	100							-	-	<100	<100	<100	<100
C29-C36	mg/kg	100							-	-	<100	<100	<100	<100
+C10 - C36 (Sum of total)	mg/kg	50	10000	10000	N/A	40000	40000	N/A	500	250	<50	<50	<50	<50
BTEX										_				
Benzene	mg/kg	0.2	10	18	0.5	40	72	2	0.5	-	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	0.5	288	518	14.4	1152	2073	57.6	65	-	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	0.5	600	1080	30	2400	4320	120	25	-	<0.5	<0.5	<0.5	<0.5
Xylene (m & p)	mg/kg	0.5							-	-	<0.5	<0.5	<0.5	<0.5
Xylene (o)	mg/kg	0.5	4000	4000		4000	7000	200	-	-	<0.5	<0.5	<0.5	<0.5
Xylene Total Total BTEX	mg/kg	0.5	1000	1800	50	4000	7200	200	15	-	<0.5 <0.2	<0.5 <0.2	<0.5 <0.2	<0.5 <0.2
	mg/kg	0.2							-	-	<0.2	<0.2	<0.2	<∪.∠
Organochlorine Pesticides Scheduled chemicals (Waste Classification Guidelines)	mg/kg	L	50	50	N/A	50	50	N/A			<1.35	<1.35	<0.85	<0.85
4,4-DDE	mg/kg mg/kg	0.05	30	50	IN/A	30	30	IV/A	_	-	<0.05	<0.05	<0.85	<0.85
a-BHC	mg/kg	0.05								-	<0.05	<0.05	<0.05	<0.05
Aldrin	mg/kg	0.05								-	<0.05	<0.05	<0.05	<0.05
Aldrin + Dieldrin	mg/kg	0.05								-	<0.05	<0.05	<0.05	<0.05
b-BHC	mg/kg	0.05								-	<0.05	<0.05	<0.05	<0.05
chlordane	mg/kg	0.05								-	<0.05	<0.05	<0.05	<0.05
Chlordane (cis)	mg/kg	0.05							_	-	<0.05	<0.05	<0.05	<0.05
Chlordane (trans)	mg/kg	0.05								-	<0.05	<0.05	<0.05	<0.05
d-BHC	mg/kg	0.05								-	<0.05	<0.05	<0.05	<0.05
DDD	mg/kg	0.05							_	-	<0.05	<0.05	<0.05	<0.05
DDT	mg/kg	0.03							_	-	<0.2	<0.2	<0.2	<0.2
DDT+DDE+DDD	mg/kg	0.05								-	<0.05	<0.05	<0.05	<0.05
Dieldrin	mg/kg	0.05								-	<0.05	<0.05	<0.05	<0.05
Endosulfan	mg/kg	0.05	60	108	3	240	432	12	_	-	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg	0.05		100		2.0	102		_	-	<0.05	<0.05	<0.05	<0.05
Endosulfan II	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Endosulfan sulphate	mg/kg	0.05							_	-	<0.05	<0.05	<0.05	<0.05
	oı .,p	12.20									-0.00			

									Loc	Code	SMGW-TP-B316	SMGW-TP-B316	SMGW-TP-B316	SMGW-TP-B316
										ple ID	SMGW-TP-B316 0-0.1	SMGW-TP-B316 0.4-0.5	SMGW-TP-B316 1.1-1.3	SMGW-TP-B316_2.6-2.7
										epth Range	0-0.1	0.4-0.5	1.1-1.3	2.6-2.7
										le Date	9/12/2020	9/12/2020	9/12/2020	9/12/2020
									Lab Repo	ort Number	ES2044077	ES2044077	ES2044077	ES2044077
			NSW EPA	NSW EPA	TCLP1	NSW EPA	NSW EPA	TCLP2	NSW 2014	NSW 2014				
			2014	2014	General Solid	2014	2014	Restricted	Excavated	Excavated				
			General Solid	General Solid	Waste (µg/l	Restricted	Restricted	Solid Waste	Natural	Natural				
			Waste (CT1)	Waste SCC1	or mg/l)^#	Solid Waste	Solid Waste	(µg/l or	Material	Material				
Analyte	Units	EQL	1			CT2	SCC2	mg/l)^#	(Absolute	(Max				
									Max)	Average)				
Endrin	mg/kg	0.05							-	-	< 0.05	<0.05	< 0.05	<0.05
Endrin aldehyde	mg/kg	0.05							-	-	< 0.05	<0.05	< 0.05	<0.05
Endrin ketone	mg/kg	0.05							-	-	< 0.05	<0.05	<0.05	<0.05
g-BHC (Lindane)	mg/kg	0.05							-	-	< 0.05	<0.05	< 0.05	<0.05
Heptachlor	mg/kg	0.05							-	-	< 0.05	<0.05	< 0.05	<0.05
Heptachlor epoxide	mg/kg	0.05							-	-	< 0.05	<0.05	< 0.05	<0.05
Methoxychlor	mg/kg	0.1							-	-	<0.2	<0.2	<0.2	<0.2
Organophosphorus Pesticides														
Moderately Harrmful Pesticides (Waste Classification Guidelines)	mg/kg	-	250	250	N/A	1000	1000	N/A	-	-	<0.5	<0.5	<0.5	<0.5
Azinophos methyl	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Carbophenothion	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	mg/kg	0.05	4	7.5	0.2	16	30	0.8	-	-	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Diazinon	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Dichlorvos	mg/kg	0.05							-	-	< 0.05	<0.05	<0.05	<0.05
Dimethoate	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Ethion	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Fenamiphos	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Fenthion	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Malathion	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Methyl parathion	mg/kg	0.2							-	-	<0.2	<0.2	<0.2	<0.2
Monocrotophos	mg/kg	0.2							-	-	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	mg/kg	0.1							-	-	<0.05	<0.05	<0.05	<0.05
Parathion	mg/kg	0.05							-	-	<0.2	<0.2	<0.2	<0.2
Prothiofos	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
Polycyclic Aromatic Hydrocarbons	- /1	0.4									-0.5	.0.5	-0.5	-0.5
Acenaphthene	mg/kg	0.1							-	-	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	mg/kg	0.1							-	-	<0.5	<0.5	<0.5	<0.5
Anthracene	mg/kg	0.1							-	-	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	mg/kg	0.1	0.0	40	0.04	2.2	22	0.46	-	-	<0.5	<0.5	<0.5	<0.5
Benzo(a) pyrene	mg/kg	0.05	0.8	10	0.04	3.2	23	0.16	1	0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ	mg/kg	-							-	-	<1.21	<1.21 0.6	<1.21	<1.21 0.6
Benzo(a)pyrene TEQ (half LOR)	mg/kg	0.5								-	0.6 1.2	0.6 1.2	0.6	0.6
Benzo(a)pyrene TEQ (LOR) Benzo(a)pyrene TEQ (zero)	mg/kg mg/kg	0.5 0.5								-	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero) Benzo(b+j)fluoranthene		0.5							-	-	<0.5	<0.5	<0.5	<0.5
Benzo(g,h,i)perylene	mg/kg mg/kg	0.5								-	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	mg/kg mg/kg	0.1							-	-	<0.5	<0.5	<0.5	<0.5
Carcinogenic PAHs (as BaP TEQ)	mg/kg	-								-	<1.21	<1.21	<1.21	<1.21
Chrysene	mg/kg	0.1								-	<0.5	<0.5	<0.5	<0.5
Dibenz(a,h)anthracene	mg/kg	0.1								-	<0.5	<0.5	<0.5	<0.5
Fluoranthene	mg/kg	0.1								_	<0.5	<0.5	<0.5	<0.5
Fluorene	mg/kg	0.1							_	-	<0.5	<0.5	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1							_	-	<0.5	<0.5	<0.5	<0.5
Naphthalene	mg/kg	0.1							-	-	<0.5	<0.5	<0.5	<0.5
Phenanthrene	mg/kg	0.1							_	-	<0.5	<0.5	<0.5	<0.5
Pyrene	mg/kg	0.1							-	-	<0.5	<0.5	<0.5	<0.5
PAHs (Sum of total)	mg/kg	0.5/0.05							40	20	<0.5	<0.5	<0.5	<0.5
PAH (total, NSW Waste 2014)	mg/kg	-	200	200	N/A	800	800	N/A	-	-	<7.5	<7.5	<7.5	<7.5
Phenols	d'' \a···				. 1/1	300	, 500	. 4/1			7.10	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,	
Phenolics Total	mg/kg	1								-	<1	-	-	-
Polychlorinated Biphenyls	o' 10					•						•	•	•
PCBs (Sum of total)	mg/kg	0.1	<50		N/A	<50		N/A	-	-	<0.1	-	-	-
Volatile Organic Compounds	. 0, 0	•									•	•	•	
1,2,3-trichlorobenzene	mg/kg	0.5							-	-	<0.5	<0.5	-	-
1,2,4-trichlorobenzene	mg/kg	0.5							-	-	<0.5	<0.5	-	-
<u> </u>											•	•	•	

										nple ID	SMGW-TP-B316 0-0.1	SMGW-TP-B316 0.4-0.5	SMGW-TP-B316 1.1-1.3	SMGW-TP-B316_2.6-2.7
										epth Range	0-0.1	0.4-0.5	1.1-1.3	2.6-2.7
										ole Date	9/12/2020	9/12/2020	9/12/2020	9/12/2020
											ES2044077	ES2044077	ES2044077	ES2044077
			NICIA/ EDA	INCM/ FDA	TCI D1	NCM/ FDA	NICIAL EDA	TCI D2		ort Number	ES2044077	ES2044077	ES2044077	ES2044077
			NSW EPA	1	TCLP1	NSW EPA	NSW EPA	TCLP2	NSW 2014	NSW 2014				
			2014	2014	General Soli	1	2014	Restricted	Excavated	Excavated				
				General Solid	1		Restricted	Solid Waste	Natural	Natural				
			Waste (CT1)	Waste SCC1	or mg/l)^#	Solid Waste	Solid Waste		Material	Material				
Analyte	Units	EQL	1			CT2	SCC2	mg/I)^#	(Absolute	(Max				
									Max)	Average)				
1,2-dichlorobenzene	mg/kg	0.5	86	155	4.3	344	620	17.2	_	-	<0.5	<0.5	-	-
1,3-dichlorobenzene	mg/kg	0.5							_	-	<0.5	<0.5	-	-
1,4-dichlorobenzene	mg/kg	0.5	150	270	7.5	600	1080	30	_	-	<0.5	<0.5	-	-
2-chlorotoluene	mg/kg	0.5	150	270	7.5	000	1000	30		_	<0.5	<0.5	_	_
4-chlorotoluene		0.5							-		<0.5	<0.5	<u>-</u>	-
	mg/kg	0.5							-	-	<0.5	<0.5		
Bromobenzene	mg/kg		2000	2500	400	0000	44400	400	-	-			-	-
Chlorobenzene	mg/kg	0.5	2000	3600	100	8000	14400	400	-	-	<0.5	<0.5	-	-
Hexachlorobenzene	mg/kg	0.05							-	-	<0.05	<0.05	<0.05	<0.05
cis-1,4-Dichloro-2-butene	mg/kg	0.5							-	-	<0.5	<0.5	-	-
Pentachloroethane	mg/kg	0.5							-	-	<0.5	<0.5	-	-
trans-1,4-Dichloro-2-butene	mg/kg	0.5							-	-	<0.5	<0.5	-	-
1,2,4-trimethylbenzene	mg/kg	0.5							-	-	<0.5	<0.5	-	-
1,3,5-trimethylbenzene	mg/kg	0.5							-	-	<0.5	<0.5	-	-
Isopropylbenzene	mg/kg	0.5							-	-	<0.5	<0.5	-	-
n-butylbenzene	mg/kg	0.5							-	-	<0.5	<0.5	-	-
n-propylbenzene	mg/kg	0.5								-	<0.5	<0.5	-	-
p-isopropyltoluene	mg/kg	0.5									<0.5	<0.5	_	_
sec-butylbenzene	mg/kg	0.5								-	<0.5	<0.5	-	-
		0.5	60	108	3	240	432	12	-		<0.5	<0.5	<u>-</u>	-
Styrene	mg/kg	_	60	108	3	240	432	12	-	-				
tert-butylbenzene	mg/kg	0.5							-	-	<0.5	<0.5	-	-
2-hexanone (MBK)	mg/kg	5							-	-	<5	<5	-	-
Methyl Ethyl Ketone	mg/kg	5	4000	7200	200	16000	28800	800	-	-	<5	<5	-	-
4-Methyl-2-pentanone	mg/kg	5							-	-	<5	<5	-	-
Carbon disulfide	mg/kg	0.5							-	-	<0.5	<0.5	-	-
Vinyl acetate	mg/kg	5							-	-	<5	<5	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.5	200	360	10	800	1440	40	-	-	<0.5	<0.5	-	-
1,1,1-trichloroethane	mg/kg	0.5	600	1080	30	2400	4320	120	-	-	<0.5	<0.5	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.5	26	46.8	1.3	104	187.2	5.2	-	-	<0.5	<0.5	-	-
1,1,2-trichloroethane	mg/kg	0.5	24	43.2	1.2	96	172.8	4.8	_	-	<0.5	<0.5	-	-
1,2-dibromoethane	mg/kg	0.5		1512		30	272.0		_	-	<0.5	<0.5	-	-
1,1-dichloroethane	mg/kg	0.5						+	_	-	<0.5	<0.5	-	_
1,1-dichloroethane	mg/kg	0.5	14	25	0.7	56	100	2.8		-	<0.5	<0.5	<u> </u>	-
			14	25	0.7	30	100	2.8	-		<0.5			
1,1-dichloropropene	mg/kg	0.5 0.5							-	-		<0.5	-	-
1,2,3-trichloropropane	mg/kg	0.5							-	-	<0.5	<0.5	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.5							-	-	<0.5	<0.5	-	-
1,2-dichloroethane	mg/kg	0.5	10	18	0.5	40	72	2	-	-	<0.5	<0.5	-	-
1,2-dichloropropane	mg/kg	0.5							-	-	<0.5	<0.5	-	-
1,3-dichloropropane	mg/kg	0.5							-	-	<0.5	<0.5	-	-
2,2-dichloropropane	mg/kg	0.5							-	-	<0.5	<0.5	-	-
Bromodichloromethane	mg/kg	0.5							-	-	<0.5	<0.5	-	-
Bromoform	mg/kg	0.5							-	-	<0.5	<0.5	-	-
Bromomethane	mg/kg	5							-	-	<5	<5	-	-
Carbon tetrachloride	mg/kg	0.5	10	18	0.5	40	72	2	-	-	<0.5	<0.5	-	-
Chlorodibromomethane	mg/kg	0.5							_	-	<0.5	<0.5	-	-
Chloroethane	mg/kg	5								_	<5	<5	-	-
Chloroform	mg/kg	0.5	120	216	6	480	864	24		-	<0.5	<0.5	-	_
Chloromethane	mg/kg	5	120	210		700	554	2-7		-	<5	<5	-	-
cis-1,2-dichloroethene	mg/kg	0.5								-	<0.5	<0.5	-	-
		0.5									<0.5	<0.5		
cis-1,3-dichloropropene	mg/kg									-			-	-
Dibromomethane	mg/kg	0.5							-	-	<0.5	<0.5	-	-
Dichlorodifluoromethane	mg/kg	5							-	-	<5	<5	-	-
Hexachlorobutadiene	mg/kg	0.5							-	-	<0.5	<0.5	-	-
Iodomethane	mg/kg	0.5							-	-	<0.5	<0.5	-	-
Trichloroethene	mg/kg	0.5	10	18	0.5	40	72	2	-	-	<0.5	<0.5	-	-
Trichlorofluoromethane	mg/kg	5							-	-	<5	<5	-	-
Tetrachloroethene	mg/kg	0.5	14	25.2	0.7	56	100.8	2.8	-	-	<0.5	<0.5	-	-
trans-1,2-dichloroethene	mg/kg	0.5							-	-	<0.5	<0.5	-	-
trans-1,3-dichloropropene	mg/kg	0.5							-	-	<0.5	<0.5	-	-
Vinyl chloride	mg/kg	5	4	7.2	0.2	16	28.8	0.8		-	<5	<5	-	-
	···b/ ι\δ			7.6	0.2	10	20.0	0.0				-5	1	ı

LocCode

SMGW-TP-B316

SMGW-TP-B316

SMGW-TP-B316

SMGW-TP-B316

									Lo	cCode	SMGW-TP-B316	SMGW-TP-B316	SMGW-TP-B316	SMGW-TP-B316
									San	nple ID	SMGW-TP-B316 0-0.1	SMGW-TP-B316 0.4-0.5	SMGW-TP-B316 1.1-1.3	SMGW-TP-B316 2.6-2.7
										Depth Range	0-0.1	0.4-0.5	1.1-1.3	2.6-2.7
										ple Date	9/12/2020	9/12/2020	9/12/2020	9/12/2020
										ort Number	ES2044077	ES2044077	ES2044077	ES2044077
			NSW EPA	NSW EPA	TCLP1	NSW EPA	NSW EPA	TCLP2	NSW 2014	NSW 2014	202011077	1202011077	12020 . 1077	1202011077
			2014	2014	General Solid	1	2014	Restricted	Excavated	Excavated				
				1	Waste (µg/l	1	Restricted	Solid Waste	Natural	Natural				
				Waste SCC1	11 02	Solid Waste	Solid Waste	(µg/l or	Material	Material				
Analyte	11-2-	EQL	waste (e11)	Waste seel	OI IIIg/I/ #	CT2	SCC2	mg/l)^#	(Absolute	(Max				
Analyte	Units	EQL				1012	JCCZ	1116/1/ #	Max)	Average)				
Per- and Polyfluoroalkyl Substances		-							,					
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	mg/kg	0.0005							-	-	<0.0005	<0.0005	-	<0.0005
6:2 Fluorotelomer Sulfonate (6:2 FtS)	mg/kg	0.0005							-	-	<0.0005	<0.0005	-	<0.0005
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	mg/kg	0.0005							-	-	<0.0005	<0.0005	-	<0.0005
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	mg/kg	0.0005							-	-	<0.0005	<0.0005	-	<0.0005
Perfluorooctane sulfonamide (FOSA)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
N-Methyl perfluorooctane sulfonamide (MeFOSA)	mg/kg	0.0005							-	-	< 0.0005	<0.0005	-	<0.0005
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	mg/kg	0.0005							-	-	<0.0005	<0.0005	-	<0.0005
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE Alcohol)	mg/kg	0.0005							-	-	<0.0005	<0.0005	-	<0.0005
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE	mg/kg	0.0005							-	-	<0.0005	<0.0005	-	<0.0005
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluorobutane sulfonic acid (PFBS)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluoropentane sulfonic acid (PFPeS)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluorohexane sulfonic acid (PFHxS)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluoroheptane sulfonic acid (PFHpS)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluorooctane sulfonic acid (PFOS)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluorodecane sulfonic acid (PFDS)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluorobutanoic acid (PFBA)	mg/kg	0.001							-	-	<0.001	<0.001	-	<0.001
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluorooctanoate (PFOA)	mg/kg	0.0002		18	500		72	2000	-	-	<0.0002	<0.0002	-	<0.0002
Perfluorononanoic acid (PFNA)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluorodecanoic acid (PFDA)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluoroundecanoic acid (PFUnDA)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluorododecanoic acid (PFDoDA)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0005							-	-	<0.0005	<0.0005	-	<0.0005
Sum of PFAS	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002
Sum of PFHxS and PFOS	mg/kg	0.0002		1.8	50		7.2	200	-	-	<0.0004	<0.0004	-	<0.0004
Sum of PFAS (WA DER List)	mg/kg	0.0002							-	-	<0.0002	<0.0002	-	<0.0002

Notes:

-: Not analysed

mg/kg: miligrams per kilogram

Sum of Scheduled Chemicals (SC) calculated by summing reported results (not all SC were included in the analytical suite)

Sum of Moderately Harmful Pesticides (MHP) calculated by summing reported results (not all MHP were included in the analytical suite)

~: Waste Classification criteria for chromium VI

^: Where TCLP testing has been undertaken, the SCC and TCLP values are adopted as opposed to CT values

Table C5 - Summary of Groundwater Results for SMGW-BH-B106

SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106
SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW_BH_B106
ES2014202	ES2018302	ES2022565	ES2026610	ES2030053	ES2105242
19122621	19122621	19122621	19122621	19122621	19122621

						SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106
						27/04/2020	27/05/2020	30/06/2020	31/07/2020	26/08/2020	15/02/2021
	<u>U</u> nit	EQL	DGV								
				Drinking Water Health x10	Drinking Water Aesthetic						
IL Parameters											
Electrical Conductivity @ 25°C	μS/cm	1				17,200	16,000	16,700	19,800	20,300	21,100
pH (Lab)	pH_Units	0				7.19	7.03	6.44	6.59	6.96	6.55
Total Dissolved Solids @180°C	mg/L	5				12,700	11,900	15,500	13,700	14,200	15,700
Total Dissolved Solids @180°C (filtered)	mg/L	5				-	-	-	-	-	-
Sodium (filtered)	mg/L	0.1			180	2,310	2,370	3,050	2,510	2,950	3,270
Potassium (filtered)	mg/L	0.1				20	19	20	19	16	17
Calcium (filtered)	mg/L	0.1				357	265	305	235	255	256
Magnesium (filtered)	mg/L	0.1				691	690	961	729	892	1,000
Chloride	mg/L	1			250	5,350	5,190	6,690	5,890	6,810	6,720
Sulphate (as SO4) (filtered)	mg/L	1		5,000	250	1,410	-	-	-	-	-
Sulfate as SO4 - Turbidimetric (filtered)	mg/L	1		5,000	250	-	1,330	1,580	1,520	1,550	1,650
Bicarbonate Alkalinity (as CaCO3)	mg/L	1				381	278	264	286	231	252
Carbonate Alkalinity (as CaCO3)	mg/L	1				<1	<1	<1	<1	<1	<1
Hydroxide Alkalinity (as CaCO3)	mg/L	1				<1	<1	<1	<1	<1	<1
Total Alkalinity (as CaCO3)	mg/L	1				381	278	264	286	231	252
Nitrate (as N)	mg/L	0.005		113		4.06	2.45	0.63	2.20	-	0.32
Nitrite (as N)	mg/L	0.005		6.8		0.03	0.01	< 0.01	< 0.01	-	< 0.01
Ammonia (as N)	mg/L	0.005	0.9		0.38	0.67	0.80	1.31	1.23	-	0.84
Total Kjeldahl Nitrogen (as N)	mg/L	0.05				1.2	1.2	1.7	1.6	-	1.3
Nitrogen (Total)	mg/L	0.05				5.3	3.7	2.3	3.8	-	1.6
Fluoride	mg/L	0.1		15		0.4	0.3	0.3	0.3	0.2	0.2
Reactive Phosphorus (as P)	mg/L	0.005				< 0.01	< 0.01	< 0.01	< 0.01	-	< 0.01
Total Phosphorus (as P)	mg/L	0.01				0.06	0.22	0.10	0.08	-	0.08
Total Suspended Solids	mg/L	5				65	2,430	3,310	792	3,100	560
Total Anions	meq/L	0.01				188	180	227	204	229	229
Total Cations	meq/L	0.01				176	174	227	181	215	238
Ionic Balance (Lab)	%	0.01				3.36	1.72	0.13	5.75	3.18	1.88
Hardness (as CaCO3)	μg/L	1,000				-	-	-	3,590,000	-	4,760,000
Hardness (as CaCO3) (filtered)	μg/L	1,000				3,740,000	3,500,000	4,720,000	-	4,310,000	-
ample Quality Parameters											
Nitrate + Nitrite (as N)	mg/L	0.01				4.09	2.46	0.63	2.20	-	0.32
Aicrobiological											
Sulphate Reducing Bacteria Population Estimate	pac/mL	1				-	500,000	6,000	27,000	115,000	115,000
Other		1									
Methane	μg/L	5				19	-	-	-	-	-
Perfluorinated Compounds		1					+	1	+	+	
10:2 Fluorotelomer sulfonic acid	μg/L	0.01				< 0.05	+ -	1 -	-	-	-
4:2 Fluorotelomer sulfonic acid	μg/L	0.0005				< 0.05	-	+ -	-	-	-
8:2 Fluorotelomer sulfonate	μg/L	0.0005				<0.05	-	-	-	-	-
N-Et-FOSA	μg/L	0.0025				<0.05	+ -	†	+ .	 	-

_						
Table C5 (continued)- Summary of Groundwater Results for SMGW-BH-B106	19122621	19122621	19122621	19122621	19122621	19122621
Table 65 (continued) Summary of Groundwater Results for SWOW Bit B100	ES2014202	ES2018302	ES2022565	ES2026610	ES2030053	ES2105242
	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW_BH_I
	CMCW PH P106	CMCW PH P100	CMCW PH P100	CMCW PH P106	CMCW PU P106	CMCW/ DU D

