Chimeric Antigen Receptor-T (CAR-T) Cell Therapy for Relapsed/Refractory Pediatric, Adolescent and Young Adult B-ALL

Anant Vatsayan, MD

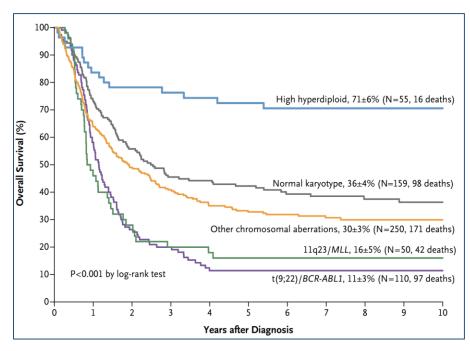
Attending, Division of Blood and Marrow Transplant Children's National Hospital

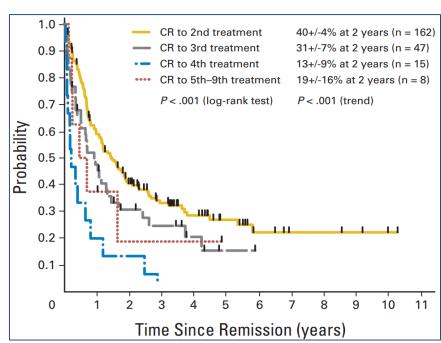
Hema Dave, MD, MPH

Attending, Division of Oncology, Children's National Hospital Center for Cancer and Immunology Research

No Disclosures/COI

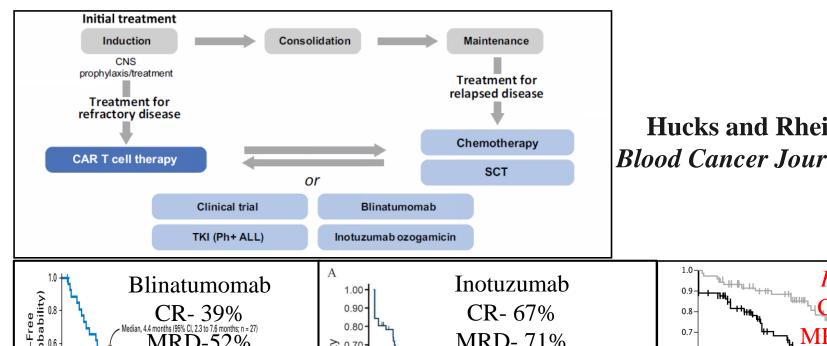
CAR T-Cell Education Symposium, Pediatric Specialists of Virginia/INOVA January 12, 2021



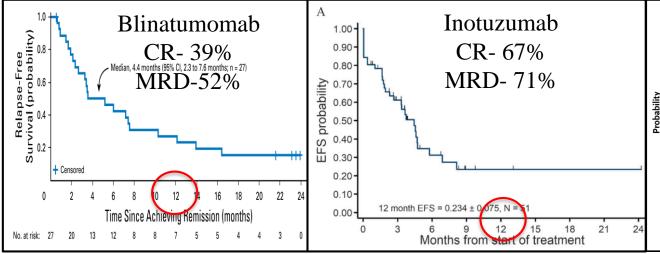

Learning objectives

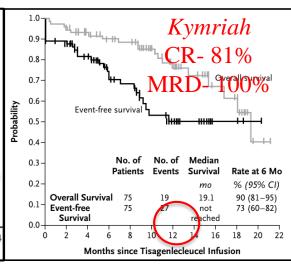
- Briefly review reported <u>outcomes of CAR-T cell</u> therapy (tisagenlecleucel)- <u>clinical studies</u> and <u>real</u> world data for pediatric, adolescent and young adult B-ALL
- Role of CAR-T cell therapy (<u>versus other</u> <u>immunotherapies</u>) for relapsed/refractory B- ALL in pediatric, adolescent and young adults
- Importance of <u>timely referral</u> of relapsed/refractory B-ALL patients for CAR-T cell therapy
- Role of hematopoietic cell transplant (HCT) in patients receiving CAR-T cells