									27/04/2020	27/05/2020	30/06/2020	31/07/2020	26/08/2020	15/02/2021
	<u>U</u> nit	EQL						HSL fo Vapour						
								Intrusion, Clay 2						
								to<4m						
			DGV	Water Quality			Recreational Water							
				Guidelines	Drinking Water	Drinking Water	Quality Guidelines							
					Health (x10)	Aesthetic								
N. F. FROS		0.0005			(X1U)				0.05		1	ı		
N-Et-FOSE	μg/L	0.0025							<0.05 <0.05					
N-Me-FOSA N-Me-FOSE	μg/L	0.0025							<0.05	-	-	-		-
Perfluorobutanoic acid (PFBA)	μg/L μg/L	0.0025 0.0005							<0.05		-	 	+	
Perfluorobeptane sulfonic acid	μg/L	0.0003							<0.02					
Perfluoro-n-hexadecanoic acid	μg/L	0.002							-0.02				-	
Perfluoro-n-pentanoic acid (PFPeA)	μg/L	0.0005							< 0.02			†		
Perfluoropentane sulfonic acid	μg/L	0.001							<0.02	-	-	-	-	-
Perfluoro-1-dodecanesulfonate	μg/L	0.0005										1 -	-	-
Perfluorononanesulfonic acid (PFNS)	ng/l	0.5								-			-	-
PFDcS	μg/L	0.0005							< 0.02	-	-	-	-	-
Sum of PFAS (Swedish WQ Guideline plus 8	μg/L	0.01							-	-		-	-	-
N-methyl-perfluorooctanesulfonamidoacetic acid	μg/L	0.0025							<0.02	-	-	-	-	-
Sum of PFHxS and PFOS (lab reported)	μg/L	0.0002					2		<0.01	-		•	-	
Sum of US EPA PFAS (PFOS + PFOA)	μg/L	0.01							-	-		-		-
Sum of WA DER PFAS (n=10)	μg/L	0.01							<0.01	-	-	-	-	
Sum of PFASs (n=28)	μg/L	0.01							<0.01	-	-	-		-
Perfluorobutanesulfonic acid (PFBS) Perfluorodecanesulfonic acid (PFDS)	μg/L μg/L	0.001							\U.UZ	-	1	 	+	
Perfluorodecanesuitonic acid (PFDS) Perfluorodecanoic acid (PFDA)	μg/L μg/L	0.02							<0.02		 	 	+	
Perfluorodocanoic acid (PFDA) Perfluorododecanoic acid (PFDoA)	μg/L μg/L	0.001							<0.02	-	<u> </u>	 	 	
Perfluoroheptanoic acid (PFHpA)	μg/L μg/L	0.0005							<0.02				1	
Perfluoroctanesulfonic acid (PFOS)3	μg/L	0.0002		0.00023					<0.01	-			-	
Perfluoroctanoate (PFOA)	μg/L	0.0005		19			10		<0.01	-		-	-	-
Perfluorohexanesulfonic acid (PFHxS)	μg/L	0.0002							<0.02	-	-		<u> </u>	-
Perfluorononanoic acid (PFNA)	μg/L	0.001							<0.02	-	-	-	-	-
Perfluorohexanoic acid (PFHxA)	μg/L	0.0005							<0.02	-	-	-	-	-
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.0005							< 0.05	-	-	-	-	-
N-ethyl-perfluorooctanesulfonamidoacetic acid	μg/L	0.0025							<0.02	-	-	-	-	
Perfluorooctanesulfonamide (PFOSA)	μg/L	0.002							<0.02	-	-	-	-	-
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.001							< 0.05	-		-	-	-
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.001							< 0.02	-	-	-	-	-
Perfluoroundecanoic acid (PFUnA)	μg/L	0.001							< 0.02	-	-	-	-	-
TRH - HSL														
TRH C6 - C10 Fraction F1	mg/L	0.01							< 0.02	-	-	-	-	-
TRH C6 - C10 Fraction Less BTEX F1	mg/L	0.01						NL	< 0.02	-	-	-	-	-
TRH >C10 - C16 Fraction F2	mg/L	0.05							<0.1	-		•	-	•
TRH >C10 - C16 Fraction Less Naphthalene (F2)	mg/L	0.05						NL	<0.1	-	-	-	-	
TRH >C16 - C34 Fraction F3	mg/L	0.1							<0.1	-	-	-	-	•
TRH >C34 - C40 Fraction F4 TRH C37 - C40 Fraction	mg/L mg/L	0.1							<0.1		-	 	+	
TRH+C10 - C40 (Sum of total) (Lab Reported)	mg/L	0.2							<0.1					
TPH Group - Waste Classification	8/ -										<u> </u>	ł	+	+
TRH CG - C9 Fraction	mg/L	0.01							<0.02					
TRH C10 - C14 Fraction	mg/L	0.05							< 0.05			-		
TRH C15 - C28 Fraction	mg/L	0.1							<0.1	-				
TRH C29 - C36 Fraction	mg/L	0.05							< 0.05			-	-	-
TRH+C10 - C36 (Sum of total) (Lab Reported)	mg/L	0.05							< 0.05	-			-	-
BTEX														
Benzene	μg/L	0.5	950		10	-		30,000	<1	-	-	-	-	-
Toluene	μg/L	0.5	180		8,000	25		NL	<2			-	-	-
Ethylbenzene	μg/L	0.5	80		3,000	3		NL	<2	-		-	-	-
Xylenes (m & p)	μg/L	1	75+200						<2	-	-	-	-	-
Xylene (o)	μg/L	0.5	350						<2	-		•	-	•
Xylenes (Sum of total) (Lab Reported)	μg/L	1.5			6,000	20		NL	<2	-	· ·	<u> </u>	<u> </u>	
Total BTEX	μg/L	1							<1		-		-	•
Heavy Metals Aluminium	ua!	-	0.0			0.2			000	5.000	000	4.500	2 200	2.040
Aluminium Aluminium (filtered)	μg/L μg/L	5	0.8			0.2			880	5,800	960 20	1,500	2,380 10	2,940 90
Barium	μg/L μg/L	1	0.0		20.000	0.2			90	104	53	71	55	74
Barium (filtered)	μg/L	1			20,000				83	64	50	48	41	45
Beryllium	μg/L	0.5			600				<1	1	<1	<1	<1	1
Beryllium (filtered)	μg/L	0.5			600				<1	<1	<1	<1	<1	1
Boron	μg/L	5	940		40,000				<50	<50	<50	<50	<50	<50
Boron (filtered)	μg/L	5	940		40,000				<50	<50	<50	<50	<50	<50
Cobalt	μg/L	1	1.4						120	174	240	177	282	294
Cobalt (filtered)	μg/L	1	1.4						113	133	230	172	258	327
Iron	mg/L	0.005				0.3			3.27	13.7	12.8	2.29	16.0	22.4
Iron (filtered)	mg/L	0.005	1900		5,000	0.3			2.23 2,570	2.08 3,260	10.6	0.62 3,480	13.2 4,860	17.5 5,420
Manganese Manganese (filtered)	μg/L μg/L	1	1900 1900		5,000				2,570 2,550	3,260 2,560	5,210 4,710	3,480 3,280	4,860 4,950	5,420 5,170
Molybdenum	μg/L μg/L	1	34		500				2,550	2,560	4,710 <1	3,280	4,950 <1	5,170 <1
Molybdenum (filtered)	μg/L μg/L	1	34		500				4	2	<1	<1	<1	<1
Selenium	μg/L μg/L	1	5		100				<10	<10	<10	<10	<10	<10
Selenium (filtered)	μg/L	1	5		100				<10	<10	<10	<10	<10	10
Strontium	μg/L	1							2,880	2,460	2,640	1,840	2,320	1,930
Strontium (filtered)	μg/L	1							2,820	2,200	2,640	1,860	2,310	2,100
Vanadium	μg/L	1	6						<10	20	<10	<10	<10	<10
Vanadium (filtered)	μg/L	1	6						<10	<10	<10	<10	<10	<10
Arsenic	μg/L	1	13 (As III)		100				<1	4	<1	<1	1	1
Arsenic (filtered)	μg/L	1	13 (As III)		100				<1	<1	2	<1	<1	<1
Cadmium	μg/L	0.1	7.5		20				0.7	0.8	0.4	0.8	0.4	0.5
Cadmium (filtered) Chromium	μg/L	0.1	7.5		20 500 for Cr(VI)				0.6 <1	0.8 14	0.4	0.7	0.4	0.3 4
Chromium Chromium (filtered)	μg/L μg/L	1	94 for Cr (III) and 1 for Cr(VI) 94 for Cr (III) and 1 for Cr(VI)		500 for Cr(VI) 500 for Cr(VI)				<1		3	Z 21	-1	-4 -<1
Copper Copper	μg/L μg/L	1	1.4		20,000	1,000			8	41	9	9	14	30
Copper (filtered)	μg/L μg/L	1	1.4		20,000	1,000			37	7	3	6	8	1
		· -			,	-,							•	

Table C5 (continued)- Summary of Groundwater Results for SMGW-BH-B106

19122621	19122621	19122621	19122621	19122621	19122621
ES2014202	ES2018302	ES2022565	ES2026610	ES2030053	ES2105242
SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW_BH_B106
SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106
27/04/2020	27/05/2020	30/06/2020	31/07/2020	26/08/2020	15/02/2021

						, . ,	, ,	, ,		.,,	.,.,
	<u>U</u> nit	EQL	DGV	Drinking Water Health (x10)	Drinking Water Aesthetic						
Lead	μg/L	1	603	100		<1	15	2	1	4	4
Lead (filtered)	μg/L	1	603	100		<1	<1	<1	<1	<1	<1
Mercury	μg/L	0.05	0.06	10		< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mercury (filtered)	μg/L	0.05	0.06	10		< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	μg/L	1	352	200		98	132	168	128	195	208
Nickel (filtered)	μg/L	1	352	200		97	106	163	128	175	223
Zinc	μg/L	1	256		3000	167	297	274	281	345	487
Zinc (filtered)	μg/L	1	256		3000	178	184	279	271	322	274
PAH											
Acenaphthene	μg/L	0.1				<1.0	-	-	-	-	-
Acenaphthylene	μg/L	0.1				<1.0	-	-	-	-	-
Anthracene	μg/L	0.1	0.01			<1.0	-	-	-	-	-
Benz(a)anthracene	μg/L	0.1				<1.0	-	-	-	-	-
Benzo(a)pyrene	μg/L	0.1	0.1	0.1		<0.5	-	-	-	-	-
Benzo(a)pyrene TEQ (lower bound)*	μg/L	0.5				<0.5	-	-	-	-	-
Benzo(b)&(j)fluoranthene	μg/L	0.1				<1.0	-	-	-	-	-
Benzo(g,h,i)perylene	μg/L	0.1				<1.0	-	-	-	-	-
Benzo(k)fluoranthene	μg/L	0.1				<1.0	-	-	-	-	-
Chrysene	μg/L	0.1				<1.0	-	-	-	-	-
Dibenz(a,h)anthracene	μg/L	0.1				<1.0	-	-	-	-	-
Fluoranthene	μg/L	0.1	1			<1.0	-	-	-	-	-
Fluorene	μg/L	0.1				<1.0	-	-	-	-	-

Table C5 (continued)- Summary of Groundwater Results for SMGW-BH-B106					19122621	19122621	19122621	19122621	19122621	19122621
					ES2014202	ES2018302	ES2022565	ES2026610	ES2030053	ES2105242
						SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW_BH_B106
					SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106
				27/04/2020	27/05/2020	30/06/2020	31/07/2020	26/08/2020	15/02/2021	
	<u>U</u> nit	EQL								
			DGV	HSL Vapour Intrusion D, clay, 2 to <4 m						
Indeno(1,2,3-c,d)pyrene	μg/L	0.1			<1.0	-	-	-	-	-
Naphthalene	μg/L	0.1	16	NL	<1.0	-	-	-	-	-
Phenanthrene	μg/L	0.1	0.6		<1.0	-	-	-	-	-
Pyrene	μg/L	0.1			<1.0	-	-	-	-	-
PAH (Sum of Common 16 PAHs - Lab Reported)	μg/L	0.5			<0.5	-	-	-	-	-

Table C5 (continued)- Summary of Groundwater Results for SMGW-BH-B106

19122621	19122621	19122621	19122621	19122621	19122621
ES2014202	ES2018302	ES2022565	ES2026610	ES2030053	ES2105242
SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW_BH_B106
SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106	SMGW-BH-B106

						27/04/2020	27/05/2020	30/06/2020	31/07/2020	26/08/2020	15/02/2021
	<u>U</u> nit	EQL									
			SMW 95%								
			Protection of	Drinking Water	Drinking Water						
			Species ANZG	Health	Aesthetic						
			2018	(x10)							
Volatile Organic Compounds								1			
1,4-Dichlorobenzene	μg/L	0.3	60	400	0.3	<5	-	-	-	-	-
4-Chlorotoluene	μg/L	0.5				<5	-	-	-	-	-
1,2,3-Trichlorobenzene	μg/L	0.5	3			<5	-	-	-	-	-
1,2,4-Trichlorobenzene	μg/L	0.5	85			<5	-	-	-	-	-
1,2-Dichlorobenzene	μg/L	0.5	160	15,000	1	<5			†	l .	<u> </u>
1,3-Dichlorobenzene	μg/L	0.5	260	15,000	20	<5					
	μg/L	0.5	200		20			1		1	
2-Chlorotoluene						<5		_	-	-	-
Bromobenzene	μg/L	0.5				<5			-	-	
Chlorobenzene	μg/L	0.5	55	3,000	10	<5	-	-	-	<u> </u>	-
1,2,4-trimethylbenzene	μg/L	0.5				<5	-	-	-	-	-
1,3,5-Trimethylbenzene	μg/L	0.5				<5	-	-	-	-	-
Isopropylbenzene	μg/L	0.5	30			<5	-	-	-	-	-
n-Butylbenzene	μg/L	0.5				<5	-	-	-	-	-
n-Propylbenzene	μg/L	0.5				<5	-	-	-	-	-
	μg/L	0.5				<5	-	-	-	-	-
sec-Butylbenzene	μg/L	0.5				<5	_	-	_	_	-
	μg/L μg/L	0.5		300		<5		<u> </u>	<u> </u>		
				300				 	 	 	
tert-Butylbenzene	μg/L	0.5				<5	-	-	-	-	-
	μg/L	10				<50	-	-	-	-	
2-Hexanone	μg/L	5				<50	-	-	-	-	-
Methyl iso-butyl ketone	μg/L	5				<50	-	-	-	-	-
Vinyl acetate	μg/L	10				<50	-	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/L	0.5				<5	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/L	0.5	400			<5	-	-	-	-	-
1,1,1-Trichloroethane	μg/L	0.5	270			<5	-	-	-	-	-
1,1,2-Trichloroethane	μg/L	0.5	6,500			<5	_	_	_	_	_
1,2,3-Trichloropropane	μg/L	0.5	0,500			<5					
								<u> </u>	ł	ł	
1,2-Dibromo-3-chloropropane	μg/L	0.5				<5	-	<u> </u>	-	-	-
1,2-Dibromoethane	μg/L	0.5				<5	-	-	-	-	-
1,1-Dichloroethane	μg/L	0.5				<5	-	-	-	-	-
1,2-Dichloroethane	μg/L	0.5	1,900	30		<5	-	-	-	-	-
1,1-Dichloroethene	μg/L	0.5	700	300		<5	-	-	-	-	-
cis-1,2-Dichloroethene	μg/L	0.5				<5	-	-	-	-	-
trans-1,2-dichloroethene	μg/L	0.5				<5	-	-	-	-	-
1,2-Dichloropropane	μg/L	0.5	900			<5	-	-	-	-	-
	μg/L	0.5	1,100			<5	-	-	-	-	-
2,2-Dichloropropane	μg/L	0.5				<5		-	-	-	
	μg/L	0.5				<5					
		0.5				<5	 	 	 	 	
cis-1,3-Dichloropropene	μg/L						-	 	-	-	
	μg/L	0.5				<5	-	-	-	-	-
cis-1,4-Dichloro-2-butene	μg/L	1				<5	-	· ·	-	-	
	μg/L	1				<5	-	-	-	-	-
Bromodichloromethane	μg/L	0.5				<5	-	-	-	-	-
Bromoform	μg/L	0.5				<5	-	-	-	-	-
Bromomethane	μg/L	10				<50	-	-	-	-	-
Carbon disulfide	μg/L	2	20			<5	-	-	-	-	-
Carbon tetrachloride	μg/L	0.5	240	30		<5	-	-	-	-	-
Chlorodibromomethane	μg/L	0.5				<5	-	-	-	-	-
Chloroethane	μg/L	5				<50		-	-	-	
	μg/L μg/L	0.5	370			<5					
			370				 	 	 	 	
	μg/L	5				<50	-	 	-	-	
Dibromomethane	μg/L	0.5				<5		<u> </u>	· ·	· ·	· ·
	μg/L	5				<50	-	-	-	-	
Hexachlorobutadiene	μg/L	0.5		7		<5	-	-	-	-	-
	μg/L	5				<5	-	-	-	-	-
Pentachloroethane	μg/L	0.5	80			<5	-	-	-	-	-
Trichloroethene	μg/L	0.5	330			<5	-	-	-	-	-
Tetrachloroethene	μg/L	0.5	70	500		<5	-	-	-	-	-
		1				<50	-	-	-	-	-
Trichlorofluoromethane											
Trichlorofluoromethane Vinyl chloride	μg/L μg/L	0.3	100	3		<50	_	-	_	_	_

Statistics
* A Non Detect Multiplier of 0.5 has been applied.

Appendix D

Data Quality Objectives

Data Quality Objectives DSI for AEC35, 43A Luddenham Road, Orchard Hills SCAW Package for SMWSA

As shown in the table below, the DSI has been devised broadly in accordance with the seven-step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]* (NEPC, 2013).

Step	Summary
	The problem to be addressed is that the extent and nature of potential contamination at the site is unknown and it is unclear whether the site is suitable for the proposed uses.
1: State the problem	The objective of the proposed DSI is to determine the contamination status of the site with respect to the proposed land use and, if contamination is confirmed, to make recommendations for further investigations and / or remediation to render the site suitable for the proposed uses.
	In addition, soil from the site may potentially be reused elsewhere within SCAW and the data obtained in the DSI, therefore, may also be used for this purpose.
	A preliminary conceptual site model (CSM) has been prepared for the proposed development.
	The project team consists of experienced environmental engineers and scientists.
	The site history has identified possible contaminating previous uses which are identified in the preliminary CSM. The SAC for potential contaminants are detailed in the DSI.
2: Identify the decisions / goal of the study	The decision is to establish whether or not the results fall below the SAC or whether or not the 95% upper confidence limit of the sample population falls below the SAC. On this basis, an assessment of the site's suitability from a contamination perspective and whether (or not) further assessment and / or remediation will be derived.
3: Identify the information inputs	Inputs to the investigation will be the results of analysis of samples to measure the concentrations of potential contaminants at the site using NATA accredited laboratories and methods, where possible. The SAC for each of the potential contaminants are detailed in the DSI.
inioimation inputs	A photoionization detector (PID) is used on-site to screen soils for volatile contaminants. PID readings were used to inform sample selection for laboratory analysis.
4: Define the study boundaries	The site is identified in the DSI. The lateral boundaries of the investigation area are shown on Drawing 1, Appendix A.

	The decision rule is to compare all analytical results with SAC.					
	Initial comparisons will be with individual results then, where required and if possible,					
5: Develop the	summary statistics (including mean, standard deviation and 95% upper confidence limit (UCL) of the arithmetic mean (95% UCL)) to assess potential risks posed by the site contamination.					
analytical approach (or decision rule)	Where a sample result exceeds the adopted criterion, a further site-specific assessment will be made as to the risk posed by the presence of that contaminant(s).					
	Quality control results are to be assessed according to their relative percent difference (RPD) values. For field duplicates, triplicates and laboratory results, RPDs should generally be below 30%; for field blanks and rinsates, results should be at or less than the limits of reporting (NEPC, 2013).					
	Baseline condition: Contaminants at the site and/or statistical analysis of data (in line with NEPC (2013)) exceed human health and environmental SAC and pose a potentially unacceptable risk to receptors (null hypothesis).					
	Alternative condition: Contaminants at the site and statistical analysis of data (in line with NEPC (2013)) comply with human health and environmental SAC and as such, do not pose a potentially unacceptable risk to receptors (alternative hypothesis).					
	Unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true.					
6: Specify the performance or acceptance criteria	Uncertainty that may exist due to the above potential decision errors shall be mitigated as follows:					
·	As well as a primary screening exercise, the use of the 95% UCL as per NEPC (2013) may be applied, i.e.: 95% is the defined confidence level associated with the UCL on the geometric mean for contaminant data. The resultant 95%UCL shall subsequently be screened against the corresponding SAC.					
	The statistical assessment will only be able to be applied to certain data-sets, such as those obtained via systematic sampling. Identification of areas for targeted sampling will be via professional judgement and errors will not be able to have a probability assigned to them.					
7: Optimise the design	As the purpose of the sampling program is to assess for potential contamination across the site, the sampling program is reliant on professional judgement to identify and sample the potentially affected areas.					
for obtaining data	Further details regarding the sampling plan are presented in the DSI.					
	Adequately experienced environmental scientists / engineers are to conduct field work and sample analysis interpretation.					

Douglas Partners Pty Ltd

Appendix E

Laboratory Certificates and Chain of Custody

Appendix F

Site Assessment Criteria

Site Assessment Criteria for Soil for AEC35

Surface & Civil Alignment Works (SCAW) Package for Sydney Metro - Western Sydney Airport (SMWSA)

1.0 Introduction

It is understood that the two general future land uses associated at the site will comprise:

- The rail corridor. The rail corridor will include the rail line, embankments / noise barriers, a stabling yard and maintenance facility and stations; and
- Passive open space. These are areas immediately adjacent to the rail corridor that may be used for bike / commuter paths. It is assumed that there is an absence of buildings in areas of passive open space.

The following references were consulted for deriving 'Tier 1' SAC for soil for the two above-listed land uses:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater, 2011 (CRC CARE, 2011).
- HEPA, PFAS National Environmental Management Plan, 2020 [NEMP] (HEPA, 2020).

2.0 Human Health-based Criteria

Human health-based SAC for soil and the associated future land uses are listed in Tables 1 to 5. Tier 1 criteria comprise:

- Health Investigation Levels (HIL) for a broad range of metals and organics (Table 1). HIL are applicable for assessing human health risk via all relevant pathways of exposure;
- Health Screening Levels (HSL) for vapour intrusion for selected petroleum hydrocarbons and fractions (Tables 2 and 3). These are applicable for assessing human health via the inhalation pathway. HSL are dependent on soil type and depth. HSL D are applicable to soil / areas to be covered by buildings (e.g., stations, offices and enclosed sheds);
- HSL for direct contact for selected petroleum hydrocarbons and fractions (Table 4). These are applicable for assessing human health via the direct contact pathway;
- Health investigation levels (HIL) for per- and poly-fluoroalkyl substances (PFAS) (Table 5). At the
 time of preparing this document, screening values were available only for perfluorooctane sulfonate
 (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS); and
- Health screening levels for asbestos (Table 6).

For HSL for vapour intrusion, HSL for clay soils are shown as these are the predominant soil types at the site.

Table 1: Health Investigation Levels (Tier 1) from NEPM

Contaminant	HIL C for Passive Open Space (mg/kg)	HIL D for Rail Corridor (mg/kg)	
Metals and Inorganics	<u> </u>		
Arsenic	300	3000	
Cadmium	90	900	
Chromium (VI)	300	3600	
Copper	17 000	240 000	
Lead	600	1500	
Mercury (inorganic)	80	730	
Nickel	1200	6000	
Zinc	30 000	400 000	
Cyanide (free)	240	1500	
Polycyclic Aromatic Hydrocarbon	s (PAH)		
Benzo(a)pyrene TEQ	3	40	
Total PAH	300	4000	
Phenois			
Phenol	40 000	240 000	
Pentachlorophenol	120	660	
Cresols	4000	25 000	
Organochlorine Pesticides (OCP)			
DDT+DDE+DDD	400	3600	
Aldrin and dieldrin	10	45	
Chlordane	70	530	
Endosulfan	340	2000	
Endrin	20	100	
Heptachlor	10	50	
НСВ	10	80	
Methoxychlor	400	2500	
Toxaphene	30	160	
Organophosphorus Pesticides (O	PP)		
Chlorpyrifos	250	2000	
Polychlorinated Biphenyls (PCB)	<u> </u>		
PCB	1	7	

Table 2: Health Screening Levels (Tier 1) for Vapour Intrusion for Passive Open Space from NEPM

Contaminant	HSL C (mg/kg)	HSL C (mg/kg)	HSL C (mg/kg)	HSL C (mg/kg)
CLAY	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+
Benzene	NL	NL	NL	NL
Toluene	NL	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	NL	NL	NL	NL
Naphthalene	NL	NL	NL	NL
TPH C6-C10 less BTEX	NL	NL	NL	NL
TPH >C10-C16 less naphthalene	NL	NL	NL	NL

Notes: TPH is total petroleum hydrocarbons

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

Table 3: Health Screening Levels (Tier 1) for Vapour Intrusion for Rail Corridor from NEPM

Contaminant	HSL D (mg/kg)	HSL D (mg/kg)	HSL D (mg/kg)	HSL D (mg/kg)
CLAY	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+
Benzene	4	6	9	20
Toluene	NL	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	NL	NL	NL	NL
Naphthalene	NL	NL	NL	NL
TPH C6-C10 less BTEX	310	480	NL	NL
TPH >C10-C16 less naphthalene	NL	NL	NL	NL

Notes: TPH is total petroleum hydrocarbons

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

Table 4: Health Screening Levels (Tier 1) for Direct Contact from CRC CARE (2011)

Contaminant	HSL C for Passive Open Space (mg/kg)	HSL D for Rail Corridor (mg/kg)
Benzene	120	430
Toluene	18 000	99 000
Ethylbenzene	5300	27 000
Xylenes	15 000	81 000
Naphthalene	1900	11 000
TPH C6-C10 less BTEX	5100	26 000
TPH >C10-C16 less naphthalene	3800	20 000
TPH >C16-C34	5300	27 000
TPH >C34-C40	7400	38 000

Notes: TPH is total petroleum hydrocarbons.

Table 5: Health Investigation Levels (Tier 1) for PFAS from NEMP

Contaminant	HIL C for Passive Open Space (mg/kg)	HIL D for Rail Corridor (mg/kg)
PFOS and PFHxS *	1	20
PFOA	10	50

Notes: * Includes PFOS only, PFHxS only and the sum of the two.

Table 6: Health Screening Levels (Tier 1) for Asbestos from NEPM

Form of Asbestos	Health Screening Level C for Passive Open Space	Health Screening Level D for Rail Corridor
Bonded asbestos containing materials (ACM)	0.02%	0.05%
Fibrous asbestos (FA) and asbestos fines (AF) (friable asbestos)	0.001%	0.001%
All forms of asbestos	No visible asbestos for surface soil	No visible asbestos for surface soil

Notes: FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or was previously bonded and is now significantly degraded (crumbling).

AF includes free fibres, small fibre bundles and also small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

Surface soils defined as top 10 cm.

3.0 Ecological Criteria

Ecological SAC for soil and the associated future use are listed in Tables 7 to 9. Tier 1 criteria comprise:

- Ecological Investigation Levels (EIL) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene (Table 7). These are derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website and are used to assess contamination with respect to terrestrial ecosystems. Site specific inputs (including soil parameters) are required to calculate EIL. EIL typically apply to the top 2 m of soil; and
- Ecological Screening Levels (ESL) for selected petroleum hydrocarbon compounds and fractions, and benzo(a)pyrene, and are used to assess contamination with respect to terrestrial ecosystems (Table 8). ESL are dependent on soil type and typically apply to the top 2 m of soil.
- Ecological Soil Guideline Values (EGV) for PFAS (Table 9). At the time of preparing this document, screening values were available only for PFOS and PFOA.

EIL were determined using the NEPC Ecological Investigation Level Spreadsheet based on the following inputs:

- A pH of 5.63 which is the average pH of the three analysed soil samples (see laboratory certificate 301941) and the four previous results for SMGW-TP-B316; and
- A Cation Exchange Capacity (CEC) of 8.17 meq/100g which is the average CEC for the three analysed soil samples (see laboratory certificate 301941);
- Contamination is assumed to be 'aged' based on site history;
- A organic carbon content value of 1% has been used as a default value;
- A clay content of 10% has been used as a relatively conservative value given the clay soil profile encountered during the investigation; and
- The state is NSW and the traffic volume is 'low'.

Clay soils were encountered during the investigation and, so, ESL for fine soils have been adopted.

Table 7: Ecological Investigation Levels (Tier 1) from NEPM toolbox

Contaminant	Public Open Space EIL for Passive Open Space (mg/kg)	Commercial and Industrial EIL for Rail Corridor (mg/kg)
Metals		
Arsenic	100	160
Copper	160	230
Nickel	110	180
Chromium III	410	670
Lead	1100	1800
Zinc	350	510
PAH		
Naphthalene	170	370

Contaminant	Public Open Space EIL for Passive Open Space (mg/kg)	Commercial and Industrial EIL for Rail Corridor (mg/kg)
OCP		
DDT	180	640

Table 8: Ecological Screening Levels (Tier 1) from NEPM

Contaminant	Soil Type	Public Open Space ESL for Passive Open Space (mg/kg)	Commercial and Industrial ESL for Rail Corridor (mg/kg)
Benzene	Fine	65	95
Toluene	Fine	105	135
Ethylbenzene	Fine	105	135
Xylenes	Fine	45	95
TPH C6-C10 less BTEX	Coarse/ Fine	180*	215*
TPH >C10-C16	Coarse/ Fine	120*	170*
TPH >C16-C34	Fine	1300	2500
TPH >C34-C40	Fine	5600	6600
Benzo(a)pyrene	Coarse / Fine	0.7	1.4

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability TPH is total petroleum hydrocarbons

Table 9: Ecological Soil Guideline Values (Tier 1) from NEMP for all Land Uses

Contaminant	Direct Exposure	Indirect Exposure
	(mg/kg)	(mg/kg)
PFOS	1	0.01
PFOA	10	NC

Notes: NC no criterion

Direct exposure ecological soil guideline applies specifically to protection of organisms that live within, or in close contact with soil, such as earthworms and plants.

The indirect exposure ecological soil guideline accounts for the various pathways through which organisms can be exposed whether or not they are in direct contact with PFAS contaminated soil (i.e. exposure through the food chain). For intensively developed sites with no secondary consumers and minimal potential for indirect ecological exposure, a higher criterion of up to 0.14 mg/kg may be appropriate.

4.0 Management Limits

In addition to appropriate consideration and application of the human health and ecological criteria, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards; and
- Effects on buried infrastructure e.g., penetration of, or damage to, in-ground services.

Management limits are shown in Table 10. Predominantly clay soils were encountered during the investigation and, so, management limits for fine soils have been adopted.

Table 10: Management Limits for TPH from NEPM (mg/kg)

Contaminant	Soil Type	Public Open Space Management Limits for Passive Open Space (mg/kg)	Commercial and Industrial Management Limit for Rail Corridor (mg/kg)
TPH C6-C10	Fine	800	800
TRH >C10-C16	Fine	1000	1000
TPH >C16-C34	Fine	3500	5000
TPH >C34-C40	Fine	10 000	10 000

Douglas Partners Pty Ltd

Site Assessment Criteria for Groundwater for AEC35 Surface & Civil Alignment Works (SCAW) Package for Sydney Metro - Western Sydney Airport (SMWSA)

1.0 Introduction

The following references were consulted for deriving 'Tier 1' SAC for groundwater:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).
- ANZG Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018).
- NHMRC Guidelines for Managing Risks In Recreational Water (NHMRC, 2008).
- NHMRC, NRMMC Australian Drinking Water Guidelines 6 2011, Version 3.8, 2022 (NHMRC, NRMMC, 2022).
- ANZECC Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000).
- HEPA PFAS National Environmental Management Plan (NEMP) (HEPA, 2020).

2.0 Ecological Criteria

SAC for the protection of aquatic freshwater ecosystems which may receive groundwater from the site include:

- Default guideline values (DGV) recommended for the protection of slightly to moderately disturbed freshwater ecosystems (or otherwise for an unknown level of protection) from ANZG (2018) (Table 1).
- Freshwater water quality guidelines from NEMP (Table 2). At the time of preparing this document, guideline values were available only for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Guidelines are for 99% species protection to account for bioaccumulation in a slightly-to-moderately impacted system.

It is noted that livestock at surrounding farmland could potentially be a receptor to discharged groundwater (as surface water) that was sourced from the site, however, water quality guidelines for livestock in ANZECC (2000) are generally less conservative than the DGV (Table 1) and have not been listed herein.

Table 1: Default Guideline Values for Protection of Aquatic Ecosystems from ANZG (2018)

Contaminant	Fresh Water DGV (μg/L)
Metals	
Aluminium	0.8 for pH<6.5
Arsenic (III)	24
Arsenic (V)	13
Boron	940
Cadmium	7.5 *
Chromium (III)	94 *
Chromium (VI)	1.0
Cobalt	1.4
Copper	1.4
Lead	603 *
Manganese	1900
Mercury (inorganic)	0.06
Molybdenum	34
Nickel	352*
Selenium (total)	5
Vanadium	6
Zinc	256*
Aromatic Hydrocarbons (including BTEX	()
Benzene	950
Ethylbenzene	80
Toluene	180
m-Xylene	75
o-Xylene	350
p-Xylene	200
Isopropylbenzene	30
РАН	
Anthracene	0.01
Benzo(a)pyrene	0.1
Fluoranthene	1
Naphthalene	16
Phenanthrene	0.6
PhenoIs	
2,4-dinitrophenol	45
2,4-dimethylphenol	2

Contaminant	Fresh Water DGV
	(μg/L)
4-nitrophenol	58
Phenol	320
2,3,4,6-tetrachlorophenol	10
2,3,5,6-tetrachlorophenol	0.2
2,4,6-trichlorophenol	3
2,4-dichlorophenol	120
2,6-dichlorophenol	34
2-chlorophenol	340
Pentachlorophenol	3.6
ОСР	
Aldrin	0.001
Chlordane	0.03
DDT	0.006
Dicofol	0.5
Dieldrin	0.01
Endosulfan	0.03
Endrin	0.01
Heptachlor	0.01
Lindane	0.2
Methoxychlor	0.005
Mirex	0.04
Toxaphene	0.1
Hexachlorobenzene	0.05
OPP	
Azinphos methyl	0.01
Chlorpyrifos	0.01
Diazinon	0.01
Dimethoate	0.15
Fenitrothion	0.2
Malathion	0.05
Parathion	0.004
РСВ	
Aroclor 1242	0.3
Aroclor 1254	0.01
Ammonia	
Ammonia (as total ammonia nitrogen)	900

Contaminant	Fresh Water DGV (μg/L)
Other organics	
1,1,2-trichloroethane	6500
1,1-dichloroethene	700
1,2-dichloroethane	1900
1,2-dichloropropane	900
1,3-dichloropropane	1100
Carbon tetrachloride	240
Chloroform	370
Tetrachloroethene	70
Vinyl chloride	100
1,2,3-trichlorobenzene	3
1,2,4-trichlorobenzene	85
1,2-dichlorobenzene	160
1,3-dichlorobenzene	260
1,4-dichlorobenzene	60
Chlorobenzene	55
1,1,1-Trichloroethane	270
Trichloroethene	330
1,1,2,2-Tetrachloroethane	400
Carbon disulfide	20
Pentachloroethane	80

Notes: * Modified for hardness 1770 mgCaCO3/L

Table 2: Water Quality Guidelines from NEMP

Contaminant	Freshwater Water Quality Guidelines (µg/L)
PFOS	0.00023 *
PFOA	19

Notes: * Guideline value around laboratory limit of reporting offered by commercial laboratories.

3.0 Human Health and Aesthetic Criteria

Human health-based SAC include:

- Health Screening Levels (HSL) for vapour intrusion for selected petroleum hydrocarbons and fractions (Tables 3 and 4). These are applicable for assessing human health via the inhalation pathway. HSL are shown for clay, given that clay is the predominant soil type. HSL D are applicable for areas to be covered by buildings (e.g., stations, offices and enclosed sheds). Where groundwater levels are less than 2 m from the (proposed / final) ground surface, the laboratory practical quantitation limits will be adopted for initial screening purposes;
- Health-based guidelines for recreational waters (Table 5). These are health-based criteria from NHMRC, NRMMC (2022) multiplied by 10 (to account for lower human consumption of recreational waters compared to drinking water); and
- Recreational water quality guideline values (Table 6) from NEMP.

Given that groundwater in the area is not used for drinking or domestic purposes (according to groundwater bore registered with Water NSW), health-based drinking water guidelines have not been adopted as SAC.

For the consideration of aesthetics of recreational waters, aesthetic guideline values from NHMRC, NRMMC (2022) have been included in Table 5.

Table 3: Groundwater Health Screening Levels for Vapour Intrusion from NEPM for Passive Open Space

Contaminant	HSL C (µg/L)	HSL C (µg/L)	HSL C (µg/L)
CLAY	2 m to <4 m	4 m to <8 m	8 m+
Benzene	NL	NL	NL
Toluene	NL	NL	NL
Ethylbenzene	NL	NL	NL
Xylenes	NL	NL	NL
Naphthalene	NL	NL	NL
TPH C6-C10 minus BTEX	NL	NL	NL
TPH >C10-C16 minus naphthalene	NL	NL	NL

Notes: The solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour that is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

Table 4: Groundwater Health Screening Levels for Vapour Intrusion from NEPM for Rail Corridor

Contaminant	HSL D (µg/L)	HSL D (µg/L)	HSL D (µg/L)
CLAY	2 m to <4 m	4 m to <8 m	8 m+
Benzene	30 000	30 000	35 000
Toluene	NL	NL	NL
Ethylbenzene	NL	NL	NL
Xylenes	NL	NL	NL
Naphthalene	NL	NL	NL
TPH C6-C10 minus BTEX	NL	NL	NL
TPH >C10-C16 minus naphthalene	NL	NL	NL

Notes: The solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour that is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

Table 5: Guidelines for Protection of Recreational Waters from NHMRC (2008) and NHMRC, NRMMC (2022)

Contaminant	Health-based Guideline Value (μg/L)	Aesthetic Guideline Value (μg/L)
Metals	-	
Aluminium	-	200
Arsenic	100	-
Barium	20000	-
Beryllium	600	-
Boron	40 000	
Cadmium	20	-
Chromium (VI)	500	-
Copper	20 000	1000
Iron	-	300
Lead	100	-
Manganese	5000	-
Mercury	10	-
Molybdenum	500	-
Nickel	200	-
Selenium	100	-
Zinc	-	3000

Contaminant	Health-based Guideline Value (μg/L)	Aesthetic Guideline Value (μg/L)
ВТЕХ	(P9, L)	
Benzene	10	-
Toluene	8000	25
Ethylbenzene	3000	3
Xylene (total)	6000	20
PAH		
Benzo(a)pyrene	0.1	-
ОСР		
Aldrin + Dieldrin	3	-
Chlordane	20	-
DDT	90	-
Endosulfan	200	-
Lindane	100	-
Heptachlor	3	-
Methoxychlor	3000	
OPP	<u> </u>	,
Azinphos methyl	300	-
Bromophos-ethyl	100	-
Chlorfenvinphos	20	-
Chlorpyrifos	100	-
Diazinon	40	-
Dichlorvos	50	-
Dimethoate	70	-
Disulfoton	40	-
Ethion	40	-
Ethoprophos (Ethoprop)	10	-
Fenitrothion	70	-
Fensulfothion	100	-
Fenthion	70	-
Malathion	700	-
Methyl parathion	7	-
Mevinphos (Phosdrin)	50	-
Monocrotophos	20	-
Omethoate	10	-
Pyrazophos	200	-

Contaminant	Health-based Guideline Value (μg/L)	Aesthetic Guideline Value (μg/L)
Terbufos	9	-
Tetrachlorvinphos	1000	-
Parathion	200	-
Pirimiphos-methyl	900	-
Halogenated Phenols		
2,4,6-trichlorophenol	200	2
2,4-dichlorophenol	2000	0.3
2-chlorophenol	3000	0.1
Pentachlorophenol	100	-
Other Organics		
1,1-dichloroethene	300	-
1,2-dichloroethane	30	-
Carbon tetrachloride	30	-
Hexachlorobutadiene	7	-
Tetrachloroethene	500	-
Vinyl chloride	3	-
1,2-dichlorobenzene	15 000	1
1,3-dichlorobenzene	-	20
1,4-dichlorobenzene	400	0.3
Chlorobenzene	3000	10
Styrene	300	4
Trihalomethanes	2500	-
1,2,3-Trichlorobenzenes (total)	300	5
1,3-Dichloropropene	1000	-
1,2-Dichloroethene	600	-
Dichloromethane (methylene chloride)	40	-
Other Inorganics		
Fluoride	15000	-
Sulfate	5 000 000	250 000
Chloride	-	250 000
Ammonia (as NH3)	-	500
Sodium	-	180000
Nitrate (as nitrate)	500 000	-
Nitrite (as nitrite)	30 000	-

Table 6: Recreational Water Quality Guideline Values From NEMP

Contaminant	Recreational Water Quality Guideline Values (μg/L)			
Sum of PFOS and PFHxS	2			
PFOA	10			

Douglas Partners Pty Ltd

Appendix G

Test Pit Logs and Borehole Logs

PIEZOMETER CONSTRUCTION

HOLE NO: AEC35-BH01 FILE / JOB NO : 204814.01 SHEET: 1 OF 1

ANGLE FROM HORIZONTAL: 90°

PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills

MOUNTING: Track

POSITION : E: 291695.4, N: 6256981.4 (56 MGA2020)

RIG TYPE: Comacchio 305

SURFACE ELEVATION: 38.40 (mAHD)

CONTRACTOR: Ground Test

DATE STARTED: 22/08/22 DATE COMPLETED: 22/08/22 DATE LOGGED: 22/08/22 LOGGED BY: BY CHECKED BY: MB

This report of well/VWP installation must be read in conjunction with accompanying notes and abbreviations. The geotechnical log is a summary only and the detailed log should be referred to for strata details and any core loss zones.

PIEZOMETER CONSTRUCTION

HOLE NO: AEC35-BH02 FILE / JOB NO : 204814.01 SHEET: 1 OF 1

ANGLE FROM HORIZONTAL: 90°

PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills

POSITION : E: 291776.1, N: 6256877.5 (56 MGA2020)

SURFACE ELEVATION: 41.40 (mAHD)

CONTRACTOR: Ground Test RIG TYPE: Comacchio 305 MOUNTING: Track

DATE STARTED: 19/08/22 DATE COMPLETED: 19/08/22 DATE LOGGED: 19/08/22 LOGGED BY: BY CHECKED BY: MB

This report of well/VWP installation must be read in conjunction with accompanying notes and abbreviations. The geotechnical log is a summary only and the detailed log should be referred to for strata details and any core loss zones.

PIEZOMETER CONSTRUCTION

PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills

SHEET: 1 OF 1

FILE / JOB NO : 204814.01

HOLE NO: AEC35-BH03

POSITION : E: 291825.5, N: 6256847.0 (56 MGA2020) SURFACE ELEVATION: 42.30 (mAHD) ANGLE FROM HORIZONTAL: 90°

CONTRACTOR: Ground Test RIG TYPE: Comacchio 305 MOUNTING: Track

DATE STARTED: 19/08/22 CHECKED BY: MB DATE COMPLETED: 19/08/22 DATE LOGGED: 19/08/22 LOGGED BY: BY

This report of well/VWP installation must be read in conjunction with accompanying notes and abbreviations. The geotechnical log is a summary only and the detailed log should be referred to for strata details and any core loss zones.

EXCAVATION - GEOLOGICAL LOG nd Civil Alignment Works

PROJECT: Western Sydney Airport - Surface and Civil Alignment Works
LOCATION: SMF - Orchard Hills

POSITION : E: 291702.8, N: 6256983.5 (56 MGA2020) SURFACE ELEVATION: 38.80 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 29/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL CLASSIFICATION MOISTURE SAMPLES & FIELD TEST PENETRATION DEPTH (m) SUPPORT GRAPHIC GROUND WAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 $\label{FILL: gravelly sitty CLAY: low to medium plasticity, dark brown, angular to subangular gravel, rootlets and wood$ w<PL FILL 0.00: PID=0 0.10m .20m FILL: silty CLAY: low to medium plasticity, red-orange, with angular to subangular gravel, rootlets and organic matter 0.20: PID=0 0.30m RESIDUAL SOIL CLAY: medium to high plasticity, pale grey and orange, trace organic matter, ironstone gravel and rootlets 0.5 0.80m 0.80: PID<1 0.90m 1.0 Not Observed .50m 1.5 1.50: PID<1 ES 1.60m At 1.8m: extremely weathered ironstone gravel 2.0 2.10m 2.10: PID<1 .2.20m EXCAVATION AEC35TP01 TERMINATED AT 2.50 m Target depth 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard - Very Loose В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Hand Penetrometer (UCS kPa) M W - Moist - Wet 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, - Medium Dense - Dense - Very Dense SUPPORT MD water inflow R-Remouded (uncorrected kPa Timbering D VD Plate Bearing Test PBT water outflow

GP.

AEC35TP01

FILE / JOB NO : 204814.01

PIT NO:

SHEET: 1 OF 1

EXCAVATION - GEOLOGICAL LOG

SURFACE ELEVATION: 39.40 (mAHD)

PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills

POSITION : E: 291727.2, N: 6256990.0 (56 MGA2020)

AEC35TP02 FILE / JOB NO : 204814.01 SHEET: 1 OF 1

PIT NO:

EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket

AEC35TP03 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291727.4, N: 6256971.0 (56 MGA2020) SURFACE ELEVATION: 39.60 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 29/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL CLASSIFICATION MOISTURE SAMPLES & FIELD TEST PENETRATION DEPTH (m) SUPPORT GRAPHIC GROUND WAT LEVELS MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 $\label{FILL: gravelly sitty CLAY: low to medium plasticity, dark brown, angular to subangular gravel, rootlets$ w<PL 0.00: PID<1 RESIDUAL SOIL 0.10m 0.10m CLAY: medium to high plasticity, pale orange and grey, with shale and ironstone gravel, rootlets and decomposed wood).50m 0.5 0.50: PID<1 w<PL 1.0 CLAY: low to medium plasticity, pale grey with mottled orange, with extremely weathered ironstone, trace rootlets and organic matter .20m 1.20: PID<1 .30m 1.5 2.0 .20m 2.20: PID<1 EXCAVATION AEC35TP03 TERMINATED AT 2.50 m Target depth 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard - Very Loose В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Hand Penetrometer (UCS kPa) M W - Moist - Wet 10 Oct., 73 Water Level on Date shown

VS

water inflow

water outflow

Vane Shear; P-Peak,

PBT - Plate Bearing Test

R-Remouded (uncorrected kPa

GP.

SUPPORT

Timbering

MD D VD

- Loose

EXCAVATION - GEOLOGICAL LOG

PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills

PIT NO AEC35TP04 FILE / JOB NO : 204814.01 SHEET : 1 OF 1

POSITION : E: 291686.7, N: 6256945.5 (56 MGA2020) SURFACE ELEVATION: 38.00 (mAHD)

EQUIPMENT TYPE: 14 to	nne Excavator	METHOD: 800mm bucket		
DATE EXCAVATED: 29/7/	22	LOGGED BY: SR		CHECKED BY: MB/DE
EXCAVATION DIMENSION	S : 1.00 m LONG			
DRILLING	1 1-	MATERIAL		<u> </u>
SUPPORT GROUND WATER LEVELS SAMPLES & FIELD TESTS	GRAPHIC LOG CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY	O STRUCTURE STRUCTURE WPa
	0.0	FILL: gravelly silty CLAY: low to medium plasticity, dark grey, with rootlets, trace fine to coarse sand 0.20m	w <pl and M</pl 	
		CLAY: medium to high plasticity, pale grey and orange, with rootlets, ironstone and shale gravel		RESIDUAL SOIL
	0.5 - CI-CH		w <pl< td=""><td> </td></pl<>	
	1.0	1.10m CLAY: medium to high plasticity, pale grey and mottled yellow, with extremely	-	
		weathered shale		1.20: PID=0
	1.5 — CI-CI		w <pl< td=""><td></td></pl<>	
	2.0			
		2.10m EXCAVATION AEC35TP04 TERMINATED AT 2.10 m Target depth		1111
	-	rarger depur		
	2.5			
	2.5			
]			
	3.0			
	1			
	-			
	3.5			
	-			
	4.0			
	4.5			
	5.0			
PHOTOGRAPHS NOTES		NO		
N Natural Exposure	PENETRATION Suuu = 5 No Res	istance U50 - Undisturbed Sample Based o	ION SYMBOLS SCRIPTION on Unified tion System	RELATIVE DENSITY VS - Very Soft S - Soft
E Existing Excavation BH Backhoe Bucket		D - Disturbed Sample	aon oystelli	F - Firm St - Stiff
B Bulldozer Blade R Ripper	WATER	MC - Moisture Content D - Dry		VSt - Very Stiff H - Hard VL - Very Loose
SUPPORT	10 Oct., 73 Wa Level on Date	hown VS - Vane Shear; P-Peak, W - Wet		L - Very Loose L - Loose MD - Medium Der
T Timbering	water inflow water outflow	R-Remouded (uncorrected kPa) PBT - Plate Bearing Test		D - Dense VD - Very Dense
	1 1			uglas Partnei

AEC35TP05 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291711.6, N: 6256948.5 (56 MGA2020) SURFACE ELEVATION: 39.70 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 29/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL MOISTURE CONDITION CLASSIFICATION PENETRATION SAMPLES 8 FIELD TEST DEPTH (m) SUPPORT GRAPHIC GROUND WAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL: gravelly sitty CLAY: low to medium plasticity, pale grey, with rootlets, wood and decomposed wood .10m 0.10: PID<1 ES 0.20m RESIDUAL SOIL Silty CLAY: medium plasticity, red-orange, with ironstone gravel and rootlets .50m 0.5 0.50: PID<1 CI Observed Field Replicate BD8/20220729 taken at 0.5-0.6m depth Silty CLAY: low to medium plasticity, pale grey and yellow, trace extremely weathered ironstone gravel and rootlets 1.0 1.20m w<PL 1.20: PID<1 1.30m EXCAVATION AEC35TP05 TERMINATED AT 1.50 m Target depth 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO

GP.