Need for better therapies for relapsed/refractory pediatric B- ALL



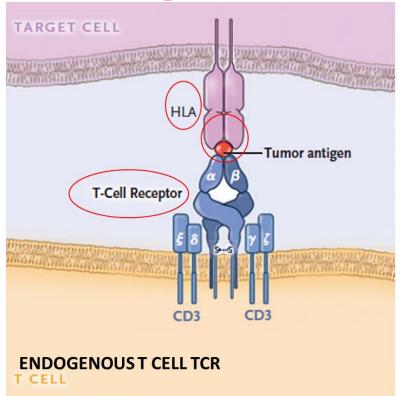
Schrappe et al, NEJM, 2012

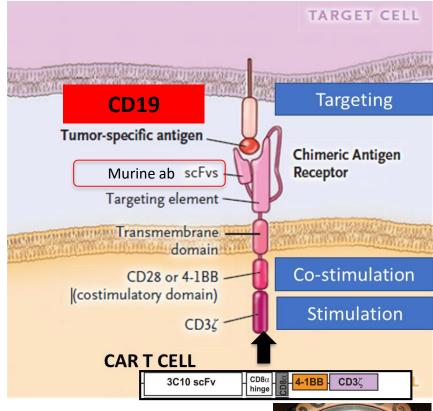

Ko et al, JCO, 2010

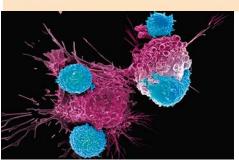

Children's National

Immunotherapy for Rel/Ref B-ALL

Hucks and Rheingold, Blood Cancer Journal, 2019




von Stackelberg et al, JCO, 2016


Bhojwani et al, Leukemia, 2019

Endogenous versus CAR-T cells

June and Sadelain, NEJM, 2018

ELIANA Trial

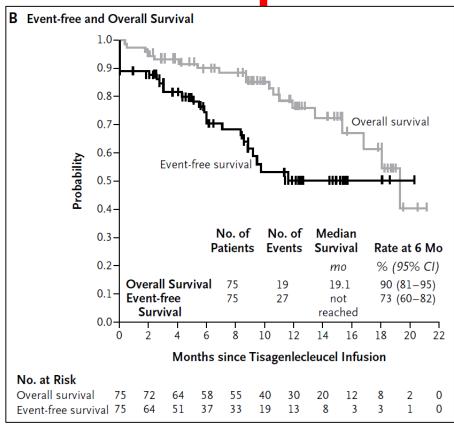
2012

2020

CD19 CAR-T cell clinical trials for B-ALL

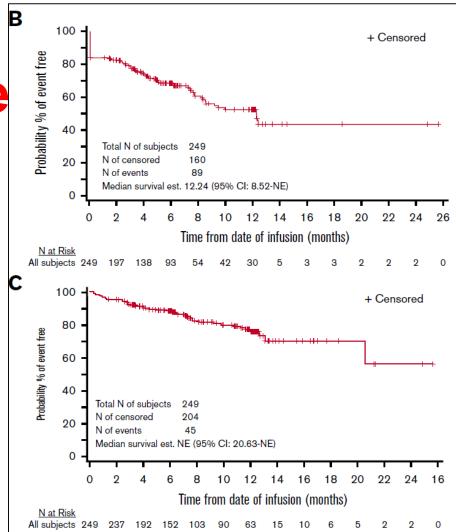
Institution (Reference)	Patients (n)	CR-MRD n (%)	Median follow up	Overall survival	Relapse Overall (%) CD19 neg (%)	HSCT (% of CR-MRD)
MSKCC (Park et al; 2018)	Adults (53)	32 (67)	29 mo	12.9 mo (median)	16 (50) 4 (25)	16 (50)
MSKCC (Curran et al; 2019)	PAYA (24)	18 (89)	7.7 mo	-	4 (0)	15 (83)
CHOP (Maude et al; 2018)	Adults+ Pediatric (75)	61 (81)	13 mo	76% at 12 months	17 (28) 15 (88)	8 (13)
NCI (Lee et al; 2015)	Adults + Pediatric (50)	28 (56)	19 mo	-	8 (29) 5 (63)	21(75)
FHCRC (Turtle et al; 2016)	Adult (30)	26 (86)	-	-	9 (33) 2 (22)	13 (48)
Seattle Children's (Gardner et al; 2017)	Pediatric (43)	40 (93)	10 mo	66 % at 12 mo	18 (45)	11 (28)

FDA approves tisagenlecleucel for B-cell ALL and tocilizumab for cytokine release syndrome


August 30, 2017

- KYMRIAH (tisagenlecleucel)
- First CAR T-cell immunotherapy approved by the FDA
- Patients up to age 25 years
- B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in second or later relapse.

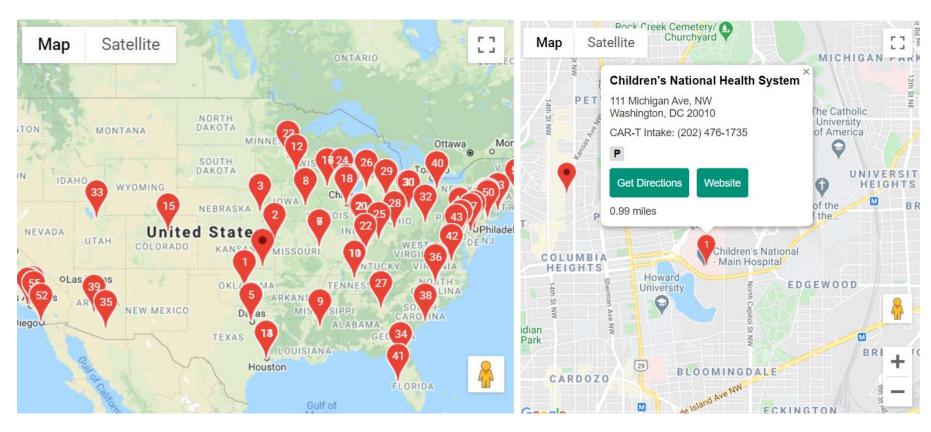
<u>Reference: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tisagenlecleucel-b-cell-all-and-tocilizumab-cytokine-release-syndrome</u>



Real World CAR-T Experience

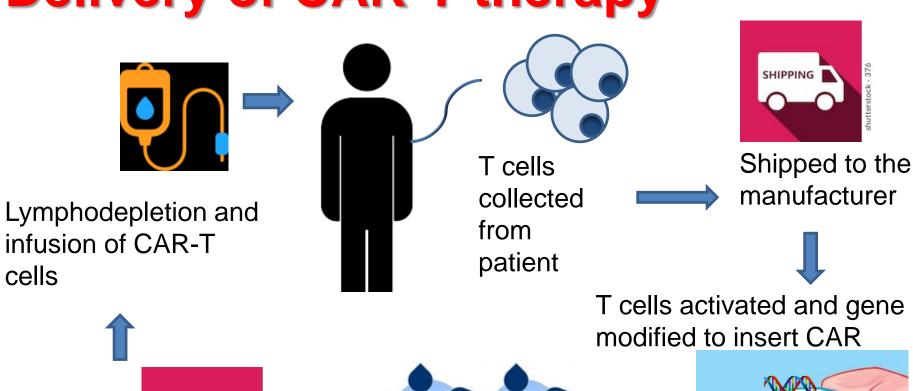
Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia

N ENGLJ MED 378;5 NEJM.ORG FEBRUARY 1, 2018

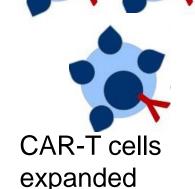


Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma

© blood advances 10 NOVEMBER 2020 • VOLUME 4, NUMBER 21

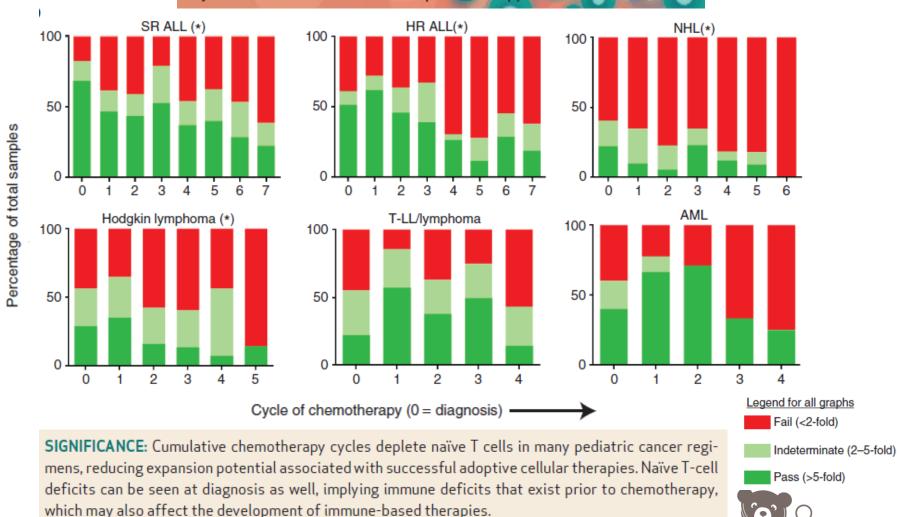

62 Kymriah treatment centers

Children's National


Children's National Hospital is the only *Kymriah* treatment center for pediatric, adolescent and young adults in Washington D.C