METHOD

Bulldozer Blade

Ripper

Timbering

SUPPORT

BH

SAMPLES & FIELD TESTS U50 - Undisturbed Sample 50 mm diameter Disturbed Sample В Bulk Disturbed Sample MC Moisture Content

Hand Penetrometer (UCS kPa) VS Vane Shear; P-Peak, R-Remouded (uncorrected kPa PBT - Plate Bearing Test

CLASSIFICATION SYMBOLS & SOIL DESCRIPTION Based on Unified Classification System

MOISTURE D - Dry M W - Moist - Wet CONSISTENCY/ RELATIVE DENSITY VS

- Very Soft - Soft - Firm St VSt - Stiff - Very Stiff - Hard H VL Very Loose - Loose - Medium Dense - Dense - Very Dense MD D VD

AEC35TP06 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291732.4, N: 6256948.4 (56 MGA2020) SURFACE ELEVATION: 40.00 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 28/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL MOISTURE PENETRATION SAMPLES 8 FIELD TEST DEPTH (m) SUPPORT GRAPHIC GROUND WAT ASSIFICAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 0.10m FILL: silty CLAY: low plasticity, pale brown, with rootlets w<PL 0.00: PID<1 0.10m Silty CLAY: low to medium plasticity, red-orange, with ironstone and shale RESIDUAL SOIL 0.20: PID<1 .20m gravel and rootlets At 0.2m: high plasticity, red-orange and grey, rootets .30m 0.5 .60m Observed 0.60: PID<1 .70m CLAY: high plasticity, pale grey and mottled orange, with ironstone and shale .00m 1.0 1.00: PID<1 1.10m СН w<PL EXCAVATION AEC35TP06 TERMINATED AT 1.50 m Target depth 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Very Loose Hand Penetrometer (UCS kPa M W - Moist 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, - Medium Dense - Dense - Very Dense SUPPORT MD water inflow R-Remouded (uncorrected kPa Timbering D VD Plate Bearing Test PBT water outflow

AEC35TP07 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291737.8, N: 6256926.4 (56 MGA2020) SURFACE ELEVATION: 40.30 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 28/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL MOISTURE PENETRATION SAMPLES 8 FIELD TEST DEPTH (m) SUPPORT GRAPHIC GROUND WAT ASSIFICAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL: sandy CLAY: low to medium plasticity, pale brown, fine to medium, with rootlets М 0.00: PID<1 RESIDUAL SOIL 0.10m).10m Sity CLAY: medium to high plasticity, red-brown and mottled grey, with ironstone and shale gravel .30m 0.30: PID<1 0.40m 0.5 At 0.55m: high plasticity, red-brown and mottled grey, with shale ironstone CI-CH .90m w<PL 0.90: PID<1 Obser .00m 1.0 Not Silty CLAY: low to medium plasticity, pale grey and mottled orange, with ironstone and shale gravel .40m 1.40: PID<1 1.5 w<PL EXCAVATION AEC35TP07 TERMINATED AT 2.00 m Target depth 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Very Loose Hand Penetrometer (UCS kPa M W - Moist 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, - Medium Dense - Dense - Very Dense SUPPORT MD water inflow R-Remouded (uncorrected kPa Timbering D VD Plate Bearing Test PBT water outflow

EXCAVATION - GEOLOGICAL LOG

PIT NO AEC35TP08 FILE / JOB NO : 204814.01 SHEET : 1 OF 1

PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills

POSITION : E: 291716.7, N: 6256923.3 (56 MGA2020) SURFACE ELEVATION: 40.10 (mAHD)

EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket

DATE EXCAVATED: 29	77/22	LOGGED BY: SR CHECKED BY: MB/DEM		
EXCAVATION DIMENSIC				CHECKED BY . WID/DEW
DRILLING	1.00 11 2010	MATERIAL		
SUPPORT GROUND WATER FLEVELS &	FIELD TESTS DEPTH (m) GRAPHIC LOG CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY 100 HAND 200 The HAND	STRUCTURE & Other Observations
0.10m	0.0	FILL: gravelly silty CLAY: low to medium plasticity, dark brown, angular to subangular gravel, rootlets	w <pl td="" ="" <=""><td> FILL 0.10: PID<1</td></pl>	FILL 0.10: PID<1
		0.30m Silty CLAY: medium to high plasticity, red-orange and dark brown, with shale and ironstone gravel and coarse gravel	w <pl td="" ="" <=""><td>Field Replicate BD7/20220729 taken at 0.1-0.2 depth RESIDUAL SOIL 0.50: PID<1</td></pl>	Field Replicate BD7/20220729 taken at 0.1-0.2 depth RESIDUAL SOIL 0.50: PID<1
	─	Silty CLAY: medium to high plasticity, pale grey and mottled red-orange, with extremely weathered ironstone gravel and rootlets	w <pl td="" ="" <=""><td> </td></pl>	
		CLAY: medium to high plasticity, pale grey and yellow, with extremely weathered ironstone gravel and rootlets	w <pl td="" ="" <=""><td>1.90: PID<1</td></pl>	1.90: PID<1
	2.5 —	EXCAVATION AEC35TP08 TERMINATED AT 2.30 m Target depth		-
Tools	3.0 -			
ct/2022 12:02:00.04 Datge	4.0 —			
R.GPJ <<0 r style="background-color: red;">CCPJ <0 r style="background-c	4.5 -			
PHOTOGRAPHS NOTES	YES	NO		
METHOD N Natural Exposure E Existing Excavation BH Backhoe Bucket B Bulldozer Blade R Ripper SUPPORT T Timbering	PENETRATION S W I I I I I I I I I I I I I I I I I I	SAMPLES & FIELD TESTS SOIL DE: Sample	ION SYMBOLS & SCRIPTION on Unified tion System	CONSISTENCY/ RELATIVE DENSITY

AEC35TP09 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291696.7, N: 6256923.4 (56 MGA2020) SURFACE ELEVATION: 38.60 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 29/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL CLASSIFICATION MOISTURE CONDITION SUPPORT SAMPLES & FIELD TEST PENETRATION DEPTH (m) GROUND WATE LEVELS GRAPHIC MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 $\label{eq:FILL: gravelly sitty CLAY: low to medium plasticity, dark brown, angular to subangular gravel, rootlets$ FILL 0.00: PID<1 0.10m RESIDUAL SOIL CLAY: high plasticity, pale grey and orange, rootlets).50m 0.5 0.50: PID<1 СН w<PL Silty CLAY: low to medium plasticity, red-orange, with extremely weathered ironstone and organic matter, trace rootlets $\,$ 1.0 .20m 1.20: PID<1 ğ 1.30m 1.5 w<Pl 2.00m 2.0 2.00: PID<1 S 2.10m EXCAVATION AEC35TP09 TERMINATED AT 2.30 m Target depth 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽ш∟⊥₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard - Very Loose В Bulk Disturbed Sample Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry

Hand Penetrometer (UCS kPa)

R-Remouded (uncorrected kPa

Vane Shear; P-Peak,

PBT - Plate Bearing Test

VS

10 Oct., 73 Water Level on Date shown

water inflow

water outflow

M W - Moist - Wet

GP.

AASTER

SUPPORT

Timbering

MD D VD

- Loose

AEC35TP10 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291773.8, N: 6256885.6 (56 MGA2020) SURFACE ELEVATION: 41.20 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 28/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL MOISTURE PENETRATION SAMPLES 8 FIELD TEST DEPTH (m) SUPPORT GRAPHIC CLASSIFICATI GROUND WAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL: clayey SAND: fine to medium grained sand 0.00: PID<1 0.10: PID<1 М FILL: silty CLAY: low to medium plasticity, red-orange and brown .20m Silty CLAY: low to medium plasticity, red-orange and brown, ironstone gravel Field Replicate BD5/20220728 taken at 0.1-0.2m depth RESIDUAL SOIL .40m At 0.4m: becoming pale red-orange and mottled grey, with more ironstone .50m 0.5 toN .60m w<PL 0.60: PID<1 0.70m EXCAVATION AEC35TP10 TERMINATED AT 0.90 m 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Very Loose Hand Penetrometer (UCS kPa) M W - Moist - Wet 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, - Medium Dense - Dense - Very Dense SUPPORT MD water inflow R-Remouded (uncorrected kPa Timbering D VD Plate Bearing Test PBT water outflow Douglas Partners

AEC35TP11 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291768.5, N: 6256847.0 (56 MGA2020) SURFACE ELEVATION: 41.60 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 28/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL MOISTURE CONDITION PENETRATION DEPTH (m) LES & SUPPORT GRAPHIC CLASSIFICATI GROUND WAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components SAMPLI FIELD TE 0.0 FILL: clayey SAND: dark grey, fine to medium grained sand, with angular to subangular gravel and rootlets, trace glass М FILL 0.00: PID<1 0.10m).10m Sitty CLAY: low to medium plasticity, red-orange and brown, angular to subangular gravel, shale gravel, wood and rootlets Field Replicate BD6/20220728 taken at 0.0-0.1m depth RESIDUAL SOIL 0.40: PID<1 .40m 0.5 Sitty CLAY: low to medium plasticity, red-orange and mottled grey, shale and ironstone gravel, trace rootlets .00m 1.0 w<PL <u>=</u>S 1<u>.10m</u> 1.00: PID<1 EXCAVATION AEC35TP11 TERMINATED AT 1.30 m 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Very Loose Hand Penetrometer (UCS kPa M W - Moist - Wet 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, - Medium Dense - Dense - Very Dense SUPPORT MD water inflow R-Remouded (uncorrected kPa Timbering D VD Plate Bearing Test PBT water outflow Douglas Partners Geotechnics | Environment | Groundwater

AEC35TP12 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291781.6, N: 6256863.8 (56 MGA2020) SURFACE ELEVATION: 41.70 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 28/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL MOISTURE PENETRATION SAMPLES 8 FIELD TEST DEPTH (m) SUPPORT GRAPHIC ASSIFICATI GROUND WAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL: clayey SAND: dark grey, fine to medium grained sand, angular to subangular gravel, rootlets and wood $\,$ FILL 0.00: PID<1 М).10m .20m RESIDUAL SOIL 0.20: PID<1 Silty CLAY: low to medium plasticity, red-orange and brown, with ironstone gravel, trace rootlets .30m At 0.45m: medium to high plasticity, becoming red-orange and mottled grey, ironstone gravel $\,$ 0.5 toN .60m 0.60: PID<1 0.70m EXCAVATION AEC35TP12 TERMINATED AT 0.90 m 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard - Very Loose В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Hand Penetrometer (UCS kPa M W - Moist - Wet 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, - Medium Dense - Dense - Very Dense SUPPORT MD

R-Remouded (uncorrected kPa

Plate Bearing Test

PBT -

water inflow

water outflow

Timbering

D VD

AEC35TP13 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291790.1, N: 6256875.0 (56 MGA2020) SURFACE ELEVATION: 41.70 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 28/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL MOISTURE PENETRATION SAMPLES 8 FIELD TEST DEPTH (m) SUPPORT GRAPHIC LASSIFICATI GROUND WAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL: clayey SAND: dark brown, fine to medium grained sand, with clay, angular to subangular gravel and rootlets FILL 0.00: PID<1 .10m М RESIDUAL SOIL Silty CLAY: low to medium plasticity, red-orange, rootlets 0.30: PID<1 Observed .40m 0.5 At 0.5m: medium to high plasticity, becoming red-orange and mottled grey ş 0.70: PID<1 EXCAVATION AEC35TP13 TERMINATED AT 1.00 m Target depth 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Very Loose Hand Penetrometer (UCS kPa M W - Moist 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, MD D VD - Medium Dense - Dense - Very Dense SUPPORT water inflow R-Remouded (uncorrected kPa Timbering Plate Bearing Test PBT -

water outflow

AEC35TP14 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291807.0, N: 6256842.1 (56 MGA2020) SURFACE ELEVATION: 42.40 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 28/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL MOISTURE PENETRATION SAMPLES 8 FIELD TEST DEPTH (m) SUPPORT GRAPHIC LASSIFICATI GROUND WAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL: clayey SAND: dark grey, fine to medium grained sand, with angular to subangular gravel and rootlets, trace glass FILL 0.00: PID<1 .10m М RESIDUAL SOIL Silty CLAY: low to medium plasticity, red-orange and brown, with rootlets 0.30: PID<1 0.5 At 0.45m: becoming high plasticity, red-orange, trace rootlets 0.70: PID<1 w<PL 1.0 Silty CLAY: low to medium plasticity, pale grey and mottled orange, with .50m 1.5 1.50: PID<1 ES 1.60m w<PL EXCAVATION AEC35TP14 TERMINATED AT 1.90 m Target depth 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample Backhoe Bucket BH St VSt - Stiff MOISTURE - Very Stiff - Hard В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Very Loose Hand Penetrometer (UCS kPa M W - Moist 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, - Medium Dense - Dense - Very Dense SUPPORT MD water inflow R-Remouded (uncorrected kPa Timbering D VD PBT Plate Bearing Test water outflow

AEC35TP15 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291796.2, N: 6256858.0 (56 MGA2020) SURFACE ELEVATION: 42.00 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 28/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL MOISTURE PENETRATION SAMPLES 8 FIELD TEST CLASSIFICATIO DEPTH (m) SUPPORT GRAPHIC GROUND WAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL: silty CLAY: low to medium plasticity, dark brown, with angular to subangular gravel and rootlets FILL 0.00: PID<1).10m w<PL FILL: sity SAND: pale grey and pale yellow, fine to medium grained sand, trace gravel .30m М 0.30: PID<1 .40m Field Replicate BD4/20220728 taken at 0.3-0.4m depth RESIDUAL SOIL 0.60: PID<1 Silty CLAY: medium to high plasticity, red-orange and mottled grey 0.5 ş .70m w<PL EXCAVATION AEC35TP15 TERMINATED AT 1.00 m Target depth 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Very Loose Hand Penetrometer (UCS kPa M W - Moist - Wet 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, MD D VD - Medium Dense - Dense - Very Dense SUPPORT water inflow R-Remouded (uncorrected kPa Timbering Plate Bearing Test PBT water outflow

AEC35TP16 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291814.8, N: 6256865.4 (56 MGA2020) SURFACE ELEVATION: 42.10 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 28/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL MOISTURE PENETRATION SAMPLES 8 FIELD TEST DEPTH (m) SUPPORT GRAPHIC LASSIFICATI GROUND WAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL FILL: silty CLAY: low to medium plasticity, dark brown, with fine to medium, pale grey sand, angular to subangular gravel and rootlets 0.20: PID<1 .30m Field Replicate BD3/20220728 taken at 0.2-0.3m depth Silty CLAY: medium to high plasticity, red-orange and mottled grey, rootlets 0.5 RESIDUAL SOIL .60m ş 0.60: PID<1 .70m w<PL EXCAVATION AEC35TP16 TERMINATED AT 1.00 m Target depth 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard - Very Loose В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Hand Penetrometer (UCS kPa M W - Moist - Wet 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, MD D VD - Medium Dense - Dense - Very Dense SUPPORT water inflow R-Remouded (uncorrected kPa Timbering Plate Bearing Test PBT water outflow Douglas Partners

AEC35TP17 PIT NO: **EXCAVATION - GEOLOGICAL LOG** FILE / JOB NO : 204814.01 PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills SHEET: 1 OF 1 POSITION : E: 291837.1, N: 6256874.7 (56 MGA2020) SURFACE ELEVATION: 41.90 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 28/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL MOISTURE PENETRATION SAMPLES 8 FIELD TEST CLASSIFICATIO DEPTH (m) SUPPORT GRAPHIC GROUND WAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 $\label{fig:filter} \mbox{FILL: silty CLAY: low to medium plasticity, dark brown, with fine to medium sand and rootlets}$ FILL 0.00: PID<1 FILL: silty SAND: pale grey and pale yellow, fine to medium grained sand, trace angular to subangular gravel and rootlets М 0.20: PID<1 RESIDUAL SOIL Silty CLAY: medium to high plasticity, red-orange with mottled grey, trace 0.5 .60m ş 0.60: PID<1 .70m EXCAVATION AEC35TP17 TERMINATED AT 1.00 m Target depth 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard - Very Loose В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Hand Penetrometer (UCS kPa M W - Moist - Wet 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, MD D VD - Medium Dense - Dense - Very Dense SUPPORT water inflow R-Remouded (uncorrected kPa Timbering Plate Bearing Test PBT water outflow

EXCAVATION - GEOLOGICAL LOG

SHEET: 1 OF 1

AEC35TP18

FILE / JOB NO : 204814.01

PIT NO:

PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills

water outflow

POSITION : E: 291823.9, N: 6256859.8 (56 MGA2020) SURFACE ELEVATION: 42.10 (mAHD) EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 28/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL MOISTURE PENETRATION SAMPLES 8 FIELD TEST DEPTH (m) SUPPORT GRAPHIC LASSIFICATI GROUND WAT MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL: silty CLAY: low to medium plasticity, dark brown, trace angular to subangular gravel, fine to medium sand and rootlets 0.10: PID<1 .30m FILL: silty SAND: pale grey, fine to medium grained sand, trace gravel and 0.40m М 0.40: PID<1 .50m 0.5 RESIDUAL SOIL Silty CLAY: low to medium plasticity, red-orange, trace rootlets ş 0.70: PID<1 w<Pl Field Replicate BD1/20220728 taken at 0.7-0.8m depth EXCAVATION AEC35TP18 TERMINATED AT 1.00 m Target depth 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽шцт₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample BH Backhoe Bucket St VSt - Stiff MOISTURE - Very Stiff - Hard - Very Loose В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Hand Penetrometer (UCS kPa M W - Moist - Wet 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, - Medium Dense - Dense - Very Dense SUPPORT MD water inflow R-Remouded (uncorrected kPa Timbering D VD Plate Bearing Test PBT -

EXCAVATION - GEOLOGICAL LOG

PROJECT : Western Sydney Airport - Surface and Civil Alignment Works LOCATION : SMF - Orchard Hills

AEC35TP19 PIT NO: FILE / JOB NO : 204814.01 SHEET: 1 OF 1

POSITION : E: 291825.6, N: 6256843.0 (56 MGA2020) SURFACE ELEVATION: 42.40 (mAHD)

EQUIPMENT TYPE: 14 tonne Excavator METHOD: 800mm bucket DATE EXCAVATED: 28/7/22 LOGGED BY: SR CHECKED BY: MB/DEM EXCAVATION DIMENSIONS: 1.00 m LONG 0.80 m WIDE **DRILLING** MATERIAL 100 HAND 200 APENETRO-300 B METER CLASSIFICATION MOISTURE SAMPLES & FIELD TEST PENETRATION GRAPHIC LOG SUPPORT DEPTH (m) GROUND WAT MATERIAL DESCRIPTION SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL: silty CLAY: low to medium plasticity, dark brown, trace gravel and rootlets .10m w<PL 0.10: PID<1 .20m At 0.2m: becoming pale grey, trace gravel .30m w<PI Observed 0.30: PID<1 .40m RESIDUAL SOIL Silty CLAY: low to medium plasticity, red-orange and brown, trace rootlets 0.5 toN .60m 0.60: PID<1 0.70m EXCAVATION AEC35TP19 TERMINATED AT 0.90 m 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

PHOTOGRAPHS NOTES PENETRATION METHOD ₽ш∟⊥₹ Natural Exposure No Resistance Existing Excavation BH Backhoe Bucket

WATER

10 Oct., 73 Water Level on Date shown

water inflow

water outflow

YES

5.0

Bulldozer Blade Ripper

SUPPORT Timbering

GP.

MASTER

SAMPLES & FIELD TESTS

NO

U50 - Undisturbed Sample 50 mm diameter Disturbed Sample В Bulk Disturbed Sample

MC Moisture Content Hand Penetrometer (UCS kPa) VS Vane Shear; P-Peak,

R-Remouded (uncorrected kPa Plate Bearing Test PBT -

CLASSIFICATION SYMBOLS & SOIL DESCRIPTION

Based on Unified Classification System

MOISTURE D - Dry M W - Moist - Wet CONSISTENCY/ RELATIVE DENSITY VS

- Very Soft - Soft - Firm St VSt - Stiff - Very Stiff - Hard - Very Loose H VL - Loose MD D VD - Medium Dense - Dense - Very Dense

PROJECT: Western Sydney Airport - Surface and Civil Alignment Works POSITION: SMF - Orchard Hills POSITION: E: 291684.3, N: 6256976.3 (56 MGA2020) EXCAVATION - GEOLOGICAL LOG FILE / JOB NO: 204814.01 SHEET: 1 OF 1

POSITION : E: 291684.3, N: 6256976.3 (56 MGA2020) EQUIPMENT TYPE: Hand Tools METHOD : DATE EXCAVATED: 21/9/22 LOGGED BY: PJ CHECKED BY: MB/DEM **EXCAVATION DIMENSIONS DRILLING** MATERIAL GROUND WATER LEVELS CLASSIFICATION MOISTURE SUPPORT PENETRATION SAMPLES 8 FIELD TEST DEPTH (m) GRAPHIC MATERIAL DESCRIPTION LOG SYMBOL STRUCTURE & Other Observations Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL: sandy CLAY: low to medium plasticity, dark brown, fine to medium sand, with silt, trace rootlets FILL 0.00: PID <5 .10m w~PL RESIDUAL SOIL Silty CLAY: medium to high plasticity, red-brown, trace fine to medium ironstone gravel Not Observed 0.30: PID <5 .40m to St 0.5 Silty CLAY: high plasticity, pale grey mottled red-brown CH w~PL St 0.80m 0.80: PID <5 EXCAVATION AEC35HA20 TERMINATED AT 0.90 m 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PHOTOGRAPHS NOTES YES NO CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION ₽ш∟⊥₹ - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample St VSt BH Backhoe Bucket - Stiff MOISTURE - Very Stiff - Hard - Very Loose В Bulk Disturbed Sample Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Hand Penetrometer (UCS kPa) M - Moist W - Wet 10 Oct., 73 Water Level on Date shown - Loose VS Vane Shear; P-Peak, MD D VD - Medium Dense - Dense - Very Dense SUPPORT R-Remouded (uncorrected kPa Plate Bearing Test water inflow Timbering PBT water outflow

GP.

MASTER

Appendix H

Field Sheets and Calibration Certificates

CALIBRATION RECORD

Project:

Luddenham WEA SCAW

Project Number: 204814.01

Calibrated Equipment

Model:

Ministad Lite

Serial No .:

595-00 2219

DP Reference:

PID3

Other:

10.6eV Lamp

Calibration

Date(s):

27/07/2022

Operator(s):

SR

Zero Gas:

ambient air

Span Gas:

isobutylene 100

Span Gas Concentration:

100

Response Factor:

1.0

Pre-calibration Reading:

99.1

Post-calibration Reading:

100.0

Approved: 2, /ktl.

Date: 27/7/2022

01/09/2022

Instrument

YSI Quatro Pro Plus

Serial No.

11K101271

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	1	
outtory	Fuses	✓	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	✓	
	Operation (segments)	√	
Grill Filter	Condition	✓	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	✓	
	2. mV	✓	
	3. EC	✓	
	4. D.O	✓	
	5. Temp	✓	
Alarms	Beeper	√	
	Settings	✓	
Software	Version	✓	*
Data logger	Operation	✓	
Download	Operation	✓	
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. pH 7.00		pH 7.00		381241	pH 6.98
2. pH 4.00		pH 4.00		389384	pH 3.94
3. mV		236.7mV		385070/387771	236.8mV
4. EC		2.76mS		385041	2.76mS
5. D.O		Oppm		379624	0.0ppm
6 Temp		21.5		MultiTherm	21.4

Calibrated by:

Alex Buist

Calibration date:

01/09/2022

Next calibration due:

28/02/2023

Instrument

PhoCheck Tiger

Serial No.

T-113854

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass			Comment	ŝ
Battery	Charge Condition	1				
	Fuses	✓			art and a first the constitution of the contract of the contra	
5.700 (55 (55)) (50) (50)	Capacity	✓			·* · · · · · · · · · · · · · · · · · ·	
	Recharge OK?	✓				
Switch/keypad	Operation	✓		***************************************		
Display	Intensity	✓	1		- PTT V 7-67-7	
	Operation	√			**************************************	
	(segments)					
Grill Filter	Condition	✓				
	Seal	✓				
Pump	Operation	✓				
	Filter	/			v	
	Flow	✓				
	Valves, Diaphragm	✓				
PCB	Condition	✓				
Connectors	Condition	✓				
Sensor	PID	✓	10.6 ev			
Alarms	Beeper	✓	Low	High	TWA	STEL
AT 1881 11 11 11 11 11 11 11 11 11 11 11 1	Settings	✓	50ppm	100ppm		
Software	Version	✓				1
Data logger	Operation	✓				
Download	Operation	✓				
Other tests:				7	>	

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode

Aspirated mode

Sensor	Serial no	Calibration gas and	Certified	Gas bottle	Instrument Reading
		concentration		No	
PID Lamp		93ppm Isobutylene	NATA	SY361	90.2 ppm Isobutylene
	.1				

Calibrated by:

Alex Buist

Calibration date:

1/09/2022

Next calibration due:

28/02/2023

GROUNDWATER SAMPLING FORM

Project: WSA SCAW Tender Design					Project No: 204814.01					
Client: CPB Contractors Pty Limited & United Infrastructure Pty Limited (CPBUIJV)										
Location: Elizabeth	Drive	, Luddenh	am							
Sampling Method:	-	Twiste	V	Pur	np					
200 XVI				NG.	0001	(B)		ī		
Bore No.					35 Bt	101				
Purging Date					18/12					
Bore Casing Diamete	1986 3 7000000 0 30	20000		50	1 (
SWL (m below top of					16 m					
Height of Casing (m	above	e GL*)		_	59					
SWL (m below GL*)	elet (ii)	HONORIO WW		2						
Total Bore Depth (m below GL*)				7.	98					
Well Volume (L) **[w casing is 2L approx.			n]	10-	440					
Purged Volume (L) (≈ well	l vol x 3)		16.	\$ do	2				
Sampling Date		8				0				
Sampling Time										
Temperature (°C)										
pH (record to one de	cimal	place)								
EC (µS/cm)										
Dissolved Oxygen (% Sat)										
Dissolved Oxygen (n	ng/L)								2,4	
Turbidity (NTU)										
Redox (mV)										
TDS (mg/L)										
Odour			Ne)						
Colour				Dowl	c brown	, cloud	4	9	1 21	
Recharge Rate				72	43 ml/	minute	9			
Observations				Dark brown, cloudy, no odour						
Notes:)(
									10	
Supervisor: PS Date:										
Water quality meter	r cali	bration de	etails	(plea	se tick	calibratio	on liquids used)	:		
Meter ID										
Buffer (pH 4)	□ Use-by Date			Conductivity Standard (2.76 mS/cm)				Use-by Date		
Buffer (pH 6.88)		Use-by Date				issolved s per thou	Solids Standard Isand)		Use-by Date	
Buffer (pH 9)		Use-by Date				Cal Soluti			Use-by Date	
	Date			2					- 3.0	

^{*}GL - denotes ground level

^{**}Well Volume = $\pi r^2 \times$ depth of water, where r is internal casing radius

GROUNDWATER SAMPLING FORM

DEVELOPMENT

Project: WSA SCAW Tender Des	Project No: 204814.01							
		United Infrastructure Pty Limited (CPBUIJV)						
Location: Elizabeth Drive, Ludder								
Sampling Method: Twist								
	101							
Bore No.	AE(35BH02 2578/22							
Purging Date	25/8/22							
Bore Casing Diameter (mm)	Somm							
SWL (m below top of casing)	1.51							
Height of Casing (m above GL*)	0.91							
SWL (m below GL*)	0.6							
Total Bore Depth (m below GL*)	6.00							
Well Volume (L) **[which for 50mr casing is 2L approx. per metre de								
Purged Volume (L) (≈ well vol x 3)	14-00							
Sampling Date								
Sampling Time								
Temperature (°C)								
pH (record to one decimal place)								
EC (µS/cm)								
Dissolved Oxygen (% Sat)								
Dissolved Oxygen (mg/L)								
Turbidity (NTU)								
Redox (mV)								
TDS (mg/L)								
Odour	No							
Colour	Brown, cloude	1						
Recharge Rate	6488 mt/minute							
Observations	Brown, doud	y no odow						
Notes:		<i>)</i> ·						
Supervisor:	Date:							
Water quality meter calibration	details (please tick calibrati	on liquids used):						
Meter ID								
Buffer (pH 4)	(2.76 mS/cm)	□ Date						
Buffer (pH 6.88)	Total Dissolved (2 parts per tho							
Buffer (pH 9)	Rapid Cal Solut	tion Use-by Date						

^{*}GL - denotes ground level

^{**}Well Volume = $\pi r^2 x$ depth of water, where r is internal casing radius

GROUNDWATER SAMPLING FORM

DEVELOPMENT

Project: WSA SCAW Tender Design		Project No: 2048	14.01	
Client: CPB Contractors Pty Limited & Un	nited Infrastructure Pty	Limited (CPBUIJV)		
Location: Elizabeth Drive, Luddenham				
Sampling Method:				
Bore No.	AELSS BAYOS		I	
Actor consistent to actors	2/10/22			
Purging Date	26/8/22 50mm			
Bore Casing Diameter (mm)	1.59			
SWL (m below top of casing)				
Height of Casing (m above GL*)	1.03			
SWL (m below GL*)	1-540.56			
Total Bore Depth (m below GL*)	3.96			
Well Volume (L) **[which for 50mm casing is 2L approx. per metre depth]	3,940			
Purged Volume (L) (≈ well vol x 3)	11820			
Sampling Date				
Sampling Time				*
Temperature (°C)				r e
pH (record to one decimal place)				
EC (µS/cm)				
Dissolved Oxygen (% Sat)				
Dissolved Oxygen (mg/L)				Hall.
Turbidity (NTU)				
Redox (mV)				
TDS (mg/L)				E.
Odour	No			
Colour	Grange-brown	Mordy	A F	
Recharge Rate	9 2 2 2 2 7	'		ā
Observations				
Notes:				
Supervisor:		Da	te:	
Water quality meter calibration details	s (please tick calibrat	ion liquids used):		
Meter ID				
Buffer (pH 4) Use-by Date	Conductivity St (2.76 mS/cm)	andard	□ Use-by Date	
Buffer (pH 6.88) Use-by Date	Total Dissolved (2 parts per the	d Solids Standard busand)	□ Use-by Date	
Buffer (pH 9)	Rapid Cal Solu		□ Use-by Date	7

^{*}GL - denotes ground level

^{**}Well Volume = $\pi r^2 x$ depth of water, where r is internal casing radius

RECORD OF ASBESTOS SAMPLES

Project:	WSA SCAW Tender design	Project Number: 204814.01
Client:	CPB Contractoris	Date: 28/1/22
Location:	Elizabeth deux, Lieddenham	Field Staff: SR

Sample ID	Sample Type	Sample Depth (m)	Weight of 10 L Bulk Sample (g)	Number of Fragments >7 mm	Condition of Fragments (good/ poor)	Size range of fragments (mm)	Weight of ACM and FA collected (g)
AEC 35 TPII	FILL CLAYEY SAND	0-0-1	20125	Shor			***************************************
AEC 35 TP12	FILL/Clayey SAND	0.0.)	21326		-	-	p
AEC 35 TPIA	FILL Clayby SAND	0-0-1	20224	Mer.	-	-	677
		×					
				'a'			
ii ii							
		-					
- Sec				_			

Groundwater Field She	eet			Во	re Volume = casing volu	me + filter pack	
Project and Bore Installation					volume	n(πh ₁ d ₁ ² /4-πh ₂ d ₂ ² /4)	-
Bore / Standpipe ID:	SMGW-BH	- BH106		T.	$= \pi h_1 d_2 / 4 + 1$ here: $\pi = 3.14$	n(An;q;"/4-An;q;"/4)	
Project Name:	SCAW	0(11.00		·	n = porosity (0.3 f)	or most filter pack	3
Project Number:	204814-0	,			material)		9,
Site Location:	201811-0	1			h; = height of wate	er column	3
Bore GPS Co-ord:					d _i = diameter of an		
Installation Date:					h ₀ = length of filter d ₀ = diameter of ca		-
GW Level (during drilling):		m bgl		Bo	ore Vol Normally	Professional Control	
Well Depth:		m bgl					- 9
Screened Interval:		m bgl					_
Contaminants/Comments:	_	iii ogi					-
Bore Development Details							-
Date/Time:							=
Purged By:	J						-
GW Level (pre-purge):		m bgl					-
GW Level (post-purge):		m bgl					-
PSH observed:	Yes / No (visual). Thickn	ess if observ	ved:		-
Observed Well Depth:	7.55 7 110 (m bgl	j. ITHORN				-
Estimated Bore Volume:		I bgr					-
Total Volume Purged:	(target: no dri	Il mud min 3 w	vell vol. or dry)				-
Equipment:	turget. 110 dil	maa, mii o w	ion vol. of dry)				-
Equipment. Micropurge and Sampling D	etails						=
Date/Time:	8/9/22	9:0000					-
		7:0097					_
Sampled By: Weather Conditions:	JH/LL						_
	SUNNY	m hal					_
GW Level (pre-purge):	1.40	m bgl 1.8					_
GW Level (post sample):		- 0	<u> </u>	ass if abass	rad.		_
PSH observed:	Yes / No (visuai). Thickn	ess ii observ	veu.		_
Observed Well Depth:	25	m bgl					-
Estimated Bore Volume: Total Volume Purged:	2.0	-					_
Total volume Purgeu.	2.0						_
Equipment:	PERI - PUH	19					
		Water Quality	y Parameters				_
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	На	Turbidity	Redox (mV)	-
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L		+/- 0.1	+/- 10%	+/- 10 mV	_
15 / 0.5	CONTROL OF			Transit (see 12)	1,1070		-
	17.3	0.72	10531	5.52		123.9	_
30 / 1.0		0.36	10580	5-58	_	104.8	_
45 / 1-5	17.4	0.29	10490	5-66			_
60 /2.0	17.9	0.23	10124	0.00	_	102.1	_
		-					-
							-
	 	-					-
	<u> </u>	1					-
	-	+					_
Additional Readings Following	DO % Sat	SPC	TDS			+	-
stabilisation:	DO 76 Sat	350	103			1	-
Stabilisation.		Sample	Details				-
Compling Donth (rationals):	Ч			5555.1			-
Sampling Depth (rationale): Sample Appearance (e.g.	 		DDLE OF S		100		-
colour, siltiness, odour):	SCICHTLY "	TORBID! CRE	EY, NO OPO.	W / SHEE	N		
Sample ID:	CMAL O	II. Pilial					-
QA/QC Samples:	SMGW-BI	4 - BH106			, T		-
	2 4447	7	**				-
Sampling Containers and	2 × AMBER	3× PLASTI					
filtration:	2× VIALS						
	1						-
Comments / Observations:	LOGGER						

eet			Bore '	Volume = casing vol	ume + filter pack
		-		volume	- 12m - 12m
	HOL		****		n(\pi\h_1\d; \frac{1}{4}-\pi\h_2\d_2\frac{1}{4})
	1401		Wilei	20	for most filter nack
	0.1	-			to most mite pick
				h = height of wat	ter column
OKCHARD H	1110			d ₁ = diameter of a	nnulus:
+					
	m hal		Pore		
1.7			ВОГЕ	VOI NOTHATIY	. 7.2 11
+					
-	iii bgi				
=.					
-					
	ma hal				
		viewel V Thisler	ann if abanna	d.	
res / No (and the second s	visuai j. i nickn	ess ii odserve	u.	
+	m pgi				
(4	L	المساهد المنزالمن			
(target: no dri	i mua, min 3 v	veil voi. or ary)			
1			111		
	8:0090				
SH/CL					
SUNNY					
	(interface) /	visual). Thickn	ess if observe	d:	
	m bgl	4	-900-		
	L				
3.0	L				
PER I - DI	MP				
I LACTO FO	s ⁸⁶				
					1 = 1 / 10
*	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				Redox (mV)
0.1°C		+/- 3%		+/- 10%	+/- 10 mV
17-0	18.0				189.5
17 3	A 11.	29865	6.46		175.0
11.0	0.91		0 (-		
17.2	0.48	29443	6.49		1.68 .1
			6.49		168.1
17.2	0.48	29443 29066 28923	6.49		1.68 .1
17.2	0.48	29443 29066	6.49		168.1
17.2 17.1 17.0	0.48	29443 29066 28923	6.49		168.1
17.2 17.1 17.0	0.48	29443 29066 28923	6.49		168.1
17.2 17.1 17.0	0.48	29443 29066 28923	6.49		168.1
17.2 17.1 17.0	0.48	29443 29066 28923	6.49		168.1
17.2 17.1 17.0 17.0	0.48	29443 29066 28923	6.49		168.1
17.2 17.1 17.0 17.0	0.48	29443 29066 28923 28864	6.49		168.1
17.2 17.1 17.0 17.0	0.48 0.68 0.71 0.78	29443 29066 28923 28864	6.49		168.1
17.2 17.1 17.0 17.0	0.48 0.68 0.71 0.78	29443 29066 28923 28864 TDS	6.49 6.30 6.50 6.50		168.1
17.2 17.1 17.0 17.0	0.48 0.68 0.71 0.78	29066 29023 2864 TDS	6.49 6.30 6.50 6.50		168.1
17.2 17.1 17.0 17.0	0.48 0.68 0.71 0.78	29443 29066 28923 28864 TDS	6.49 6.30 6.50 6.50		168.1
17.2 17.1 17.0 17.0	0.48 0.68 0.71 0.78 spc spc Sample m bgl, M1	29066 29023 2864 TDS	6.49 6.30 6.50 6.50		168.1
17.2 17.1 17.0 17.0 17.0	0.48 0.68 0.71 0.78 spc spc Sample m bgl, M1	29066 29023 2864 TDS	6.49 6.30 6.50 6.50		168.1
17.2 17.1 17.0 17.0 17.0 DO% Sat	0.48 0.68 0.71 0.78 spc spc spc spc sample m bgl, M1 NON-TORB	29443 29066 28923 28864 TDS Details	6.49 6.30 6.50 6.50		168.1
17.2 17.1 17.0 17.0 17.0 17.0 AEC35-E BD1/2022 2×AMBER	0.48 0.68 0.71 0.78 spc spc spc spc sample m bgl, M1 NON-TORB	29443 29066 28923 28864 TDS Details	6.49 6.30 6.50 6.50		168.1
17.2 17.1 17.0 17.0 17.0 DO% Sat	0.48 0.68 0.71 0.78 spc spc spc spc sample m bgl, M1 NON-TORB	29443 29066 28923 28864 TDS Details	6.49 6.30 6.50 6.50		168.1
	SCAW 2048 4.10	m Details AEC35-BHO(SCAW 204814.01 ORCHARD HILLO - m bgl m bgl m bgl yes / No (interface / m bgl L (target: no drill mud, min 3 v etails 8/9/27 8:0047 JH/LL SUNNY 2-09 m bgl Yes / No (interface) / T-51 m bgl 39 L 3.0 L PERI-PUMP Water Qualit Temp (°C) DO (mg/L) 0.1°C +/-0.3 mg/L	m Details AEC35-BHO (SCAW 204814.01 ORCHARD HILLO - m bgl m bgl m bgl yes / No (interface / visual). Thickn m bgl L (target: no drill mud, min 3 well vol. or dry) letails 8/9/22 8:0090 JH/CC SUNNY -2-09 m bgl 3.14 m bgl Yes / No) (interface) / visual). Thickn T.SI m bgl 39 L 3-0 L PERI-PUMP Water Quality Parameters Temp (°C) DO (mg/L) EC (µS or mS/cm) 0.1° C +/-0.3 mg/L +/-3% 17-0 0.8 (2.9369)	Details AEC3 5-8H0 (When SCA W 2048 (4.0 (Details

Groundwater Field She	et		50	Bore V	olume = casing volume	+ filter pack	_
Project and Bore Installation	Details				volume = $\pi h ds^2/4 + n(\pi l)$	h ₁ d ₁ ² /4-πh ₂ d ₂ ² /4)	
Bore / Standpipe ID:	AEC35BH	02		Where	$\pi = 3.14$	mini i s simini i sis	·
Project Name:	SCAW	0-		Walde	n = porosity (0.3 for n	nost filter pack	-
Project Number:	204814.01	,			material)	*	Ř.
Site Location:	ORCHARD H				h; = height of water o	olumn	
Bore GPS Co-ord:	UKCAARU A	FICCO .			d = diameter of annul		-
Installation Date:					h _i = length of filter pa d _i = diameter of casin		
GW Level (during drilling):	<u>-</u>	m bgl		Bore	Vol Normally: 7		(e)
			-		VOI IVOITHANY.	12 11	_
Well Depth: Screened Interval:		m bgl					_
***************************************		m bgl					_
Contaminants/Comments:	-:						_
Bore Development Details	T						_
Date/Time:							_
Purged By:							_
GW Level (pre-purge):	<u> </u>	m bgl					_
GW Level (post-purge):		m bgl					_
PSH observed:	Yes / No (interface /	visual). Thickr	ess if observed	l:		
Observed Well Depth:		m bgl	_			**	
Estimated Bore Volume:	-2.1	L					
Total Volume Purged:	(target: no drill	l mud, min 3 w	vell vol. or dry)		1	Antonio II and America	
Equipment:						2	
Micropurge and Sampling D	etails						
Date/Time:		9:30 an					
Sampled By:	SHILL	, , ,					
Weather Conditions:	YUUUS						
GW Level (pre-purge):	0.55	m bgl					
GW Level (pre-purgo):	1.54	m bgl					_
PSH observed:	Yes / (No) (visual). Thickr	ess if observed	ŀ		-
Observed Well Depth:	5.09	m bgl	visuai j. Triiciti	1000 11 00001 100	•	li -	
Estimated Bore Volume:	3.5	ın bgı					_
	2.0					<u> </u>	_
Total Volume Purged:	2.0	_					
Equipment:	PERI-PUM	16					
		Water Quality	y Parameters				
Time / Maluma	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	На	Turbidity	Redox (mV)	
Time / Volume				•			_
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV	_
15 / 0.5	16:6	1.63	11275	6.30		36 70	_
30 /1.0	15.0	1.19	118364	3.76	-	3/ " (1	_
45 / 1.5	15.3	1.17	11324	3-77		3717	_
60 /2.0	15.2	1.16	11321 :	3.78		3983	
							13
					1		
				i i i		pt. II.	
Additional Readings Following	DO % Sat	SPC	TDS				
stabilisation:					THE STATE OF THE S		
v.		Sample	Details				
Sampling Depth (rationale):	3		DLE OF SCA	PERM			
Sample Appearance (e.g.					7		
colour, siltiness, odour):	ONG MILY TO	WIP , CKEY	INO ODOU	(1) HEED			
CONTRACT SHULLESS CRICILLE.	1						
	AFC35 DUL	77					_
Sample ID:	AEC35 BHO	02					
Sample ID: QA/QC Samples:	-		7.	18			
Sample ID: QA/QC Samples: Sampling Containers and	- 2× AMBER		71				
Sample ID: QA/QC Samples:	-		7.	10			
Sample ID: QA/QC Samples: Sampling Containers and	- 2× AMBER	3× PLAST	7.				

Groundwater Field She	eet			Bore	Volume = casing volu	une + filter pack	
Project and Bore Installation	n Details				volume	n(πh ₂ d ₁ ² /4-πh ₂ d ₂ ² /4)	=
Bore / Standpipe ID:	AEC351	3H03		Whe	$= \pi n_1 \alpha_2 \approx +$ re: $\pi = 3.14$	n(xn;q; /4-xn;q; /4)	_
Project Name:	SCAW			******		for most filter pack	-
Project Number:	204814	0.1			material)	-	
Site Location:	ORCHARD				h, = height of wat	er column	ů.
Bore GPS Co-ord:	THE PROPERTY OF	111003			d _i = diameter of ar		8
Installation Date:					h_i = length of filte d_i = diameter of c_i		
GW Level (during drilling):	_	m bal		Bor	e Vol Normally	-	
Well Depth:		m bgl		501	e vor ivormany	. 7.2 11	
Screened Interval:		m bgl					_
Contaminants/Comments:	_	III bgi					_
Bore Development Details	2						_
Date/Time:	T						_
							-
Purged By:		as bal					_
GW Level (pre-purge):		m bgl					_
GW Level (post-purge):	V / N- /	m bgl					_
PSH observed:	Yes / No (interface /	visual). Thickn	ess if observe	ed:		_
Observed Well Depth:		m bgl					
Estimated Bore Volume:		_ L					_
Total Volume Purged:	(target: no dril	I mud, min 3 v	vell vol. or dry)				
Equipment:							
Micropurge and Sampling De							
Date/Time:	8/9/22	10 an	1				
Sampled By:	OH						
Weather Conditions:	Clear						
GW Level (pre-purge):	0.5	m bgl			1.00		
GW Level (post sample):	***	m bgl のフ	7				
PSH observed:	Yes / No (interface /	visual). Thickn	ess if observe	ed:		
Observed Well Depth:	3.04	m bgl					
Estimated Bore Volume:	17.9	L					
Total Volume Purged:	2	L		15			
Fauriamant	PERI-PUR	18					
Equipment:	PERI-FUR	17					
		Water Qualit	y Parameters		·		
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	рН	Turbidity	Redox (mV)	
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV	
15/0.5	W/4.5	0.62	16754	3.82		331.7	
20/1	14.4	0.51	10792	3.96		336.8	
45/1.5	14.3	0.46	10782	3-91		346	7
60/2	14.3	0.41	10765	3.93	1	347.3	_
		1					
							_
							_
							_
A LPC ID D = 0	DO % Sat	SPC	TDS				_
Additional Readings Following							_
Additional Readings Following stabilisation:	20,700						_
		Sample	Details				
stabilisation:	2		Details	en			
stabilisation: Sampling Depth (rationale):	2	m bgl, Htp.	OLE OF SCREI				
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g.	2	m bgl, Htp.	OLE OF SCREI		BEN		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	2 MODERATELY	m bgl, Mips			ERN		
Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	Z MODERATECY AEC3SBHO	m bgl, Mip. TURBID, RED 3	OLE OF SCREI		ERN		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	Z MODERATELY AEC3SBHO BD2/2022	m bgl, MIDI TURBID, RED 3	- BROUN, NO		ERN		
Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	2 MODERATELY AEC35BHO BD2/2022 C 2× AMBER	m bgl, MIDI TURBID, RED 3	- BROUN, NO		ERN		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	Z MODERATELY AEC3SBHO BD2/2022	m bgl, MIDI TURBID, RED 3	- BROUN, NO		BEN		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	2 MODERATELY AEC35BHO BD2/2022 C 2× AMBER	m bgl, MIDI TURBID, RED 3	- BROUN, NO		BEN		