Delivery of CAR-T therapy

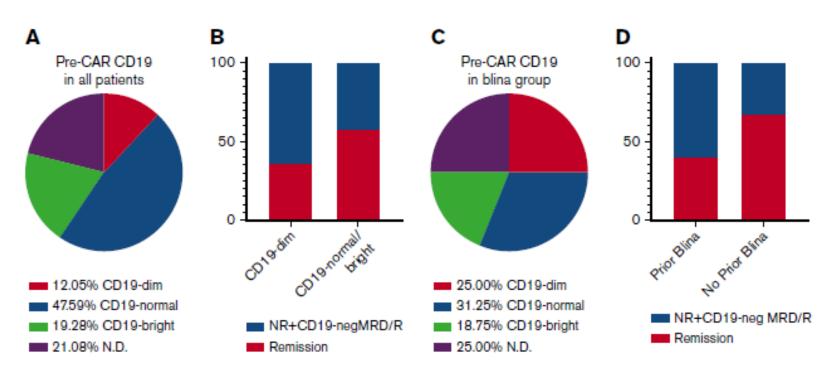
CAR-T shipped to treating facility



Children's National

Naïve T-cell Deficits at Diagnosis and after Chemotherapy Impair Cell Therapy Potential in Pediatric Cancers 2 ...

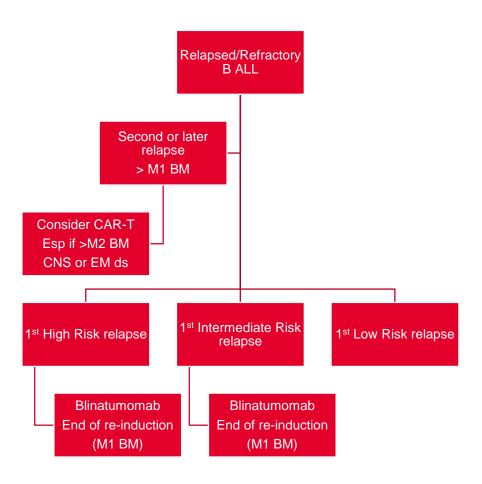
Rajat K. Das¹, Lauren Vernau¹, Stephan A. Grupp^{1,2}, and David M. Barrett¹



Children's National.

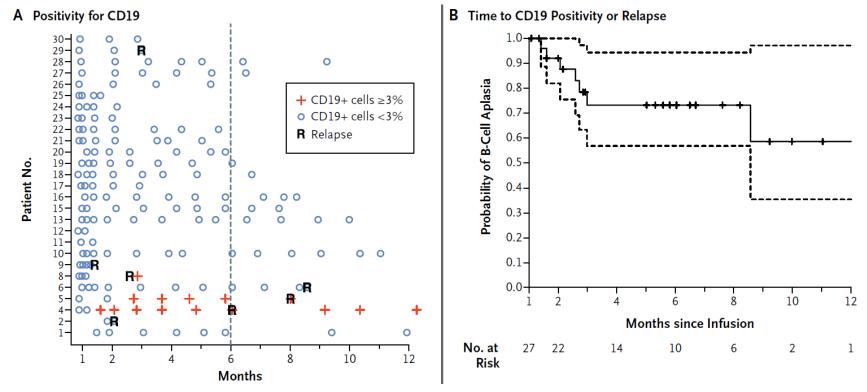
CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy

Vinodh Pillai,¹ Kavitha Muralidharan,² Wenzhao Meng,¹ Asen Bagashev,¹ Derek A. Oldridge,¹ Jaclyn Rosenthal,² John Van Arnam,¹ Jos J. Melenhorst,¹ Diwakar Mohan,³ Amanda M. DiNofia,⁴ Minjie Luo,¹ Sindhu Cherian,⁵ Jonathan R. Fromm,⁵ Gerald Wertheim,¹ Andrei Thomas-Tikhonenko,¹ Michele Paessler,¹ Carl H. June,¹ Eline T. Luning Prak,¹ Vijay G. Bhoj,¹ Stephan A. Grupp,⁴ Shannon L. Maude,^{4,*} and Susan R. Rheingold^{4,*}



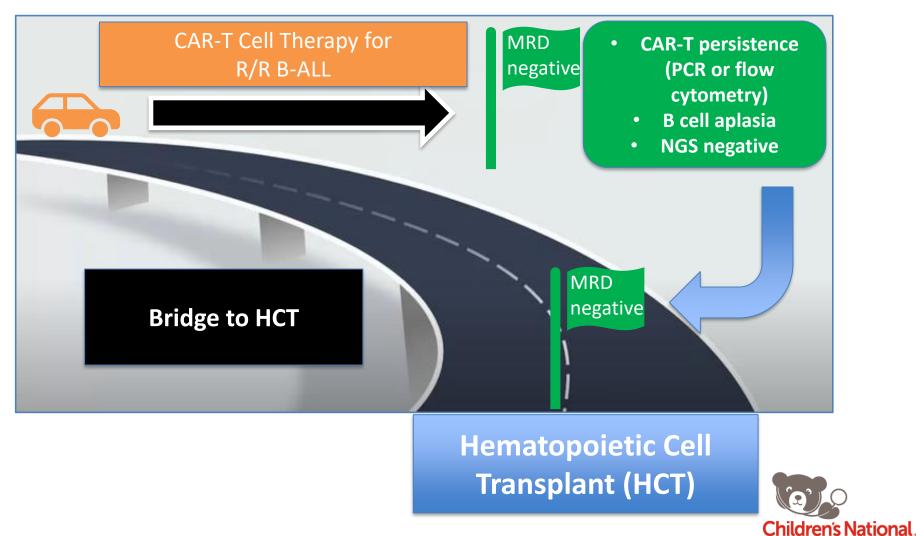
Immunotherapies for Rel/Ref B-ALL

Only 30-40% CR with MRD neg response in patients with M2/M3 BM disease burden (RIALTO study)



CAR-T versus
Ab based
immunotherapy
Factors to consider:

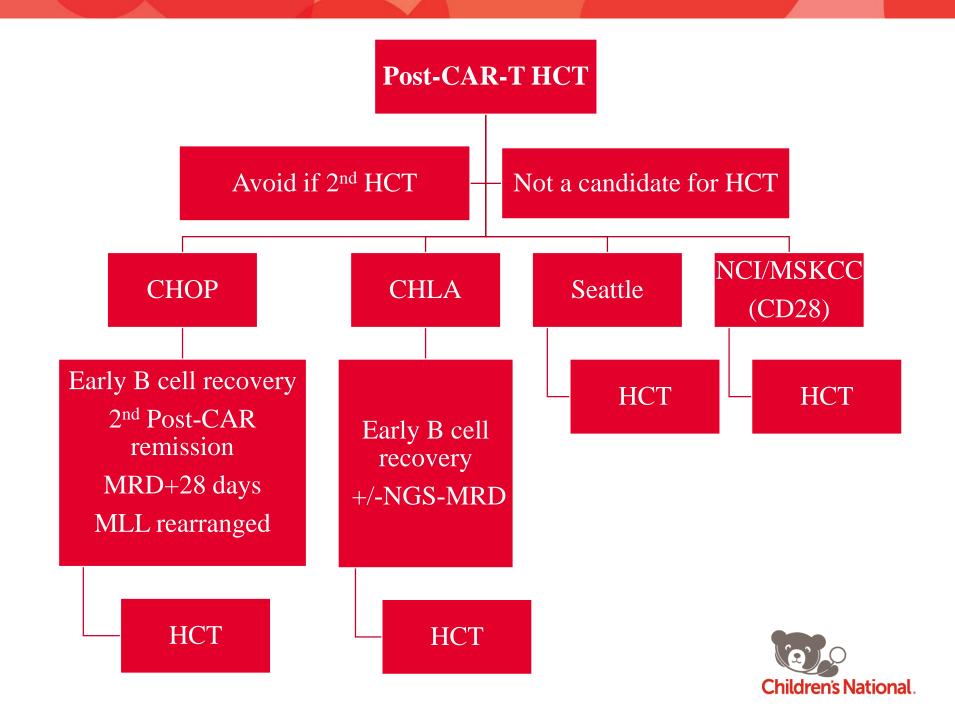
- Insurance approval
- EOI disease burden
- Prior HCT
- Performance score
- Suitable donor
- EM/CNS disease
- HR Cytogenetics


Importance of persistent B-cell aplasia

Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia

CAR-T therapy: transplant or no transplant

Major clinical trials in pediatric and young adult B-ALL patients


Summary of Major Results from Selected Clinical Trials Using Anti-CD19 CAR T Cells in Pediatric and Young Adult B-ALL Patients

Parameter	Maude et al (UPenn/CHOP) [19]	Maude et al (ELIANA) [22]	Gardner et al (Seattle) [41]	Lee et al (POB/NCI) [43-45]	Curran et al (MSKCC) [47]
Costimulatory domain	4-1BB	4-1BB	4-1BB	CD28	CD28
Treated patients, n	30 (5 adults)	75	45	53	25
Previous allo-HCT, %	60	61	62	35	20
CR, %	90	81	93	61	75
MRD-negative CR, %	78	81	93	53	67
Post-allo-HCT in CR, %	10	14	28	75	83
EFS/LFS rate, %	67 (at 6 mo)	50 (at 12 mo)	51 (at 12 mo)	49 (at 18 mo)	NA
OS rate, %	78 (at 6 mo)	76 (at 12 mo)	69 (at 12 mo)	52 (at 10 mo)	NA
Relapse after CR, overall/after allo-HCT, %	26/NA	36/0	45/18	29/9	33/27

POB indicates Pediatric Oncology Branch; NA, not pplicable.

Reference: Bouziana and Bouzianas, 2020, BBMT, e183-e191

CAR-T cell related toxicities

MOST COMMON ADVERSE EVENTS

Cytokine Release Syndrome (CRS) (~80%)

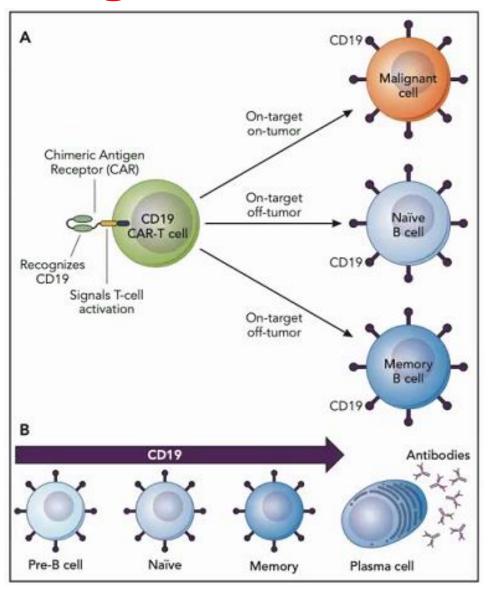
INFECTIONS (~40%)

Immune Effector Cells Associated Neurotoxicity (ICANS) (~40%)

FEBRILE NEUTROPENIA

PERSISTENT CYTOPENIA (~40%)

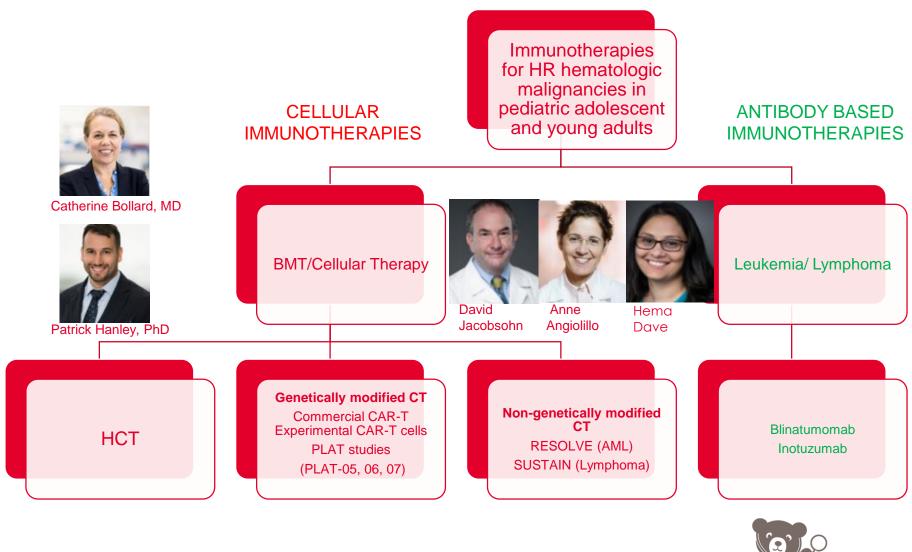
TLS (~10%)