Appendix I

Summary of Results for Current Investigation

Table I1: Summary of Laboratory Results for Soil – Metals, TRH, BTEX, PAH

							Me	tals						TR	Н				вт	EX			PA	н	
				Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	TRH C6-C10 less BTEX	IRH >C10-C16 less Naphthalene	TRH >C16-C34	TRH >C34-C40	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs
			PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	0.1	0.05	0.5	0.05
Sample ID	Depth	Sample type	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
AEC35TP01	0 - 0.1 m	Fill	29/07/2022	13 300 100	<0.4	37 300 410	4 17000 160	18 600 1100	<0.1	6 1200 110	12 30000 350	<25	<50 - 120	<25 310 180	<50	<100 - 1300	<100 - 5600	<0.2 4 65	<0.5 NL 105	<1 NL 125	<1 NL 45	<0.1 NL 170	<0.05	<0.5	<0.05
AEC35TP02	0 - 0.1 m	Fill	29/07/2022	11	<0.4	32	10	17	<0.1	4	24	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05
AEC35TP02	0.8 - 0.9 m	Natural	29/07/2022	300 100 5	<0.4	300 410 4	17000 160 8	600 1100 7	<0.1	1200 110 <1	30000 350	<25	- 120 <50	310 180 <25	NL - <50	- 1300 <100	- 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125 <1	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	<0.5	<0.05
AEC35TP03	0.5 - 0.6 m	Natural	29/07/2022	300 100 10	<0.4	300 410 35	17000 160 13	600 1100 15	<0.1	1200 110 3	30000 350 7	<25	- 120 <50	310 180 <25	NL - <50	- 1300 <100	- 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125 <1	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	3 - <0.5	<0.05
				300 100 10	90 -	300 410 14	17000 160 12	600 1100 13	80 - <0.1	1200 110 3	30000 350 13	 <25	- 120 <50	310 180 <25	NL - <50	- 1300 <100	- 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	3 - <0.5	300 - <0.05
AEC35TP04	0 - 0.1 m	Fill	29/07/2022	300 100 8	90 -	300 410	17000 160 11	600 1100 12	80 - <0.1	1200 110	30000 350 9	 <25	- 120 <50	310 180 <25	NL - <50	- 1300 <100	- 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	3 -	300 - <0.05
AEC35TP05	0.1 - 0.2 m	Fill	29/07/2022	300 100	90 -	300 410	17000 160	600 1100	80 -	1200 110	30000 350		- 120	310 180	NL -	- 1300	- 5600	4 65	NL 105	NL 125	NL 45	NL 170	- 0.7	3 -	300 -
AEC35TP05	0.5 - 0.6 m	Natural	29/07/2022	13 300 100	<0.4 90 -	24 300 410	13 17000 160	12 600 1100	<0.1 80 -	<1 1200 110	30000 350	<25	<50 - 120	<25 310 180	<50 NL -	<100 - 1300	<100 - 5600	<0.2 4 65	<0.5 NL 105	<1 NL 125	<1 NL 45	<0.1 NL 170	<0.05 - 0.7	<0.5	<0.05 300 -
BD8/20220729	0.5 - 0.6 m	Natural	29/07/2022	10 300 100	<0.4	21 300 410	16 17000 160	13 600 1100	<0.1	<1 1200 110	6 30000 350	<25	<50 - 120	<25 310 180	<50	<100 - 1300	<100 - 5600	<0.2 4 65	<0.5 NL 105	<1 NL 125	<1 NL 45	<0.1 NL 170	<0.05	<0.5	<0.05
AEC35TP06	0 - 0.1 m	Fill	28/07/2022	12	<0.4	35	15	20	<0.1	4	18	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05
AEC35TP07	0 - 0.1 m	Fill	28/07/2022	300 100 11	<0.4	300 410	17000 160 11	600 1100 18	<0.1	1200 110 3	30000 350 12	<25	- 120 <50	310 180 <25	NL - <50	- 1300 <100	- 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125 <1	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	<0.5	<0.05
AEC35TP08	0.5 - 0.6 m	Natural	29/07/2022	300 100 6	<0.4	9	17000 160 15	10	<0.1	1200 110 <1	30000 350 5	<25	- 120 <50	310 180 <25	NL - <50	- 1300 <100	- 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125 <1	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	<0.5	<0.05
				300 100 10	90 - <0.4	300 410 5	17000 160 8	600 1100 13	80 - <0.1	1200 110 <1	30000 350	<25	- 120 <50	310 180 <25	NL - <50	- 1300 <100	- 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	3 - <0.5	300 - <0.05
AEC35TP08	1.9 - 2 m	Natural	29/07/2022	300 100 6	90 -	300 410 24	17000 160 10	600 1100 62	80 - <0.1	1200 110	30000 350 11	 <25	- 120 <50	480 180 <25	NL - <50	- 1300 <100	- 5600 <100	6 65 <0.2	NL 105 <0.5	NL 125	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	3 - <0.5	300 - <0.05
AEC35TP09	0 - 0.1 m	Fill	29/07/2022	300 100	90 -	300 410	17000 160	600 1100	80 -	1200 110	30000 350		- 120	310 180	NL -	- 1300	- 5600	4 65	NL 105	NL 125	NL 45	NL 170	- 0.7	3 -	300 -
AEC35TP10	0.1 - 0.2 m	Fill	28/07/2022	6 300 100	<0.4 90 -	19 300 410	11 17000 160	16 600 1100	<0.1 80 -	2 1200 110	12 30000 350	<25	<50 - 120	<25 310 180	<50 NL -	<100 - 1300	<100 - 5600	<0.2 4 65	<0.5 NL 105	<1 NL 125	<1 NL 45	<0.1 NL 170	<0.05 - 0.7	<0.5	<0.05 300 -
AEC35TP11	0 - 0.1 m	Fill	28/07/2022	12 300 100	<0.4	25 300 410	11 17000 160	14 600 1100	<0.1 80 -	1200 110	15 30000 350	<25	<50 - 120	<25 310 180	<50	<100 - 1300	<100 - 5600	<0.2 4 65	<0.5 NL 105	<1 NL 125	<1 NL 45	<0.1 NL 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
AEC35TP11	1 - 1.1 m	Natural	28/07/2022	12 300 100	<0.4	30 300 410	16 17000 160	16 600 1100	<0.1	3 1200 110	16 30000 350	<25	<50 - 120	<25 480 180	<50	<100 - 1300	<100 - 5600	<0.2 6 65	<0.5 NL 105	<1 NL 125	<1 NL 45	<0.1 NL 170	<0.05	<0.5	<0.05
AEC35TP12	0 - 0.1 m	Fill	28/07/2022	9	<0.4	26	8	14	<0.1	4	17	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05
AEC35TP13	0 - 0.1 m	Fill	28/07/2022	300 100 12	<0.4	300 410 41	17000 160 4	600 1100 16	<0.1	1200 110 3	30000 350 6	<25	- 120 <50	310 180 <25	NL - <50	- 1300 <100	- 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125 <1	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	<0.5	<0.05
				300 100 5	90 - <0.4	300 410 15	17000 160 6	600 1100 12	80 - <0.1	1200 110	30000 350 10	<25	- 120 <50	310 180 <25	NL - <50	- 1300 <100	- 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	3 - <0.5	300 - <0.05
AEC35TP14	0 - 0.1 m	Fill	28/07/2022	300 100 7	90 -	300 410 35	17000 160 7	600 1100 10	80 - <0.1	1200 110	30000 350	 <25	- 120 <50	310 180 <25	NL - <50	- 1300 <100	- 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	3 -	300 - <0.05
AEC35TP14	0.3 - 0.4 m	Natural	28/07/2022	300 100	90 -	300 410	17000 160	600 1100	80 -	1200 110	30000 350		- 120	310 180	NL -	- 1300	- 5600	4 65	NL 105	NL 125	NL 45	NL 170	- 0.7	3 -	300 -
AEC35TP15	0.3 - 0.4 m	Fill	28/07/2022	300 100	<0.4 90 -	27 300 410	5 17000 160	9 600 1100	<0.1 80 -	1 1200 110	30000 350	<25 	<50 - 120	<25 310 180	<50 NL -	<100 - 1300	<100 - 5600	<0.2 4 65	<0.5 NL 105	<1 NL 125	<1 NL 45	<0.1 NL 170	<0.05 - 0.7	<0.5	<0.05 300 -
BD4/20220728	0.3 - 0.4 m	Fill	28/07/2022	12 300 100	<0.4 90 -	300 410	3 17000 160	15 600 1100	<0.1	1200 110	30000 350	<25 	<50 - 120	<25 310 180	<50	<100 - 1300	<100 - 5600	<0.2 4 65	<0.5 NL 105	<1 NL 125	<1 NL 45	<0.1 NL 170	<0.05 - 0.7	<0.5	<0.05 300 -
AEC35TP16	0.2 - 0.3 m	Fill	28/07/2022	6 300 100	<0.4	21 300 410	4 17000 160	11 600 1100	<0.1	2 1200 110	7 30000 350	<25	<50 - 120	<25 310 180	<50	<100 - 1300	<100 - 5600	<0.2 4 65	<0.5 NL 105	<1 NL 125	<1 NL 45	<0.1 NL 170	<0.05	<0.5	<0.05 300 -
BD3/20220728	0.2 - 0.3 m	Fill	28/07/2022	18	<0.4	45	7	17	<0.1	<5	10	<20	<50	<20	<50	<100	<100	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5
AEC35TP16 -	0.2 - 0.3 m	Fill	28/07/2022	300 100 9	<0.4	300 410 26	17000 160 5	600 1100 12	<0.1	1200 110	30000 350 7		- 120	310 180	NL -	- 1300	- 5600	-	NL 105	NL 125	NL 45 -	NL 170	- 0.7	3 -	300
[TRIPLICATE] AEC35TP17			28/07/2022	300 100 9	90 - <0.4	300 410 29	17000 160 3	600 1100 12	80 - <0.1	1200 110	30000 350 5	 <25	- 120 <50	310 180 <25	NL - <50	- 1300 <100	- 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	3 - <0.5	300 - <0.05
	0 - 0.15 m	Fill		300 100 11	90 -	300 410 44	17000 160 3	600 1100 15	80 - <0.1	1200 110	30000 350 6	 <25	- 120 <50	310 180 <25	NL - <50	- 1300 <100	- 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125	NL 45 <1	NL 170 <0.1	- 0.7 <0.05	3 - <0.5	300 - <0.05
AEC35TP18	0.1 - 0.2 m	Fill	28/07/2022	300 100	90 -	300 410	17000 160	600 1100	80 -	1200 110	30000 350		- 120	310 180	NL -	- 1300	- 5600	4 65	NL 105	NL 125	NL 45	NL 170	- 0.7	3 -	300 -
AEC35TP18	0.7 - 0.8 m	Natural	28/07/2022	7 300 100	<0.4 90 -	31 300 410	7 17000 160	8 600 1100	<0.1 80 -	1200 110	30000 350	<25	<50 - 120	<25 310 180	<50 NL -	<100 - 1300	<100 - 5600	<0.2 4 65	<0.5 NL 105	<1 NL 125	<1 NL 45	<0.1 NL 170	<0.05 - 0.7	<0.5	<0.05 300 -
BD1/20220728	0.7 - 0.8 m	Natural	28/07/2022	15 300 100	<0.4 90 -	55 300 410	12 17000 160	13 600 1100	<0.1 80 -	5.3 1200 110	7.9 30000 350	<20	<50 - 120	<20 310 180	<50	<100 - 1300	<100 - 5600	<0.1 4 65	<0.1 NL 105	<0.1 NL 125	<0.1 NL 45	<0.5 NL 170	<0.5 - 0.7	<0.5	<0.5 300 -
AEC35TP19	0.3 - 0.4 m	Fill	28/07/2022	8 300 100	<0.4 90 -	41 300 410	<1 17000 160	11 600 1100	<0.1	1 1200 110	1	<25	<50	<25 310 180	<50 NL -	<100 - 1300	<100 - 5600	<0.2	<0.5	<1	<1	<0.1 NL 170	<0.05	<0.5	<0.05 300 -

Table I1: Summary of Laboratory Results for Soil – Metals, TRH, BTEX, PAH

							Met	tals						т	'RH				ВТ	EX			P	АН	
				Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	TRH C6-C10 less BTEX	TRH >C10-C16 less Naphthalene	TRH >C16-C34	TRH >C34-C40	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs
			PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	0.1	0.05	0.5	0.05
Sample ID	Depth	Sample type	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
AEC35HA20	0 - 0.1 m	Fill	21/09/2022	10	<0.4	27	10	16	<0.1	8	13	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05
				300 100	90 -	300 410	17000 160	600 1100	80 -	1200 110	30000 350		- 120	310 180	NL -	- 1300	- 5600	4 65	NL 105	NL 125	NL 45	NL 170	- 0.7	3 -	300 -
AEC35SP-1		stockpile	29/07/2022	11	<0.4	28	10	14	<0.1	3	9	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05
7.200001 1		otoonpiio	20/01/2022	300 100	90 -	300 410	17000 160	600 1100	80 -	1200 110	30000 350		- 120	310 180	NL -	- 1300	- 5600	4 65	NL 105	NL 125	NL 45	NL 170	- 0.7	3 -	300 -
AEC35SP-2		stockpile	29/07/2022	18	<0.4	15	12	14	<0.1	3	9	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05
71200001 2		Stockpile	25/01/2022	300 100	90 -	300 410	17000 160	600 1100	80 -	1200 110	30000 350		- 120	310 180	NL -	- 1300	- 5600	4 65	NL 105	NL 125	NL 45	NL 170	- 0.7	3 -	300 -
AEC35SP-3		stockpile	29/07/2022	9	<0.4	22	11	16	<0.1	4	10	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05
ALCOSOF-5		Stockpile	23/01/2022	300 100	90 -	300 410	17000 160	600 1100	80 -	1200 110	30000 350		- 120	310 180	NL -	- 1300	- 5600	4 65	NL 105	NL 125	NL 45	NL 170	- 0.7	3 -	300 -
AEC35SP-4		stockpile	29/07/2022	8	<0.4	23	7	15	<0.1	5	16	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05
71200001-4		Stootpile	25/51/2022	300 100	90 -	300 410	17000 160	600 1100	80 -	1200 110	30000 350		- 120	310 180	NL -	- 1300	- 5600	4 65	NL 105	NL 125	NL 45	NL 170	- 0.7	3 -	300 -

Lab result

HIL/HSL value

EIL/ESL value

HIL/HSL exceedance EIL/ESL exceedance HIL/HSL and EIL/ESL exceedance ML exceedance ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance HSL 0-<1 Exceedance

Bold = Lab detections -= Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSL

Notes:

QA/QC replicate of sample listed directly below the primary sample

Reported naphthalene laboratory result obtained from BTEXN suite

c Criteria applies to DDT only

Site Assessment Criteria (SAC):

 $\label{lem:Refer} \textit{Refer to the SAC section of report for information of SAC sources and rationale. } \textit{Summary information as follows:}$

SAC based on generic land use thresholds for Recreational C including public open space with amenities buildings

HIL C Recreational / Open Space (NEPC, 2013)

HSL D Commercial / Industrial (vapour intrusion) (NEPC, 2013)

DC HSL C Direct contact HSL C Recreational /Open space (direct contact) (CRC CARE, 2011)

EIL/ESL UR/POS Urban Residential and Public Open Space (NEPC, 2013)

ML R/P/POS Residential, Parkland and Public Open Space (NEPC, 2013)

Table I1 (continued): Summary of Laboratory Results for Soil – Phenols, OCP, OPP, PCB, Asbestos

				PhenoIs						0	СР						OI	PP	РСВ		Asb	estos	
				Total Phenols	DDD	DDT+DDE+DDD ^C	DDE	рот	Aldrin & Dieldrin	Total Chlordane	Endrin	Total Endosulfan	Heptachlor	Hexachlorobenzen e	Methoxychlor	Other OCP	Chlorpyriphos	Other OPP	Total PCB	Asbestos ID in soil >0.1g/kg	Trace Analysis	Asbestos ID in soil <0.1g/kg	FA and AF Estimation
			PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		0.1		0.1	-			<0.001
Sample ID	Depth	Sample type	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	-	-	%(w/w)
AEC35TP01	0 - 0.1 m	Fill	29/07/2022	<5 120 -	<0.1	<0.1 400 180	<0.1	<0.1 - 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 400 -	<pql< td=""><td><0.1 250 -</td><td><pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1 250 -	<pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
AEC35TP02	0 - 0.1 m	Fill	29/07/2022	<5 120 -	<0.1	<0.1 400 180	<0.1	<0.1 - 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 400 -	<pql< td=""><td><0.1 250 -</td><td><pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1 250 -	<pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
AEC35TP02	0.8 - 0.9 m	Natural	29/07/2022	<5 120 -	<0.1	<0.1 400 180	<0.1	<0.1 - 180	<0.1 10 -	<0.1 70 -	<0.1	<0.1	<0.1	<0.1	<0.1 400 -	<pql< td=""><td><0.1 250 -</td><td><pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<0.1 250 -	<pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	<0.1	-	-	-	-
AEC35TP03	0.5 - 0.6 m	Natural	29/07/2022	<5 120 -	<0.1	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 400 -	<pql< td=""><td><0.1 250 -</td><td><pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1 250 -	<pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
AEC35TP04	0 - 0.1 m	Fill	29/07/2022	<5 120 -	<0.1	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1 250 -</td><td><pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1 250 -	<pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
AEC35TP05	0.1 - 0.2 m	Fill	29/07/2022	120 -	<0.1	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
AEC35TP05	0.5 - 0.6 m	Natural	29/07/2022	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	<0.1	-	-	-	-
BD8/20220729	0.5 - 0.6 m	Natural	29/07/2022	120 - <5	<0.1	<0.1	<0.1	- 180 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	<0.1	-	-	-	-
AEC35TP06	0 - 0.1 m	Fill	28/07/2022	120 -	<0.1	<0.1	<0.1	- 180 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td> <pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1	 <pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
AEC35TP07	0 - 0.1 m	Fill	28/07/2022	120 - <5	<0.1	400 180 <0.1	<0.1	- 180 <0.1	<0.1	<0.1	<0.1	340 - <0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td> <pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1	 <pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
AEC35TP08	0.5 - 0.6 m	Natural	29/07/2022	120 - <5	<0.1	400 180 <0.1	<0.1	- 180 <0.1	10 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td> <pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1	 <pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
AEC35TP08	1.9 - 2 m	Natural	29/07/2022	120 - <5	<0.1	<0.1	<0.1	- 180 <0.1	10 - <0.1	70 - <0.1	<0.1	340 - <0.1	<0.1	<0.1	<u>400</u> - <0.1	<pql< td=""><td>250 - <0.1</td><td> <pql< td=""><td>1 - <0.1</td><td></td><td>_</td><td>-</td><td>_</td></pql<></td></pql<>	250 - <0.1	 <pql< td=""><td>1 - <0.1</td><td></td><td>_</td><td>-</td><td>_</td></pql<>	1 - <0.1		_	-	_
AEC35TP09	0 - 0.1 m	Fill	29/07/2022	120 - <5	<0.1	400 180 <0.1	<0.1	- 180 <0.1	10 - <0.1	70 - <0.1	<0.1	340 - <0.1	<0.1	<0.1	400 - <0.1	<pql< td=""><td>250 - <0.1</td><td> <pql< td=""><td>1 - <0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	250 - <0.1	 <pql< td=""><td>1 - <0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	1 - <0.1	NAD	NAD	NAD	<0.001
AEC35TP10	0.1 - 0.2 m	Fill	28/07/2022	120 - <5	<0.1	400 180 <0.1	<0.1	- 180 <0.1	10 - <0.1	70 - <0.1	<0.1	340 - <0.1	<0.1	<0.1	400 - <0.1	<pql< td=""><td>250 - <0.1</td><td> <pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	250 - <0.1	 <pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
AEC35TP11	0 - 0.1 m	Fill	28/07/2022	120 - <5	<0.1	400 180 <0.1	<0.1	- 180 <0.1	10 - <0.1	70 - <0.1	20 - <0.1	340 - <0.1	<0.1	10 - <0.1	400 - <0.1	<pql< td=""><td>250 - <0.1</td><td> <pql< td=""><td>1 - <0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	250 - <0.1	 <pql< td=""><td>1 - <0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	1 - <0.1	NAD	NAD	NAD	<0.001
AEC35TP11	1 - 1.1 m		28/07/2022	120 - <5	 <0.1	400 180 <0.1	 <0.1	- 180 <0.1	10 - <0.1	70 - <0.1	20 - <0.1	340 - <0.1	10 - <0.1	10 - <0.1	400 - <0.1	 <pql< td=""><td>250 - <0.1</td><td> <pql< td=""><td>1 - <0.1</td><td>IVAD</td><td>IVAD</td><td>IVAD</td><td>V0.001</td></pql<></td></pql<>	250 - <0.1	 <pql< td=""><td>1 - <0.1</td><td>IVAD</td><td>IVAD</td><td>IVAD</td><td>V0.001</td></pql<>	1 - <0.1	IVAD	IVAD	IVAD	V0.001
		Natural		120 - <5	<0.1	400 180 <0.1	<0.1	- 180 <0.1	10 - <0.1	70 - <0.1	20 - <0.1	340 - <0.1	10 - <0.1	10 - <0.1	400 - <0.1	 <pql< td=""><td>250 - <0.1</td><td> <pql< td=""><td>1 -</td><td></td><td>-</td><td></td><td>-</td></pql<></td></pql<>	250 - <0.1	 <pql< td=""><td>1 -</td><td></td><td>-</td><td></td><td>-</td></pql<>	1 -		-		-
AEC35TP12	0 - 0.1 m	Fill	28/07/2022	120 -	<0.1	400 180 <0.1	<0.1	- 180 <0.1	10 -	70 - <0.1	20 - <0.1	340 - <0.1	10 -	10 -	400 - <0.1	 <pql< td=""><td>250 - <0.1</td><td> <pql< td=""><td>1 -</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	250 - <0.1	 <pql< td=""><td>1 -</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	1 -	NAD	NAD	NAD	<0.001
AEC35TP13	0 - 0.1 m	Fill	28/07/2022	120 -	<0.1	400 180 <0.1	<0.1	- 180 <0.1	10 -	70 - <0.1	20 - <0.1	340 - <0.1	10 -	10 - <0.1	400 - <0.1		250 - <0.1		1 -	NAD	NAD	NAD	<0.001
AEC35TP14	0 - 0.1 m	Fill	28/07/2022	120 -	<0.1	400 180	<0.1	- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -		250 - <0.1	 <pql< td=""><td>1 -</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	1 -	NAD	NAD	NAD	<0.001
AEC35TP14	0.3 - 0.4 m	Natural	28/07/2022	120 -	<0.1	400 180 <0.1	<0.1	- 180 <0.1	10 -	70 -	20 -	340 -	10 -	10 -	400 -	<pql< td=""><td>250 - <0.1</td><td> <pql< td=""><td>1 -</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	250 - <0.1	<pql< td=""><td>1 -</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	1 -	-	-	-	-
AEC35TP15	0.3 - 0.4 m	Fill	28/07/2022	<5 120 -		400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -		250 -		1 -	NAD	NAD	NAD	<0.001
BD4/20220728	0.3 - 0.4 m	Fill	28/07/2022	<5 120 -	<0.1	<0.1 400 180	<0.1	- 180	<0.1	<0.1 70 -	<0.1	<0.1	<0.1	<0.1	<0.1 400 -	<pql< td=""><td><0.1 250 -</td><td><pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<0.1 250 -	<pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	<0.1	-	-	-	-
AEC35TP16	0.2 - 0.3 m	Fill	28/07/2022	<5 120 -	<0.1	<0.1 400 180	<0.1	- 180	<0.1	<0.1	<0.1	<0.1 340 -	<0.1	<0.1	<0.1 400 -	<pql< td=""><td><0.1 250 -</td><td><pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1 250 -	<pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
BD3/20220728	0.2 - 0.3 m	Fill	28 Jul 2022	<pql -<="" 120="" td=""><td><0.05</td><td><0.05 400 180</td><td><0.05</td><td><0.05 - 180</td><td><0.05 10 -</td><td><0.1 70 -</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05 400 -</td><td><pql< td=""><td><0.2 250 -</td><td><pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<></td></pql>	<0.05	<0.05 400 180	<0.05	<0.05 - 180	<0.05 10 -	<0.1 70 -	<0.05	<0.05	<0.05	<0.05	<0.05 400 -	<pql< td=""><td><0.2 250 -</td><td><pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<0.2 250 -	<pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	<0.1	-	-	-	-
AEC35TP16 - [TRIPLICATE]	0.2 - 0.3 m	Fill	28/07/2022	120 -		400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -		250 -		1 -	-	-	-	-
AEC35TP17	0 - 0.15 m	Fill	28/07/2022	<5 120 -	<0.1	<0.1 400 180	<0.1	<0.1 - 180	<0.1	<0.1 70 -	<0.1	<0.1 340 -	<0.1	<0.1	<0.1 400 -	<pql< td=""><td><0.1 250 -</td><td><pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1 250 -	<pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
AEC35TP18	0.1 - 0.2 m	Fill	28/07/2022	<5 120 -	<0.1	<0.1 400 180	<0.1	<0.1 - 180	<0.1 10 -	<0.1 70 -	<0.1	<0.1 340 -	<0.1	<0.1	<0.1 400 -	<pql< td=""><td><0.1 250 -</td><td><pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1 250 -	<pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001

Table I1 (continued): Summary of Laboratory Results for Soil – Phenols, OCP, OPP, PCB, Asbestos

				Phenols						0	CP						OI	PP	РСВ		Asbe	estos	
				Total Phenois	aga	DDT+DDE+DDD ^C	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	Endrin	Total Endosulfan	Heptachlor	Hexachlorobenzen e	Methoxychlor	Other OCP	Chlorpyriphos	Other OPP	Total PCB	Asbestos ID in soil >0.1g/kg	Trace Analysis	Asbestos ID in soil <0.1g/kg	FA and AF Estimation
			PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		0.1		0.1				<0.001
Sample ID	Depth	Sample type	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	-	-	%(w/w)
AEC35TP18	0.7 - 0.8 m	Natural	28/07/2022	<5 120 -	<0.1	<0.1 400 180	<0.1	<0.1 - 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1 250 -</td><td><pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<0.1 250 -	<pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	<0.1	-	-	-	-
DD 4 (00000700	27.22	N	00 1 10000	<pql< td=""><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.1</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><pql< td=""><td><0.2</td><td><pql< td=""><td><0.1</td><td></td><td></td><td></td><td></td></pql<></td></pql<></td></pql<>	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<pql< td=""><td><0.2</td><td><pql< td=""><td><0.1</td><td></td><td></td><td></td><td></td></pql<></td></pql<>	<0.2	<pql< td=""><td><0.1</td><td></td><td></td><td></td><td></td></pql<>	<0.1				
BD1/20220728	0.7 - 0.8 m	Natural	28 Jul 2022	120 -		400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -		250 -		1 -	-	-	-	-
AEC35TP19	0.3 - 0.4 m	Fill	28/07/2022	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
				120 -		400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -		250 -		1 -				
AEC35HA20	0 - 0.1 m	Fill	21/09/2022	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
				120 -		400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -		250 -		1 -				
AEC35SP-1	0 m	stockpile	29/07/2022	<5 120 -	<0.1	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 400 -	<pql< td=""><td><0.1 250 -</td><td><pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1 250 -	<pql< td=""><td><0.1</td><td>NAD</td><td>NAD</td><td>NAD</td><td><0.001</td></pql<>	<0.1	NAD	NAD	NAD	<0.001
				120 -	<0.1	<0.1	<0.1	- 180 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	 <pql< td=""><td><0.1</td><td> <pql< td=""><td><0.1</td><td></td><td></td><td></td><td></td></pql<></td></pql<>	<0.1	 <pql< td=""><td><0.1</td><td></td><td></td><td></td><td></td></pql<>	<0.1				
AEC35SP-2	0 m	stockpile	29/07/2022	120 -	VO.1	400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -	- \ .	250 -		1 -	NAD	NAD	NAD	<0.001
	_			<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1</td><td></td><td></td><td></td><td></td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1</td><td></td><td></td><td></td><td></td></pql<>	<0.1				
AEC35SP-3	0 m	stockpile	29/07/2022	120 -		400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -		250 -		1 -	NAD	NAD	NAD	<0.001
AEC35SP-4	0 m	etoeknilo	29/07/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NAD	NAD	NAD	-0.001
AEU333P-4	0 m	stockpile	29/01/2022	120 -		400 180		- 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -		250 -		1 -	NAD	NAU	INAD	<0.001

Lab result

HIL/HSL value EIL/ESL value

HIL/HSL exceedance EIL/ESL exceedance HIL/HSL and EIL/ESL exceedance ML exceedance ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance HSL 0-<1 Exceedance

Bold = Lab detections -= Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HIL = Health investigation level | HSL = Health screening level (excluding DC) | EIL = Ecological investigation level | ESL = Ecological screening level | ML = Management Limit | DC = Direct Contact HSL

Notes

- QA/QC replicate of sample listed directly below the primary sample
- b Reported naphthalene laboratory result obtained from BTEXN suite
- c Criteria applies to DDT only

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

SAC based on generic land use thresholds for Recreational C including public open space with amenities buildings

HIL C Recreational / Open Space (NEPC, 2013)

HSL D Commercial / Industrial (vapour intrusion) (NEPC, 2013)

DC HSL C Direct contact HSL C Recreational /Open space (direct contact) (CRC CARE, 2011)

EIL/ESL UR/POS Urban Residential and Public Open Space (NEPC, 2013)

ML R/P/POS Residential, Parkland and Public Open Space (NEPC, 2013)

Table I2: Summary of Results of Groundwater Analysis (All results in $\mu g/L$)

				N	letals (dissolv	/ed)				Poly	cylic A	romati	c Hydr	ocarbo	ns														Tot	tal Rec	overabl	e Hydro	ocarboi	ıs, BTI	EX and	d Volati	le Orga	anic Co	отрос	unds														
Sample Location / Identification (Borehole or Replicate)	Sample Date	Arsenic	Cadmium	Chromium (III + VI)	Copper	pool	- Feau	Mercury	Nickel	Zinc	Naphthalene	Anthracene	Fluoranthene	Benzo(a)pyrene	Phenanthrene	Other PAH	TRH C6-C10 less BTEX	TRH >C10-C16 less Naphthalene	TRH C6-C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40	Benzene	Toulene	Ethylbenzene	o-xylene	m+p-xylene	Isopropylbenzene	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	cis-1,3-Dichloropropene	Vinyl chloride	Tetrachloroethene	Trichloroethene	1,2,3-Irichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Chlorobenzene	1,1,2,2-Tetrachloroethane	2	1,1,2-Trichloroethane	1,2-Dichloroethane	Carbon tetrachloride	Bromodichloromethane	Dibromochloromethane	Bromoform	1,2-Dichloropropane	1,3-Dichloropropane	Styrene	Hexachlorobutadiene	Carbon disulfide	Dichloromethane (methylene chloride) Other VOC	
SMGW-BH-BH106 (from SMGW-BH-B106)	8/09/2022	1	0.2	<1	7		:1 <(0.05	59	110	<0.2	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><10</td><td>130</td><td><100</td><td>130</td><td>6900</td><td>210</td><td><10</td><td><10</td><td><10</td><td><10</td><td><20</td><td><10</td><td><10</td><td><10 <</td><td><10 <</td><td>10 <10</td><td><100</td><td><10</td><td><10 <</td><td>:10 <1</td><td>0 <10</td><td>) <10</td><td><10</td><td><10</td><td><10</td><td><10 <</td><td>:10 <</td><td><10</td><td><10 <1</td><td>0 <10</td><td>0 <10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td>-</td><td>- <pq< td=""><td>ΣL</td></pq<></td></pql<>	<10	130	<100	130	6900	210	<10	<10	<10	<10	<20	<10	<10	<10 <	<10 <	10 <10	<100	<10	<10 <	:10 <1	0 <10) <10	<10	<10	<10	<10 <	:10 <	<10	<10 <1	0 <10	0 <10	<10	<10	<10	<10	<10	-	- <pq< td=""><td>ΣL</td></pq<>	ΣL
AEC35BH01	8/09/2022	3	1	<1	2	! <	:1 <(0.05	64	74	<0.2	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><10</td><td><50</td><td><10</td><td><50</td><td><100</td><td><100</td><td><1</td><td><1</td><td><1</td><td><1</td><td><2</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td>:1 <1</td><td><10</td><td><1</td><td><1 <</td><td><1 <</td><td>1 <1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td>1 <1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td>-</td><td>- <pq< td=""><td>ĮL</td></pq<></td></pql<>	<10	<50	<10	<50	<100	<100	<1	<1	<1	<1	<2	<1	<1	<1	<1 <	:1 <1	<10	<1	<1 <	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1 <	1 <1	<1	<1	<1	<1	<1	<1	-	- <pq< td=""><td>ĮL</td></pq<>	ĮL
BD1/20220908	8/09/2022	2	0.9	<1	3	<	:1 <(0.05	6	6	<0.2	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><10</td><td><50</td><td><10</td><td><50</td><td><100</td><td><100</td><td><1</td><td><1</td><td><1</td><td><1</td><td><2</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td>:1 <1</td><td><10</td><td><1</td><td><1 <</td><td><1 <</td><td>1 <1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td>1 <1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td>-</td><td>- <pq< td=""><td>)L</td></pq<></td></pql<>	<10	<50	<10	<50	<100	<100	<1	<1	<1	<1	<2	<1	<1	<1	<1 <	:1 <1	<10	<1	<1 <	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1 <	1 <1	<1	<1	<1	<1	<1	<1	-	- <pq< td=""><td>)L</td></pq<>)L
AEC35BH02	8/09/2022	2	0.7	<1	28	3	7 <(0.05	220	710	<0.2	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><10</td><td><50</td><td><10</td><td><50</td><td><100</td><td><100</td><td><1</td><td><1</td><td><1</td><td><1</td><td><2</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td>:1 <1</td><td><10</td><td><1</td><td><1 <</td><td><1 <</td><td>1 <1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1 4</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td>-</td><td>- <pq< td=""><td>ĮL</td></pq<></td></pql<>	<10	<50	<10	<50	<100	<100	<1	<1	<1	<1	<2	<1	<1	<1	<1 <	:1 <1	<10	<1	<1 <	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1 4	<1	<1	<1	<1	<1	<1	<1	-	- <pq< td=""><td>ĮL</td></pq<>	ĮL
AEC35BH03	8/09/2022	<1	<0.1	<1	<	1 <	:1 <(0.05	56	110	<0.2	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><10</td><td><50</td><td><10</td><td><50</td><td><100</td><td><100</td><td><1</td><td><1</td><td><1</td><td><1</td><td><2</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td>:1 <1</td><td><10</td><td><1</td><td><1 <</td><td><1 <</td><td>1 <1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td>1 <1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td>-</td><td>- <pq< td=""><td>ĮL</td></pq<></td></pql<>	<10	<50	<10	<50	<100	<100	<1	<1	<1	<1	<2	<1	<1	<1	<1 <	:1 <1	<10	<1	<1 <	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1 <	1 <1	<1	<1	<1	<1	<1	<1	-	- <pq< td=""><td>ĮL</td></pq<>	ĮL
BD2/20220908	8/09/2022	<10	<2	<10	<1	0 <	10	<1	53	97	0.01	<0.01	<0.01	<0.01	<0.01	<pql< td=""><td>. <20</td><td>70</td><td><20</td><td>70</td><td>200</td><td><100</td><td><1</td><td><1</td><td><1</td><td><1</td><td><2</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td>:1 <1</td><td><5</td><td><1</td><td><1</td><td></td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td>5 <1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td>-</td><td><1</td><td><5 <pq< td=""><td>)L</td></pq<></td></pql<>	. <20	70	<20	70	200	<100	<1	<1	<1	<1	<2	<1	<1	<1	<1 <	:1 <1	<5	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1 <	5 <1	<1	<1	<1	<1	<1	-	<1	<5 <pq< td=""><td>)L</td></pq<>)L
					1												<u> </u>		l		<u> </u>	<u> </u>	As	ssessm	ent Cr	iteria		l									_			ı		-								<u> </u>					1
Freshwater DG	GV	24 for As(III) 13 for As(V)	7.5	94 for Cr(III) 1.0 fo Cr(VI)	1.4	4 60	03 0	0.06	352	256	16	0.01	1	0.1	0.6	-	-	-	-	-	-	-	950	180	80	350	75 for m- xylene 200 for p- xylene	30	700	-	-	-	100	70 3	330	3 85	5 160	260	60	55	400	270 6	500 1	900	240 37	0 -	-	-	900	1100	-	-	20		
Guidelines for Recreational	Health	100	20	500 fo Cr(VI)	r 200	00 10	00	10	200	-	-	-	-	0.1	-	-	-	-	-	-	-	-	10	8000	3000	6	6000	-	300	600		1000	3	500	-	300	1500	00 -	400	3000	-	-	- ;	30	30	:	2500		-	-	300	7	-	40 -	
Water	Aesthetic	-	-	-	100	00	. [-	- 3	3000	-	-	-	-	-	-	-	-	-	-	-	-	-	25	3		20	-	,	-		-	-	-	-	5	1	20	0.3	10	-	-	-	-	-		-		-	-	4	-	-		
HSL D for Vapour Intrusion, C <4 m) Notes:	Clay (depth 2 m to	-	-	-	-		-	-	-	-	NL	-	-	-	-	-	NL	NL	-	-	-	-	30000) NL	NL		NL	-	-	-			-	-	-	- -	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-		

PQL Practical Quantitation Limit

not defined/ not analysed/ not applicable

NL Limiting
BD1/20220908 Blind replicate from AEC35BH01
BD2/20220908 Blind replicate from AEC35BH03
Exceedance of DGV
Exceedance of DGV

Table I2 (continued): Summary of Results of Groundwater Analysis (All results in $\mu g/L$)

						Orga	nochlorin	ne Pestic	ides													Or	ganopho	osphorus	s Pesticid	es									Pol	ychlorin Biphenyl	ated Is						Phenol	•					Ammonia
Sample Location / Identification (Borehole or Replicate)	Sample Date	Aldrin	Dieldrin	gamma-Chlordane	alpha-Chlordane Total Chlordanes	Paris Company	Frdoeilfan I	Endosultan I	Endrin	Heptachlor	Methoxychlor	Lindane	Other OCP	Azinphos-methyl	Bromophos-ethyl	Cniorpyritos	<u> </u>	Diazinon	Dimethoate	Disulfoton	Ethion	Ethoprophos (Ethoprop)	Fenitrothion	Fensulfothion	Fenthion	į. 2	Monocrotophos	Omethoate	Parathion	Methyl Parathion	Pyrazophos	Terbufos	Tetrachlorvinphos Pirimiphos-methyl	Other OPP	Aroclor 1242	Aroclor 1254	Other PCB		2,4,6-Trichlorophenol	2,4-Dinitrophenol	4-Nitrophenol	2,3,4,6-Tetrachlorophenol	Pentachlorophenol	2-Chlorophenol	2,4-Dimethylphenol	2,4-Dichlorophenol	2,6-Dichlorophenol	Other Phenois	Ammonia as N
SMGW-BH-BH106 (from SMGW-BH-B106)	8/09/2022	<0.1	<0.1	<0.1	<0.1 -	<0	.06 <0	0.1 <0	0.1	<0.1	<0.1		<pql< td=""><td><0.04</td><td><0.4 <0</td><td>).02</td><td>- <</td><td>0.02 <</td><td>).4 <0.</td><td>3 -</td><td><0.4</td><td>-</td><td><0.4</td><td>-</td><td>- <</td><td>).1 -</td><td>-</td><td>-</td><td><0.02</td><td><0.4</td><td>-</td><td>-</td><td></td><td><pq< td=""><td>L <0.1</td><td><0.1</td><td><pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>650</td></pql<></td></pql<></td></pq<></td></pql<>	<0.04	<0.4 <0).02	- <	0.02 <).4 <0.	3 -	<0.4	-	<0.4	-	- <).1 -	-	-	<0.02	<0.4	-	-		<pq< td=""><td>L <0.1</td><td><0.1</td><td><pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>650</td></pql<></td></pql<></td></pq<>	L <0.1	<0.1	<pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>650</td></pql<></td></pql<>	<1	<1 <	<20 <	<20 <	<1	<5	<1	<1	<1	<1	<pql< td=""><td>650</td></pql<>	650
AEC35BH01	8/09/2022	<0.01	<0.01	<0.01	0.01 -	<0.	006 <0.	.01 <0	.01 <0.0	<0.01	<0.01	-	<pql< td=""><td><0.02</td><td><0.2 <0</td><td>0.01</td><td>- <</td><td>0.01</td><td>0.2 <0.1</td><td>15 -</td><td><0.2</td><td>-</td><td><0.2</td><td>-</td><td>- <0</td><td>.05</td><td>-</td><td>-</td><td><0.01</td><td><0.2</td><td>-</td><td>-</td><td></td><td><pq< td=""><td>L <0.1</td><td><0.1</td><td><pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>1500</td></pql<></td></pql<></td></pq<></td></pql<>	<0.02	<0.2 <0	0.01	- <	0.01	0.2 <0.1	15 -	<0.2	-	<0.2	-	- <0	.05	-	-	<0.01	<0.2	-	-		<pq< td=""><td>L <0.1</td><td><0.1</td><td><pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>1500</td></pql<></td></pql<></td></pq<>	L <0.1	<0.1	<pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>1500</td></pql<></td></pql<>	<1	<1 <	<20 <	<20 <	<1	<5	<1	<1	<1	<1	<pql< td=""><td>1500</td></pql<>	1500
BD1/20220908	8/09/2022	<0.01	<0.01	<0.01	0.01 -	<0.	006 <0.	.01 <0	.01 <0.0	<0.01	<0.01	-	<pql< td=""><td><0.02</td><td><0.2 <0</td><td>0.01</td><td>- <</td><td>0.01</td><td>0.2 <0.1</td><td>15 -</td><td><0.2</td><td>-</td><td><0.2</td><td>-</td><td>- <0</td><td>.05</td><td>-</td><td>-</td><td><0.01</td><td><0.2</td><td>-</td><td>-</td><td></td><td><pq< td=""><td>L <0.1</td><td><0.1</td><td><pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>1500</td></pql<></td></pql<></td></pq<></td></pql<>	<0.02	<0.2 <0	0.01	- <	0.01	0.2 <0.1	15 -	<0.2	-	<0.2	-	- <0	.05	-	-	<0.01	<0.2	-	-		<pq< td=""><td>L <0.1</td><td><0.1</td><td><pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>1500</td></pql<></td></pql<></td></pq<>	L <0.1	<0.1	<pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>1500</td></pql<></td></pql<>	<1	<1 <	<20 <	<20 <	<1	<5	<1	<1	<1	<1	<pql< td=""><td>1500</td></pql<>	1500
AEC35BH02	8/09/2022	<0.01	<0.01	<0.01	0.01 -	<0.	006 <0.	.01 <0	.01 <0.0	<0.01	<0.01	-	<pql< td=""><td><0.02</td><td><0.2 <0</td><td>0.01</td><td>- <</td><td>0.01</td><td>0.2 <0.1</td><td>15 -</td><td><0.2</td><td>-</td><td><0.2</td><td>-</td><td>- <0</td><td>.05</td><td>-</td><td>-</td><td><0.01</td><td><0.2</td><td>-</td><td>-</td><td></td><td><pq< td=""><td>L <0.1</td><td><0.1</td><td><pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>. 340</td></pql<></td></pql<></td></pq<></td></pql<>	<0.02	<0.2 <0	0.01	- <	0.01	0.2 <0.1	15 -	<0.2	-	<0.2	-	- <0	.05	-	-	<0.01	<0.2	-	-		<pq< td=""><td>L <0.1</td><td><0.1</td><td><pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>. 340</td></pql<></td></pql<></td></pq<>	L <0.1	<0.1	<pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>. 340</td></pql<></td></pql<>	<1	<1 <	<20 <	<20 <	<1	<5	<1	<1	<1	<1	<pql< td=""><td>. 340</td></pql<>	. 340
AEC35BH03	8/09/2022	<0.01	<0.01	<0.01	0.01 -	<0.	006 <0.	.01 <0	.01 <0.0	<0.01	<0.01		<pql< td=""><td><0.02</td><td><0.2 <0</td><td>).01</td><td>- <</td><td>0.01 <</td><td>0.2 <0.1</td><td>15 -</td><td><0.2</td><td>-</td><td><0.2</td><td>-</td><td>- <0</td><td>.05</td><td>-</td><td>-</td><td><0.01</td><td><0.2</td><td>-</td><td>-</td><td></td><td><pq< td=""><td>L <0.1</td><td><0.1</td><td><pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>. 79</td></pql<></td></pql<></td></pq<></td></pql<>	<0.02	<0.2 <0).01	- <	0.01 <	0.2 <0.1	15 -	<0.2	-	<0.2	-	- <0	.05	-	-	<0.01	<0.2	-	-		<pq< td=""><td>L <0.1</td><td><0.1</td><td><pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>. 79</td></pql<></td></pql<></td></pq<>	L <0.1	<0.1	<pql< td=""><td><1</td><td><1 <</td><td><20 <</td><td><20 <</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td>. 79</td></pql<></td></pql<>	<1	<1 <	<20 <	<20 <	<1	<5	<1	<1	<1	<1	<pql< td=""><td>. 79</td></pql<>	. 79
BD2/20220908	8/09/2022	<0.2	<0.2	-	- <	2 <(0.2 <0	0.2 <0	0.2	<0.2	<0.2	<0.2	<pql< td=""><td><2</td><td>- <</td><td><2 <</td><td>20</td><td><2</td><td>2 <2</td><td>2 <2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2 <</td><td>2 <</td><td>2 <2</td><td><20</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2 <2</td><td>0 <pq< td=""><td>L <1</td><td><1</td><td><pql< td=""><td><3</td><td><10 <</td><td><30 <</td><td><30</td><td>- <</td><td>10 <10</td><td><3</td><td><3</td><td><3</td><td><3</td><td><pql< td=""><td>. 40</td></pql<></td></pql<></td></pq<></td></pql<>	<2	- <	<2 <	20	<2	2 <2	2 <2	<2	<2	<2	<2	<2 <	2 <	2 <2	<20	<2	<2	<2	<2	<2 <2	0 <pq< td=""><td>L <1</td><td><1</td><td><pql< td=""><td><3</td><td><10 <</td><td><30 <</td><td><30</td><td>- <</td><td>10 <10</td><td><3</td><td><3</td><td><3</td><td><3</td><td><pql< td=""><td>. 40</td></pql<></td></pql<></td></pq<>	L <1	<1	<pql< td=""><td><3</td><td><10 <</td><td><30 <</td><td><30</td><td>- <</td><td>10 <10</td><td><3</td><td><3</td><td><3</td><td><3</td><td><pql< td=""><td>. 40</td></pql<></td></pql<>	<3	<10 <	<30 <	<30	- <	10 <10	<3	<3	<3	<3	<pql< td=""><td>. 40</td></pql<>	. 40
	•				•																	Assessr	nent Crit	teria																									
Freshwater DG	v	0.001	0.01	(0.03	0.0	006	0.03	0.01	0.01	0.005	-	-	0.01	- 0.	01	- C).01	- 0.1	5 -	-	-	0.2	-	- 0.	05 -	-	-	0.004	-	-	-	- -	-	0.3	0.01	-	320	3	45	58 1	10 0	2 3.6	340	2	120	34	-	900
Guidelines for Recreational	Health	3			20	9	0	200	-	3	3000	100	-	300	100 1	00 2	20	40 5	0 70	40	40	10	70	100	70 7	00 5) 20	10	200	7	200	9 1	000 900) -	-	-	-	- 2	200	-	-	-	100	3000	-	2000	-	-	-
SMGW-BH-BH106 (from 8/08)2022 401 401 401 401 401 401 401 401 401 401		382																																															
<4 m)	lay (depth 2 m to	-	-	-						-	-		-	-	-	-	-	-	. -	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:
POL Practical Quantitation Limit
not defined/ not analysed/ not applicable
BD1/20220908 Blind replicate from AEC35BH01
BD2/20220908 Blind replicate from AEC35BH03
Exceedance of DGV and Drinking Water Guideline
Exceedance of Drinking Water Guidelkine

Table I3: Summary of Laboratory Results for Waste Classification – Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos

														1						1								1				
							Me	etals				TF	RH		ВТ	EX		P	AH			Ph	enol			0	CP	0	PP	PCB	Asbestos	pН
				Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C9	TRH C10-C36	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Benzo(a)pyrene (BaP)	Total PAHs	2-Methylphenol (0- Cresol)	Cresol (total)	Total Phenois	2,4,5- trichlorophenol	2,4,6- trichlorophenol	Phenol (non- halogenated)	Total Endosulfan	rotal Analysed OCP	Chlorpyriphos	rotal Analysed OPP	Total PCB	Total Asbestos	На
			PQL	4	0.4	1	1	1	0.1	1	1	25	50	0.2	0.5	1	1	0.05	0.05	0.2	0.5	5	1	1	0.5	0.1	0.1	0.1	0.1	0.1	0.001	
Sample ID	Depth	Sample Type	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	
AEC35TP01	0 - 0.1 m	Fill	29/07/2022	13	<0.4	37	4	18	<0.1	6	12	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	6.8
AEC35TP02	0 - 0.1 m	Fill	29/07/2022	11	<0.4	32	10	17	<0.1	4	24	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
AEC35TP02	0.8 - 0.9 m	Natural	29/07/2022	5	<0.4	4	8	7	<0.1	<1	3	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	-	
AEC35TP03	0.5 - 0.6 m	Natural	29/07/2022	10	<0.4	35	13	15	<0.1	3	7	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
AEC35TP04	0 - 0.1 m	Fill	29/07/2022	10	<0.4	14	12	13	<0.1	3	13	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
AEC35TP05	0.1 - 0.2 m	Fill	29/07/2022	8	<0.4	9	11	12	<0.1	2	9	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
AEC35TP05	0.5 - 0.6 m	Natural	29/07/2022	13	<0.4	24	13	12	<0.1	<1	5	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	-	
BD8/20220729	0.5 - 0.6 m	Natural	29/07/2022	10	<0.4	21	16	13	<0.1	<1	6	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	<u> </u>	-	<5		-	-	<0.1	<0.1	<0.1	<0.1	<0.1	-	
AEC35TP06	0 - 0.2 m	Fill	28/07/2022	12	<0.4	35	15 11	20	<0.1	4	18	<25	<50 -50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5		-	-	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	NAD NAD	
AEC35TP07 AEC35TP08	0 - 0.1 m 0.5 - 0.6 m	Fill Natural	28/07/2022	6	<0.4	31 9	11	18	<0.1	3 <1	12	<25 <25	<50 <50	<0.2	<0.5 <0.5	<1	<1	<0.05 <0.05	<0.05	<u> </u>	-	<5 <5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD NAD	5.2
AEC35TP08 AEC35TP08	1.9 - 2 m	Natural	29/07/2022	10	<0.4	5	15	13	<0.1	<1	3	<25 <25	<50 <50	<0.2	<0.5	<1	<1	<0.05	<0.05	<u> </u>	-	<5	-		-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	5.2
AEC35TP08	0 - 0.1 m	Fill	29/07/2022	6	<0.4	24	10	62	<0.1	3	11	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	<u> </u>	-	45			-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
AEC35TP10	0.1 - 0.2 m	Fill	28/07/2022	6	<0.4	19	11	16	<0.1	2	12	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05			-5	-			<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
AEC35TP11	0 - 0.1 m	Fill	28/07/2022	12	<0.4	25	11	14	<0.1	2	15	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05			-5				<0.1	<0.1	<0.1	<0.1	<0.1	NAD	+
AEC35TP11	1 - 1.1 m	Natural	28/07/2022	12	<0.4	30	16	16	<0.1	3	16	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05		-	<5				<0.1	<0.1	<0.1	<0.1	<0.1	-	
AEC35TP12	0 - 0.1 m	Fill	28/07/2022	9	<0.4	26	8	14	<0.1	4	17	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05			<5				<0.1	<0.1	<0.1	<0.1	<0.1	NAD	+
AEC35TP13	0 - 0.1 m	Fill	28/07/2022	12	<0.4	41	4	16	<0.1	3	6	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
AEC35TP14	0 - 0.1 m	Fill	28/07/2022	5	<0.4	15	6	12	<0.1	2	10	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
AEC35TP14	0.3 - 0.4 m	Natural	28/07/2022	7	<0.4	35	7	10	<0.1	2	3	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	-	
AEC35TP15	0.3 - 0.4 m	Fill	28/07/2022	8	<0.4	27	5	9	<0.1	1	3	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	6.3
BD4/20220728	0.3 - 0.4 m	Fill	28/07/2022	12	<0.4	41	3	15	<0.1	2	3	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	-	
AEC35TP16	0.2 - 0.3 m	Fill	28/07/2022	6	<0.4	21	4	11	<0.1	2	7	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
BD3/20220728	0.2 - 0.3 m	Fill	28 Jul 2022	18	<0.4	45	7	17	<0.1	<5	10	<20	<50	<0.1	<0.1	<0.1	<0.3	<0.5	<0.5	<0.2	<0.5	<pql< td=""><td><1</td><td><1</td><td><0.5</td><td><0.05</td><td><0.05</td><td><0.2</td><td><0.2</td><td><0.1</td><td>-</td><td></td></pql<>	<1	<1	<0.5	<0.05	<0.05	<0.2	<0.2	<0.1	-	
AEC35TP16 - [TRIPLICATE]	0.2 - 0.3 m	Fill	28/07/2022	9	<0.4	26	5	12	<0.1	2	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AEC35TP17	0 - 0.15 m	Fill	28/07/2022	9	<0.4	29	3	12	<0.1	2	5	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
AEC35TP18	0.1 - 0.2 m	Fill	28/07/2022	11	<0.4	44	3	15	<0.1	2	6	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
AEC35TP18	0.7 - 0.8 m	Natural	28/07/2022	7	<0.4	31	7	8	<0.1	2	3	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05		-	<5	-		-	<0.1	<0.1	<0.1	<0.1	<0.1	-	
BD1/20220728	0.7 - 0.8 m	Natural	28 Jul 2022	15	<0.4	55	12	13	<0.1	5.3	7.9	<20	<50	<0.1	<0.1	<0.1	<0.3	<0.5	<0.5	<0.2	<0.5	<pql< td=""><td><1</td><td><1</td><td><0.5</td><td><0.05</td><td><0.05</td><td><0.2</td><td><0.2</td><td><0.1</td><td>-</td><td> </td></pql<>	<1	<1	<0.5	<0.05	<0.05	<0.2	<0.2	<0.1	-	
AEC35TP19	0.3 - 0.4 m	Fill	28/07/2022	8	<0.4	41	<1	11	<0.1	1	1 42	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	<u> </u>	-	<5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
AEC35HA20	0 - 0.1 m	Fill	21/09/2022	10	<0.4	27	10	16	<0.1	8	13 9	<25	<50 <50	<0.2	<0.5	<1	<1	<0.05	<0.05	 	-	<5 -5	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD NAD	-
AEC35SP-1 AEC35SP-2		stockpile		11		28 15		14		3	9	<25							<0.05	-		- 45	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD NAD	+
AEC35SP-2 AEC35SP-3		stockpile stockpile	29/07/2022 29/07/2022	9	<0.4	22	12	16	<0.1	4	10	<25 <25	<50 <50	<0.2	<0.5 <0.5	<1	<1	<0.05 <0.05	<0.05	 	-	<5	<u> </u>		-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
AEC35SP-3		stockpile	29/07/2022	8	<0.4	23	7	15	<0.1	5	16	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	<u> </u>	-	-	<u> </u>		-	- 40.1	- 40.1	- 40.1			NAD	+
	ı						1 .		1	1 -	-			1		aste Classifica		-	1	1	1	1	1		1	ı	I	1	I	1		
	C.	T1		100	20	100	NC	100	4	40	NC	650	10000	10	288	600	1000	0.8	200	4000	4000	-	8000	40	288	60	<50	4	-	<50	NC	†
	SC	CC1		500	100	1900	NC	1500	50	1050	NC	650	10000	18	518	1080	1800	10	200	7200	200	-	14400	72	518	108	<50	7.5	-	<50	NC	
	TCI	LP1		N/A	N/A	N/A	NC	N/A	N/A	N/A	NC	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A	-	N/A	NC	
	C	T2		400	80	400	NC	400	16	160	NC	2600	40000	40	1152	2400	4000	3.2	800	16000	16000	-	32000	160	1152	240	<50	16	-	<50	NC	
		CC2		2000	400	7600	NC	6000	200	4200	NC	2600	40000	72	2073	4320	7200	23	800	28800	28800	-	57600	288	2073	432	<50	30	-	<50	NC	
	TCI	LP2		N/A	N/A	N/A	NC	N/A	N/A	N/A	NC	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A	-	N/A	NC	
																	tural Material (1	т
		age concentration		20	0.5	75	100	50	0.5	30	150	NC	250	N/A	N/A	N/A	N/A	0.5	20	-		-	-	-	-	-	-	-	-	-		5 to 9
	Absolute maximu	um concentration		40	1	150	200	100	1	60	300	NC	500	0.5	65	25	15	1	40	· .				-	-	-		-	-	-		4.5 to 10

■ CT1 exceedance ■ TCLP1 and/or SCC1 exceedance ■ CT2 exceedance ■ TCLP2 and/or SCC2 exceedance ■ Asbestos detection

Notes:

- a QA/QC replicate of sample listed directly below the primary sample
- b Total chromium used as initial screen for chromium(VI).
- C Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)
- d Criteria for scheduled chemicals used as an initial screen
- e Criteria for Chlorpyrifos used as initial screen

 f All criteria are in the same units as the reported results
- All criteria are in the same uni
 PQL Practical quantitation limit
- CT1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP. General solid waste
- SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
- TCLP1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

 CT2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste
- SCC2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste
- TCLP2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

Appendix J

Data Quality Assurance and Quality Control

Data Quality Assurance and Quality Control Report for DSI for AEC35

Surface & Civil Alignment Works (SCAW) Package for Sydney Metro - Western Sydney Airport (SMWSA)

1.0 Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data quality assurance and quality control (QA / QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other field QC samples are included in the summary results Tables QA1 to QA7.