HLH (~5%)

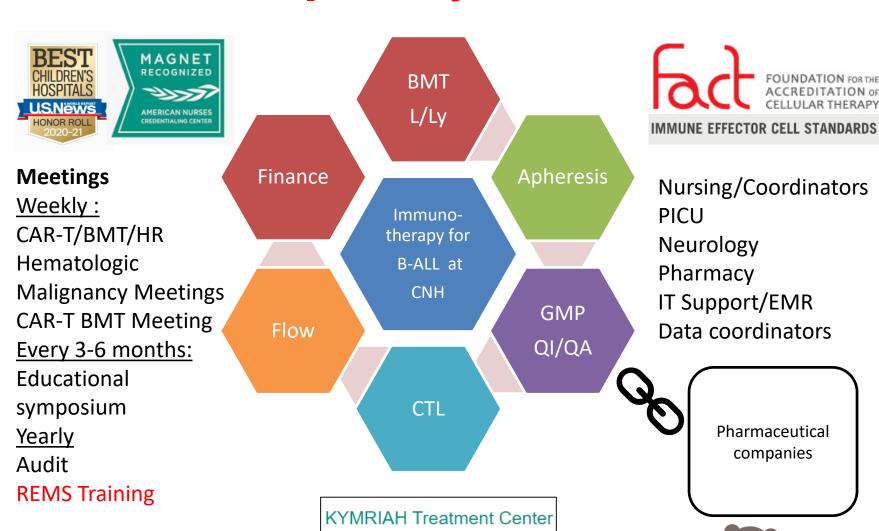
DIC (rare)

High Pre-CAR-T disease burden associated with higher rates of toxicities

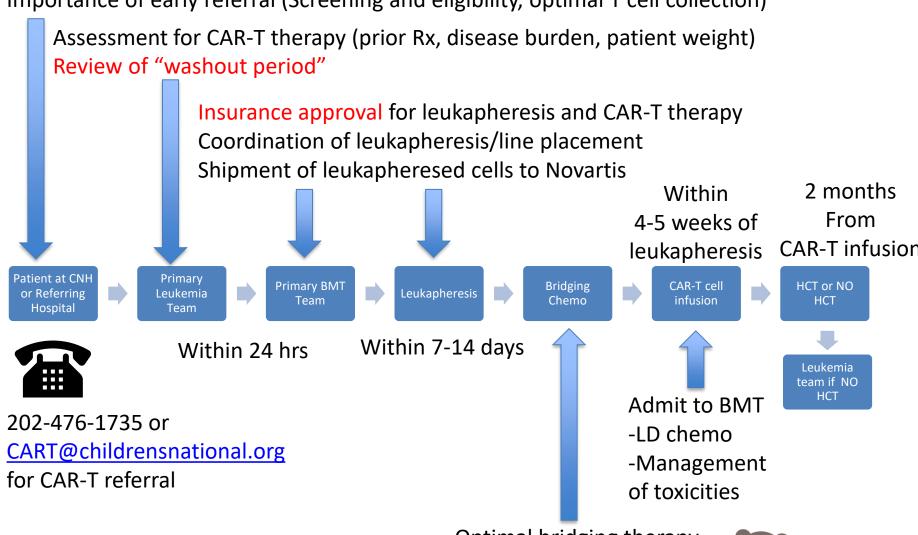
Targeting of CD19 on B-Cells



Post-CAR-T B-cell aplasia and need for IVIG


Hill and Seo, Blood, 2020

A collaborative approach at CNH


Multidisciplinary CAR-T Team

Children's National

Workflow

Importance of early referral (Screening and eligibility, optimal T cell collection)

Optimal bridging therapy

- Less toxicity
- ? Avoid Blina or Ino

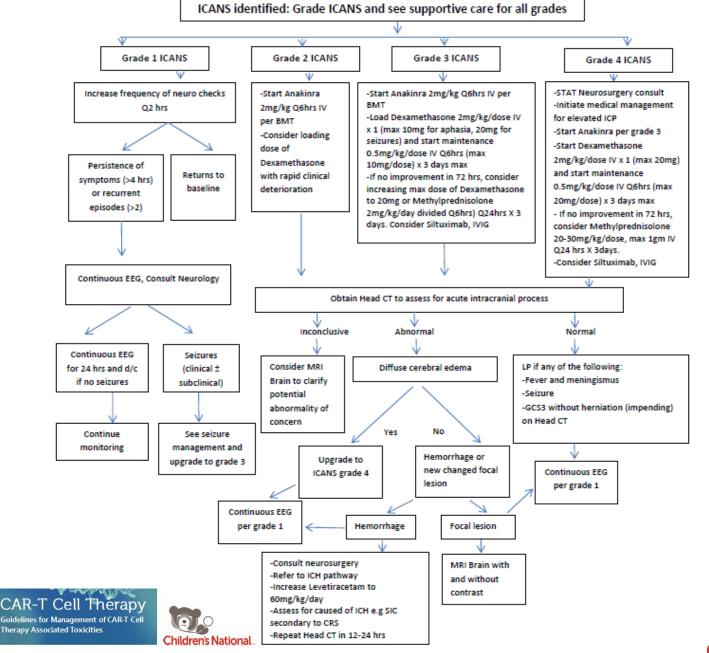
CAR-T SOP

- Appendix 1: Workflow
- Appendix 2: Kymriah new patient (End to end) form and process
- Appendix 3: Pre-apheresis workup checklist
- Appendix 4: Bridging chemotherapy
- Appendix 5: Pre-Infusion checklist
- Appendix 6: Post-CAR-T infusion outpatient follow up
- Appendix 7: Outpatient/ER triage and management of CAR-T patients
- Appendix 8: Diagnosis and management of CRS and ICANS (Pocketbook)

CAR-T Roadmap

Mon	Tue	Wed	Thurs	Fri	Sat	Sun
Pre-	infusion che	ecklist	D-8 H & P, Workup as per Pre- CAR T workup guidelines	D-7 Admission Neurology assessment and	D-6 Fludarabine (Flu) +Cyclopho sphamide (Cy)	D-5 Flu+Cy
D-4 Flu	D-3 Flu	D-2 Rest day	D-1 Rest day Start Levetiracet am	D 0 (8/30/19) CAR T infusion	D+1 Uneventful	D+2 (9/1/19)
D+3	D+4	D+5	D+6	D+7	D+8	D+9
CRS ICU Admission for Gr 2 or Higher CRS/ICANS Neurotoxicity						

AVOID STEROIDS!!!