Table 1: Field and Laboratory Quality Control

Item	Evaluation / Acceptance Criteria	Compliance
Analytical laboratories used	NATA accreditation	С
Holding times	Various based on type of analysis	PC
Intra-laboratory replicates	5% of primary samples	С
	<30% RPD	PC
Inter-laboratory replicates	5% of primary samples	С
	<30% RPD	PC
Trip Spikes	1 per sampling event; 60-140% recovery	С
Trip Blanks	1 per sampling event; <pql< td=""><td>С</td></pql<>	С
Rinsate	1 per sampling event; <pql< td=""><td>C for groundwater NR for soil</td></pql<>	C for groundwater NR for soil
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Laboratory Duplicate	1 per lab batch; As laboratory certificate	PC
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	PC
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60-140% recovery (organics)	PC
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	С

Notes: C = compliance; PC = partial compliance; NC = non-compliance; NR Not required

Laboratory analysis for soil was undertaken within recommended holding times except for pH analysis. The analysis of pH slightly outside of the recommended holding time (7 days) is not considered to affect the assessment of analytical results.

Laboratory analysis for the groundwater interlaboratory replicate sample (BD2/20220908) was slightly outside the recommended holding time (7 days) for TRH, PAH, OCP, OPP, VOC, phenols (non-halogenated) and PCB analysis. The analysis slightly outside of the recommended holding time is not considered to affect the assessment of analytical results.

As noted in laboratory certificate 301941, the spike recovery was not possible to report for arsenic, cadmium and lead in sample 301941-22 due to the inhomogeneous nature of the elements in the sample, however, an acceptable recovery was obtained for the laboratory control sample.

As noted in laboratory certificate 301941, the laboratory RPD acceptance criterion was exceeded for chromium in sample 301941-31, so a triplicate result was issued as sample number 301941-46. It is noted that all the chromium concentrations were generally low for this sample, and it is considered that the high RPD does not affect the assessment of results.

As noted in laboratory certificate 305367, the PQL for TRH and BTEX and naphthalene for sample 305367-2 (SMGW-BH-B106) was raised as the sample was foamy and therefore required dilution. Also, the recovery for the surrogate was not possible to report as the high concentrations of TRH C₁₀-C₄₀ caused interference. Given that TRH concentrations were recorded (above the PQL) for sample 305367-2, the raised PQL is not considered to significantly affect the overall assessment of groundwater.

As noted in laboratory certificate 305367 and 305367-B, the PQL for OCP, OPP and VOC in water was raised due to interference from TRH in sample 305367-2. It is considered that the PQL were not excessively raised and the OCP and OPP data for sample 305367-2 is usable for the assessment.

As noted in laboratory certificate 306482, laboratory RPD acceptance criteria have been exceeded for 306482-74 for chromium, copper, lead and nickel. Therefore, a triplicate result was issued as laboratory sample number 306482-79. It is noted that the concentrations of chromium, copper, lead and nickel were relatively low and the elevated RPD results are not considered to be significant for the overall assessment.

As noted in laboratory certificate 911123-S, the matrix spike recovery for endrin aldehyde was outside of the recommended acceptance criterion for sample S22-Au0009526, however, an acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

As noted in laboratory certificate 911123-W, the surrogate recovery for chlordanes for sample S22-Se0016459 was outside the acceptable range, however, an acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

The RPD results for inter-laboratory and intra-laboratory soil replicates were within the acceptable range with the exception of half of the results for metals analysis. The exceedances are not, however, considered to be of concern given low actual differences in the concentrations between the primary and replicate samples.

The RPD results for inter-laboratory and intra-laboratory groundwater samples were within the acceptable range with the exception of metals (arsenic, copper, nickel and zinc) in the samples from AEC35BH01; and TRH >C10-C16, TRH >C16-C34 and ammonia in the samples from AEC35BH03. The exceedances for arsenic and copper are not considered to be of concern given that the actual differences in concentrations are low. The exceedances for nickel and zinc are not considered to be of concern given that the concentrations are at what are considered to be background levels. The exceedances for TRH and ammonia are not considered to be of concern given that the actual differences in concentrations are relatively low.

For groundwater sampling, the electronic interface probe, flow cell and probes were decontaminated between monitoring wells by rinsing in a diluted Liquinox solution and then rinsing in demineralised water. A rinsate (Rinsate-W080922) was collected by running demineralised water over the decontaminated sampling equipment and directing the water into sampling bottles provided by the laboratory. Rinsate test results were all less than the practical quantitation limits. For soil and sediment sampling, to avoid the need for decontaminating sampling equipment, disposable nitrile gloves were changed between each sampling event and used for sample collection. Soil and sediment samples collected from the hand auger were carefully done so as to be representative of the target strata/material (e.g., natural soil samples were observed to be free of overlying fill).

Trip spikes and trip blanks were subject to the same conditions in the field as collected soil and water samples. Results for BTEX in trip spikes were within the acceptable range and the results for BTEX in trip blanks were less than the practical quantitation limits.

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

2.0 Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs) as outlined in NEPC *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]* (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present onsite;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Table 2: Data Quality Indicators

Data Quality Indicator	Method(s) of Achievement
Completeness	Systematic and target locations sampled.
	Preparation of logs, sample location plan and chain of custody records.
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM).
	Completion of chain of custody (COC) documentation.
	NATA accredited laboratory results certificates provided by the laboratory.
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed above.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.
	Experienced samplers used.
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled.
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs.
	Samples were extracted within holding times for the majority of analysis .
	Samples were analysed in accordance with the COC.
Precision	Field staff followed standard operating procedures.
	Acceptable RPD between original samples and replicates.
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Field staff followed standard operating procedures.
	Satisfactory results for all field and laboratory QC samples.

Based on the above, it is considered that the DQIs have been generally complied with.

3.0 Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

4.0 References

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Table QA1: Relative Percentage Difference Results – Soil Replicates

						Me	etals					Т	RH			ВТ	EX			P	АН		Phenois						0	СР						0	PP	PC
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	TRG >C16-C34	TRH >C34-C40	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs	Total Phenols	DDD	DDT+DDE+DDD ^c	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	Endrin	Total Endosulfan	Heptachlor	Hexachlorobenzen e	Methoxychlor	Other OCP	Chlorpyriphos	Other OPP	a ya le to T
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	m
D8/20220729	0.5 - 0.6 m	29/07/2022	10	<0.4	21	16	13	<0.1	<1	6	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td>Τ</td></pql<></td></pql<>	<0.1	<pql< td=""><td>Τ</td></pql<>	Τ
AEC35TP05	0.5 - 0.6 m	29/07/2022	13	<0.4	24	13	12	<0.1	<1	5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td></td></pql<></td></pql<>	<0.1	<pql< td=""><td></td></pql<>	
		Difference	3	0	3	3	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		RPD	26%	0%	13%	21%	8%	0%	0%	18%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	\perp
14/20220729	0.3 - 0.4 m	28/07/2022	12	<0.4	41	3	15	<0.1	2	2	<25	<50	<100	<100	<0.2	-0.5	-1	-1	<0.1	<0.05	<0.5	<0.05	عد ا	<0.1	<0.1	<0.1	<0.1	-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< th=""><th><0.1</th><th><pql< th=""><th>Т</th></pql<></th></pql<>	<0.1	<pql< th=""><th>Т</th></pql<>	Т
D4/20220728 AEC35TP15	0.3 - 0.4 m	28/07/2022	8	<0.4	27	5	9	<0.1	1	3	<25 <25	<50 <50	<100	<100	<0.2	<0.5 <0.5	<1	<1 <1	<0.1	<0.05	<0.5	<0.05	<5 <5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td>+</td></pql<></td></pql<>	<0.1	<pql< td=""><td>+</td></pql<>	+
ALC03011 13	0.5 - 0.4 111	Difference	4	0	14	2	6	0	1	0	0	0	0	0	0	0	0	0	0	0.03	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+
		RPD	40%	0%	41%	50%	50%	0%	67%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	+
	·																																					
BD3/20220728	0.2 - 0.3 m	28/07/2022	18	<0.4	45	7	17	<0.1	<5	10	<20	<50	<100	<100	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<pql< td=""><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.1</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><pql< td=""><td><0.2</td><td><pql< td=""><td></td></pql<></td></pql<></td></pql<>	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<pql< td=""><td><0.2</td><td><pql< td=""><td></td></pql<></td></pql<>	<0.2	<pql< td=""><td></td></pql<>	
AEC35TP16	0.2 - 0.3 m	28/07/2022	6	<0.4	21	4	11	<0.1	2	7	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td></td></pql<></td></pql<>	<0.1	<pql< td=""><td></td></pql<>	
		Difference	12	0	24	3	6	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\perp
		RPD	100%	0%	73%	55%	43%	0%	0%	35%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
D1/20220728	0.7 - 0.8 m	28/07/2022	15	<0.4	55	12	13	<0.1	5.3	7.9	<20	<50	<100	<100	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<pql< td=""><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.1</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><pql< td=""><td><0.2</td><td><pql< td=""><td></td></pql<></td></pql<></td></pql<>	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<pql< td=""><td><0.2</td><td><pql< td=""><td></td></pql<></td></pql<>	<0.2	<pql< td=""><td></td></pql<>	
AEC35TP18	0.7 - 0.8 m	28/07/2022	7	<0.4	31	7	8	<0.1	2	3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td>\perp</td></pql<></td></pql<>	<0.1	<pql< td=""><td>\perp</td></pql<>	\perp
		Difference	8	0	24	5	5	0	3.3	4.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	1	RPD	73%	0%	56%	53%	48%	0%	90%	90%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	

Table QA2: Trip Blank Results - Soils (mg/kg)

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TB-20220728	28/07/2022	<0.2	<0.5	<1	<1	<2
TB-20220729	29/07/2022	<0.2	<0.5	<1	<1	<2
TB-210922	21/09/2022	<0.2	<0.5	<1	<1	<2

Table QA3: Trip Spike Results – Soils (% Recovery)

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TS-20220728	28/07/2022	103	102	103	104	103
TS-20220729	29/07/2022	107	105	106	107	106
TS-210922	21/09/2022	81	79	82	82	82

Table QA4: Relative Percentage Difference Results for Groundwater

									1									1						1																					
				Ме	tals					т	RH				BTEX					Р	АН								Phe	enols											ОСР				
	Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	TRH >C16-C34	TRH > C34-C40	Benzene	Toluene	Ethylbenzene	o-xylene	m+p-xylene	Naphthalene	Anthracene	Fluoranthene	Benzo(a)pyrene	Phenanthrene	Other PAH	Phenol	2,4,6-Trichlorophenol	2,4-Dinitrophenol	4-Nitrophenol	2,3,4,6-Tetrachlorophenol	Total Tetrachlorophenols	Pentachlorophenol	2-Chlorophenol	2,4-Dimethylphenol	2,4-Dichlorophenol	2,6-Dichlorophenol	Other Phenols	Aldrin	Dieldrin	gamma-Chlordane	alpha-Chlordane	TQQ-dd	Endosulfan I	Endosulfan II	Endrin	Heptachlor	Methoxychlor
Sample ID	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
BD1/20220908	2	0.9	<1	3	<1	<0.05	6	6	<10	<50	<100	<100	<1	<1	<1	<1	<2	<0.2	<0.1	<0.1	<0.1	<0.1	<pql< th=""><th><1</th><th><1</th><th><20</th><th><20</th><th><1</th><th>-</th><th><5</th><th><1</th><th><1</th><th><1</th><th><1</th><th><pql< th=""><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.06</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th></pql<></th></pql<>	<1	<1	<20	<20	<1	-	<5	<1	<1	<1	<1	<pql< th=""><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.06</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th></pql<>	<0.01	<0.01	<0.01	<0.01	<0.06	<0.01	<0.01	<0.01	<0.01	<0.01
AEC35BH01	3	1	<1	2	<1	<0.05	64	74	<10	<50	<100	<100	<1	<1	<1	<1	<2	<0.2	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><1</td><td><1</td><td><20</td><td><20</td><td><1</td><td>-</td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td><pql< td=""><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.06</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></pql<></td></pql<>	<1	<1	<20	<20	<1	-	<5	<1	<1	<1	<1	<pql< td=""><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.06</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td></pql<>	<0.01	<0.01	<0.01	<0.01	<0.06	<0.01	<0.01	<0.01	<0.01	<0.01
	1	0.1	0	1	0	0	58	68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	40%	11%	0%	40%	0%	0%	165%	170%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
BD2/20220908	<10	<2	<10	<10	<10	<1	53	97	<20	70	200	<100	<1	<1	<1	<1	<2	0.01	<0.01	<0.01	<0.0	1 <0.01	<pql< td=""><td><3</td><td><10</td><td><30</td><td><30</td><td>-</td><td><30</td><td><10</td><td><3</td><td><3</td><td><3</td><td><3</td><td><pql< td=""><td><0.2</td><td><0.2</td><td></td><td><2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></pql<></td></pql<>	<3	<10	<30	<30	-	<30	<10	<3	<3	<3	<3	<pql< td=""><td><0.2</td><td><0.2</td><td></td><td><2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></pql<>	<0.2	<0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
AEC35BH03	<1	<0.1	<1	<1	<1	<0.05	56	110	<10	<50	<100	<100	<1	<1	<1	<1	<2	<0.2	<0.1	<0.1	<0.1	<0.1	<pql< th=""><th><1</th><th><1</th><th><20</th><th><20</th><th><1</th><th>-</th><th><5</th><th><1</th><th><1</th><th><1</th><th><1</th><th><pql< th=""><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.06</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th></pql<></th></pql<>	<1	<1	<20	<20	<1	-	<5	<1	<1	<1	<1	<pql< th=""><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.06</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th></pql<>	<0.01	<0.01	<0.01	<0.01	<0.06	<0.01	<0.01	<0.01	<0.01	<0.01
	0	0	0	0	0	0	3	13	0	20	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0%	0%	0%	0%	0%	0%	6%	13%	0%	33%	67%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Table QA4: Relative Percentage Difference Results for Groundwater

							0	PP							РСВ															voo	:														Ammonia
	Other OCP	Azinphos-methyl	Bromophos-ethyl	Chlorpyrifos	Diazinon	Dichlorovos	Dimethoate	Ethion	Fenitrothion	Malathion	Parathion	Methyl Parathion	Other OPP	Aroclor 1242	Aroclor 1254	Other PCB	Isopropylbenzene	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	Vinyl chloride	Tetrachloroethene	F		1,2,4-Trichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Chlorobenzene	1,1,2,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,2-Dichloroethane	Carbon tetrachloride	Chloroform	Bromodichloromethane	Dibromochloromethane	Bromoform	1,2-Dichloropropane	1,3-Dichloropropane	Styrene	Hexachlorobutadiene	Other VOC	Ammonia as N
Sample ID	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L μ	μg/L μ	ιg/L μ	ıg/L μg/	L μg/l	L μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L μ	μg/L	μg/L	μg/L	μg/L	μg/L
							•	•										•			•	•		•		•	•	•	•								•	,	·	•		•		•	
BD1/20220908	<pql< th=""><th><0.02</th><th><0.2</th><th><0.01</th><th><0.01</th><th><0.2</th><th><0.15</th><th><0.2</th><th><0.2</th><th><0.05</th><th><0.01</th><th><0.2</th><th><pql< th=""><th><0.1</th><th><0.1</th><th><0.1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><10</th><th><1</th><th><1</th><th><1</th><th><1 <1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><pql< th=""><th>1500</th></pql<></th></pql<></th></pql<>	<0.02	<0.2	<0.01	<0.01	<0.2	<0.15	<0.2	<0.2	<0.05	<0.01	<0.2	<pql< th=""><th><0.1</th><th><0.1</th><th><0.1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><10</th><th><1</th><th><1</th><th><1</th><th><1 <1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><pql< th=""><th>1500</th></pql<></th></pql<>	<0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<pql< th=""><th>1500</th></pql<>	1500
AEC35BH01	<pql< th=""><th><0.02</th><th><0.2</th><th><0.01</th><th><0.01</th><th><0.2</th><th><0.15</th><th><0.2</th><th><0.2</th><th><0.05</th><th><0.01</th><th><0.2</th><th><pql< th=""><th><0.1</th><th><0.1</th><th><0.1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><10</th><th><1</th><th><1</th><th><1</th><th><1 <1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><pql< th=""><th>1500</th></pql<></th></pql<></th></pql<>	<0.02	<0.2	<0.01	<0.01	<0.2	<0.15	<0.2	<0.2	<0.05	<0.01	<0.2	<pql< th=""><th><0.1</th><th><0.1</th><th><0.1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><10</th><th><1</th><th><1</th><th><1</th><th><1 <1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><pql< th=""><th>1500</th></pql<></th></pql<>	<0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<pql< th=""><th>1500</th></pql<>	1500
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% 0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
BD2/20220908	<pql< th=""><th><2</th><th>-</th><th><2</th><th><2</th><th><2</th><th><2</th><th><2</th><th><2</th><th><2</th><th><2</th><th><2</th><th><pql< th=""><th><1</th><th><1</th><th><pql< th=""><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><5</th><th><1</th><th><1</th><th>-</th><th>- <1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><5</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th>-</th><th><pql< th=""><th>40</th></pql<></th></pql<></th></pql<></th></pql<>	<2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<pql< th=""><th><1</th><th><1</th><th><pql< th=""><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><5</th><th><1</th><th><1</th><th>-</th><th>- <1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><5</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th>-</th><th><pql< th=""><th>40</th></pql<></th></pql<></th></pql<>	<1	<1	<pql< th=""><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><5</th><th><1</th><th><1</th><th>-</th><th>- <1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><5</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th>-</th><th><pql< th=""><th>40</th></pql<></th></pql<>	<1	<1	<1	<1	<1	<1	<5	<1	<1	-	- <1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	-	<pql< th=""><th>40</th></pql<>	40
AEC35BH03	<pql< th=""><th><0.02</th><th><0.2</th><th><0.01</th><th><0.01</th><th><0.2</th><th><0.15</th><th><0.2</th><th><0.2</th><th><0.05</th><th><0.01</th><th><0.2</th><th><pql< th=""><th><0.1</th><th><0.1</th><th><0.1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><10</th><th><1</th><th><1</th><th><1</th><th><1 <1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><pql< th=""><th>79</th></pql<></th></pql<></th></pql<>	<0.02	<0.2	<0.01	<0.01	<0.2	<0.15	<0.2	<0.2	<0.05	<0.01	<0.2	<pql< th=""><th><0.1</th><th><0.1</th><th><0.1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><10</th><th><1</th><th><1</th><th><1</th><th><1 <1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><pql< th=""><th>79</th></pql<></th></pql<>	<0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<pql< th=""><th>79</th></pql<>	79
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	39
	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% 0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	66%

Table QA5: Trip Blank Results - Water (µg/L)

Sample ID	Sampling Date	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TB-W080922	8/09/2022	<1	<1	<1	<1	<2

Table QA6: Trip Spike Results – Water (% Recovery)

Sample ID	Sampling Date	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TS-W080922	8/09/2022	92	97	102	119	119

Table QA7: Rinsate Results for Water Sampling

					Me	tals					т	RH				BTEX					F	PAH							ı	Phenol	5											ОСР					
		Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40	Benzene	Toluene	Ethylbenzene	o-xylene	m+p-xylene	Naphthalene	Anthracene	Fluoranthene	Benzo(a)pyrene	Phenanthrene	Other PAH	Phenol	2,4,6-Trichlorophenol	2,4-Dinitrophenol	4-Nitrophenol	2,3,4,6-Tetrachlorophenol	Pentachlorophenol	2-Chlorophenol	2,4-Dimethylphenol	2,4-Dichlorophenol	2,6-Dichlorophenol	Other Phenols	Aldrin	Dieldrin	gamma-Chlordane	alnha-Chlordane		pp-DDT	Endosulfan I	Endosulfan II	Endrin	Heptachlor	Methoxychlor	Other OCP
Sample ID	Sampling Date	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/	Lμg	/L μ	g/L	μg/L	μg/L	μg/L	μg/L	μg/l	_ μg/l
Rinsate-W080922	22/09/2022	<1	<0.1	<1	<1	<1	<0.05	<1	<1	<10	<50	<100	<100	<1	<1	<1	<1	<2	<0.2	<0.1	<0.1	<0.1	<0.1	<pql< th=""><th><1</th><th><1</th><th><1</th><th><20</th><th><1</th><th><5</th><th><1</th><th><20</th><th><1</th><th><1</th><th><pql< th=""><th><0.01</th><th><0.0</th><th>1 <0.0</th><th>)1 <0.</th><th>01 <0</th><th>.006</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.0</th><th>1 <pc< th=""></pc<></th></pql<></th></pql<>	<1	<1	<1	<20	<1	<5	<1	<20	<1	<1	<pql< th=""><th><0.01</th><th><0.0</th><th>1 <0.0</th><th>)1 <0.</th><th>01 <0</th><th>.006</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.0</th><th>1 <pc< th=""></pc<></th></pql<>	<0.01	<0.0	1 <0.0)1 <0.	01 <0	.006	<0.01	<0.01	<0.01	<0.01	<0.0	1 <pc< th=""></pc<>

Appendix K

Site Photographs

Photograph 1 - Stockpile AEC35SP

Photograph 2 - Stockpile AEC35SP

REVIEW COMMENTS SHEET

DOCUMENT NO.	TITLE	VER	STATUS	NO.	DATE	COMPANY	RAISED BY	REVIEW DOC. NO.*	DOCUMENT REF*	DEED REF*	COMMENTS / RESPONSE	COMMENT CATEGORY*	CLOSED OUT
SMWSASCA-CPU-1NL- NL000-CT-RPT-000002	DSI AEC 35 - Detail Site Investigation - Area of Environmental Concern 35	00.01	S3	01	12/01/2023	NPA	AMENET	SMWSASCA-CPU- OHE-SF153-CT-RPT- 000002	- waste classification	12.19 (d) (ii)	It is noted that under Clause 12.19 (d) (ii), the DSI must include in-situ waste classification of solid waste at sampling densities not less than ASC NEPM 2013 and IWRG except for ENM or VENM. Preliminary waste classification comments are included in the DSI however the waste classifications are not included. Can the waste classifications please be provided per the deed requirements for all material which can not be reused onsite. Alternatively, please comment on suitability for onsite reuse.	Potential Non-Compliance I	N
								SMWSASCA-CPU- OHE-SF153-CT-RPT- 000002	- waste classification	12.19 (d) (ii)	not sufficent for waste classification of various non-soil materials.	Potential Non-Compliance	N
				02	12/01/2023	NPA	AMENET	SMWSASCA-CPU- OHE-SF153-CT-RPT- 000002	- auditor review	12.19 (c) (vii)	Under clause 12.19 (c) (vii), the DSI must be accompanied by an IAA. SM has agreed to review and provide interim comments ahead of the IAA as requested by CPBU. It is expected that the IAA and auditor endorsement will be provided per 12.19 (c) (vi and vii) upon revision of the DSI. Please advise how this requirement is proposed to be met.	Potential Non-Compliance I	N
								SMWSASCA-CPU- OHE-SF153-CT-RPT- 000002	- auditor review	12.19 (c) (vii)	IAA for DSI has been issued.	Potential Non-Compliance	N
				03	12/01/2023	NPA	AMENET	SMWSASCA-CPU- OHE-SF153-CT-RPT- 000002	remediation - requirement and documentation	i 12.20 (a) (i)	Please state if the site is considered suitable for the proposed land use based on DSI outcomes (or not). The DSI concludes that the site can be made suitable for the proposed works if the recommendations are implemented, however, it is unclear if remediation is required. It is understood that excavation and offsite disposal of contaminated soils are required at BH-B106, which is within an area to be disturbed by SCAW activities. Please advise whether or not remediation is required (E93), and how this will be documented (for example, if a RAP and validation report will be prepared as required by 12.20 (a) (i)).	Potential Non-Compliance I	N
								SMWSASCA-CPU- OHE-SF153-CT-RPT- 000002	remediation - requirement and documentation	12.20 (a) (i)		Potential Non-Compliance	N
				04	19/01/2023	SMD	TSOLOMON				No Comments		Y
													Y