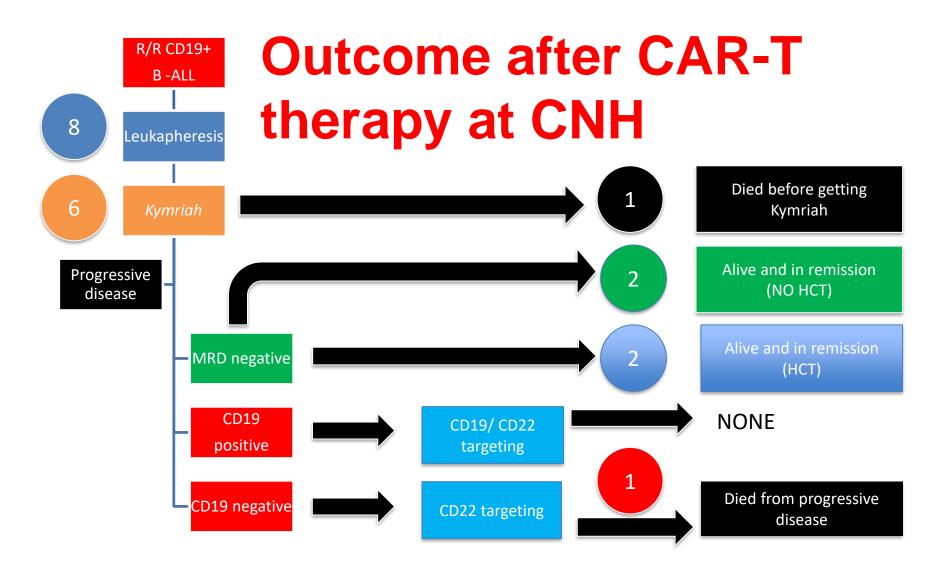
CYTOKINE RELEASE SYNDROME (CRS)

American Society for Transplantation and Cellular Therapy (ASTCT) CRS Consensus Grading and Guidelines for Management

CRS parameter	Grade 1	Grade 2	Grade 3	Grade 4
⁵ Fever	Temperature ≥ 38.0° C	Temperature ≥ 38.0° C	Temperature ≥ 38.0° C	Temperature ≥ 38.0° C
[©] Hypotension	None	Responds to fluid bolus Not requiring vasopressor	Requiring a single vasopressor And/Or	Requiring multiple vasopressors
Нурохіа	None	Requiring oxygen- How- flow nasal cannula (≤4L/min)	Requiring oxygen- High-flow nasal cannula (>4L/min), facemask, non-rebreather mask, or Venturi mask	Requiring positive pressure (e.g. CPAP, BiPAP, intubation and mechanical ventilation)
Intervention	Observe in person Call RRT Admit for observation (if outpatient) Supportive care -Labs: CBC with diff, CMP, Mg, Phos, urinalysis, blood cultures, PT/aPTT, fibrinogen -Evaluate need for urine culture, respiratory virus PCR, chest radiograph -Acetaminophen prn -Antibiotics IV	Call RRT for PICU transfer Supportive care per Grade 1 Provide supplemental oxygen NS bolus up to max of 20ml/kg Maintenance IVF Consider blood products/ colloids Give Tocilizumab: -Patient wt <30 kg: 12mg/kg X 1 -Patient wt ≥30 kg: 8mg/kg X 1, max 800mg/dose Persistent fever 8 hrs after Tocilizumab: Repeat Tocilizumab	Call RRT for PICU transfer Supportive care per previous grades O2 support with high flow Start/continue Tocilizumab Start vasopressors as needed Start Dexamethasone (0.5mg/kg, max 10mg/dose) IV Q6 hrs; May increase to max 20mg/dose, if refractory CRS	Call RRT for PICU transfer Supportive care per previous grades Respiratory and Vasopressors as needed FFP, cryoprecipitate or fibrinogen as needed to correct coagulopathy Start/continue Tocilizumab Start/continue Dexamethasone If no improvement with Dexamethasone in 24 hrs, consider high dose Methylprednisolone
CAR-T Cell T Guidelines for Management Therapy Associated Toxicitie	of CAR-T Cell	every 8 hrs x 2 (max 3 doses within 24 hr period)		(20-30mg/kg with max 1gm daily for 3 days followed by rapid taper if response)

CAR-T milestones: CNH

MULTIDISCIPLINARY CAR-T TEAM 1st patient infused on 08/30/2019 First 5 patients treated with *Kymriah* (CD19/41BB CAR-T) in inpatient setting since August 2019


2020

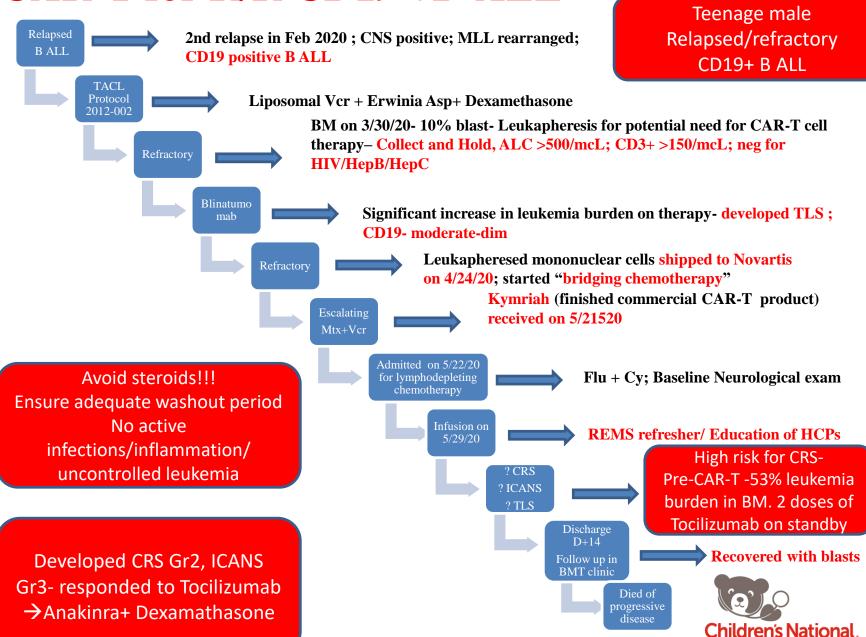
Driving the CAR to the Bone Marrow Transplant Program

Hema Dave^{1,2} • Lauren Jerkins^{1,2} • Patrick J Hanley¹ • Catherine M Bollard^{1,2} • David Jacobsohn^{1,2,3}

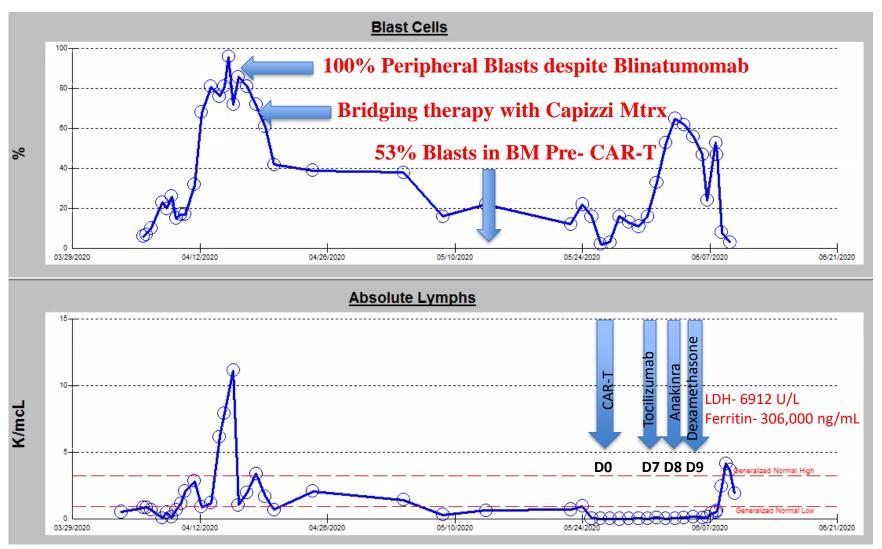
Current Hematologic Malignancy Reports (2019) 14:561–569

6th Kymriah infusion in January 2021

Patient 1 at CNH **D**3 D0D2D7 D8 D6 Afebrile after second dose of Tocilizumab Fever 38.1 C Fever 39.3 C Fever 39.8 C **Afebrile** On RA Normal BP Normal BP On NC (low flow) On RA Hypotensive (90/40s) On RA Normal BP **Normal BP** On RA Headache 10/10 Headache 2/10 Headache 6/10 Headache 10/10 Headache 10/10 ICE score 3-6 ICE score 10 ICE score 10 ICE score 10 ICE score 3-6 (aphasia) (dysarthria/confusion) No improvement in Deranged aPTT >50 Hyponatremia neurological status Resolution CAR-T of CRS/CRES Gr 2 CRS Gr 2 CRS Gr 1 CRS Gr 2 CRS Gr 1 CRS Gr 1 CRES Gr 1 CRES Gr 2 CRES Gr 3 CRES Gr 3 CRES **CRS** CRES (ICANS) Tocilizumab x 1 dose No response to 2nd dose Supportive care MRI Brain of Tocilizumab on D5, **Antibiotics** Started Dexamethasone Transfer to ICU Ophthalmology consult **EEG** encephalopathy 10 mg f/b 4 mg q 6 hrs x RRT called NO Tocilizumab LP- OP 43- started Started Anakinra (2 **Neurology consult** 24 hrs Acetazolamide mg/kg q6hrs IV) for CRS+ because repeat coags Anakinra x 5 days (2 Continuous EEG Pleocytosis in CSF normal **CRES** CT Head mg/kg q6hrs IV) (neutrophilia) with 3* hypertonic saline for MRI Brain elevated protein hyponatremia Fever ≥ 38 C is a defining criteria for CRS


Children's National.

Headache: non-specific symptom seen in CRS and/or ICANS. It is not a diagnostic criteria for either of CRS/ICANS.


Organ toxicities graded as per CTACAE version 5.0 but not diagnostic of CRS/ICANS

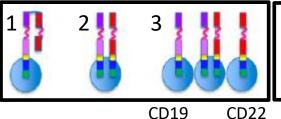

CRP/Pro-inflammatory panel/organ function labs not diagnostic of CRS

CAR-T for R/R CD19 +B-ALL

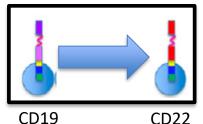
CAR-T cell and blast kinetics

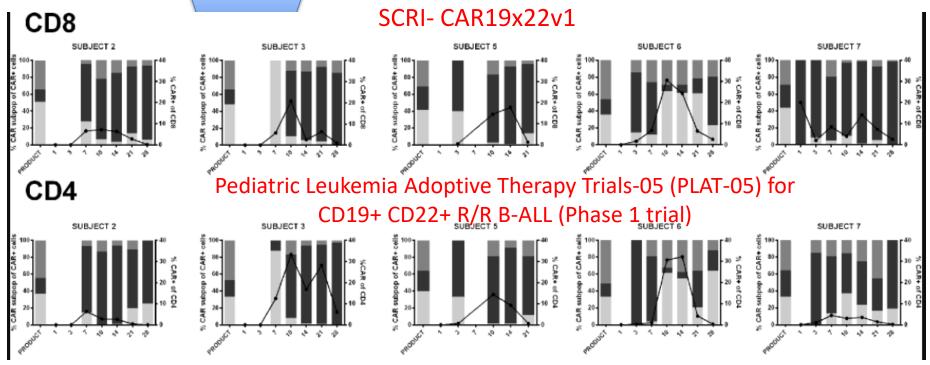
Post CAR-T therapy care

Post CAR -T Therapy	Recommendations/Comments	
Discharge	D+14 if ANC >200/mcL x 2 and rising	
Education	Educate caregivers about vital sign monitoring Educate caregivers to log daily ICANS questionnaire Contingency plan for fever/Kymriah "wrist bands" and wallet cards	
Clinic follow up	Till D+60 or BMT which ever is later	
Supportive care	Consider G-CSF for prolonged neutropenia (after D+14)	
Infection prophylaxis	Prophylaxis with antibacterial, antivirals, antifungal, PJP	
IVIG	Monthly monitoring of IgG. IVIG for IgG <400mg/dl	
Lymphocyte subsets	Monitoring of B cell aplasia. Recovery of CD19+ cells- may be a sign of relapse	
HCT	Indications for HCT post-CAR-T rapidly evolving	


Challenges

- Toxicities: CRS/ICANS/HLH like/Infections (80-90%)
- Strategies to mitigate toxicities- REMS
- More proactive use of tocilizumab, steroids and steroid sparing agents like anakinra
- Need for IgG supplementation
- Relapses after CAR-T therapy (30-50% at 1 year)
- Lack of persistence of CAR-T cells (CD19 pos)-CAR-T cell exhaustion- transplant as a consolidative therapy
- Immune escape (CD19 neg) (7-60%)
- Refractory to CAR-T cell therapy (10-20%)
- Financial toxicity- \$475,000 for Kymriah


Dual antigen targeting


Simultaneous targeting

- 1.Bivalent (in series)
- 2.Bi-cistronic (in parallel)
- 3.Combined product

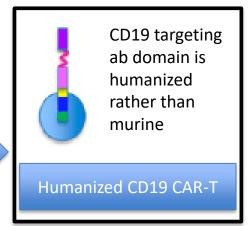
Sequential targeting

DAYS POST INFUSION

CD19 CAR+

CD22 CAR+

CD19xCD22 CAR+

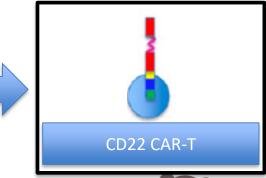


Expanding the portfolio of CAR-T therapy

1st study of humanized anti-CD19 CAR T cells at CHOP CTL119 induced CR in 100% CAR T cell naïve patients (12-mo RFS of 82%).

In the retreatment setting, 56% of patients with prior murine CD19 CAR T cells achieved CR.

Blood (2017) 130 (Supplement 1): 1319.


CD19+ Leukemia and Lymphoma 1-30 years

PLAT-07

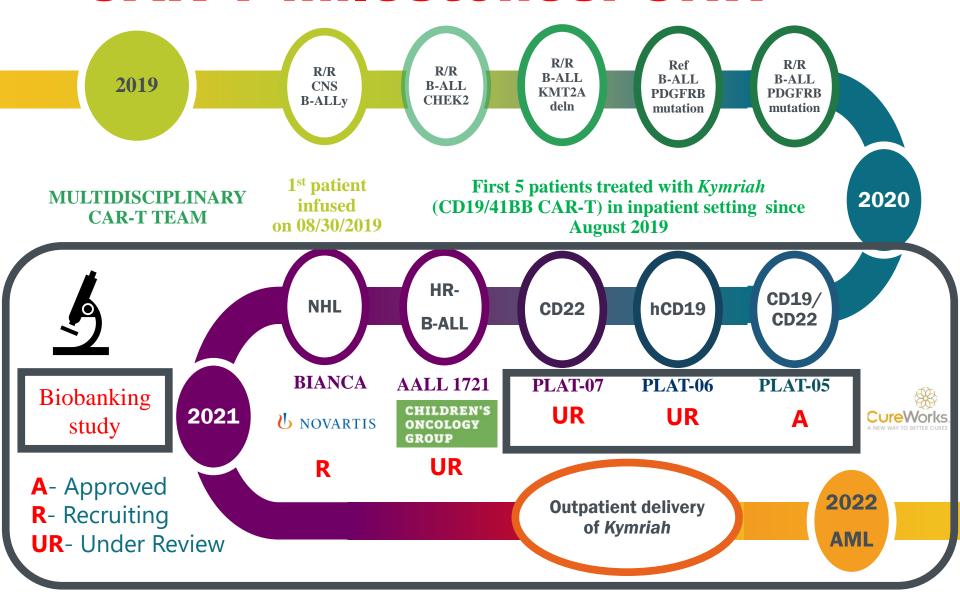
CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy

medicine

VOLUME 24 | NUMBER 1 | JANUARY 2018 National Institutes of Health (NIH), Bethesda, Maryland, USA.

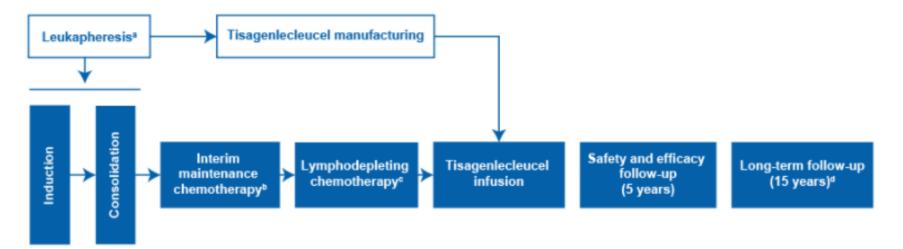
CD22+ Leukemia and Lymphoma Up to 30 years

Future of CAR-T therapy at CNH


Open CAR-T Cell Clinical Trials at CNH

Trial/Sponsor	Indication	Principal Investigator	
PLAT-05 (CureWorks)	Anti-CD19-22 CAR T cell for Rel/Ref B-ALL/Ly Age: 1-27 y	Anant Vatsayan	
PLAT-06 (CureWorks)	Humanized Anti- CD19 CAR T for Rel/Ref B-ALL Age: 1-27 y	Anant Vatsayan	
Cassiopeia (COG AALL1721)	HR MRD+ CD19+ B ALL at EOC	Anne Angiolillo (Under IRB review)	
BIANCA (Novartis)	CD19+ Relapsed NHL Age: <18 years	Hema Dave (Under IRB review)	
Bio-banking	Prospectively banking PB/BM and CSF samples	Hema Dave/Cath Bollard	

PLAT 07 (CD22 CAR-T) coming in Fall 2020!


CAR-T milestones: CNH

Cassiopeia (AALL1721)

 A phase II single arm, open label, multicenter study to determine safety and efficacy of tisgenlecleucel as a first line therapy for high risk pediatric and young adults (1-25 years) with CD19+ B-ALL who are MRD (>0.01%) positive at end of consolidation

STUDY DESIGN

^{*}Leukapheresis can be performed at end of induction or end of consolidation.

Primary endpoint: 5 year DFS

https://www.clinicaltrials.gov/ct2/show/NCT03876769 https://www.virtualcongress.novartis.com/eha25/b-cell-malignancies/

bTisagenlecleucel can be given as soon as product is available and before completion of interim maintenance, if applicable.

Lymphodepleting chemotherapy is to be completed 2 to 14 days prior to tisagenlecleucel infusion.

Long-term safety follow-up as per health authority guidance conducted under a separate long-term follow-up protocol (NCT02445222).

Unanswered questions

- Early risk stratification and patient selection (<u>range of burden of disease</u>, <u>type</u> of disease, <u>EM/CNS</u> disease, <u>pre-HCT</u>)
- Optimal time of leukapheresis
- **Upfront use** of CAR-T cells
- Optimal bridging to CAR-T therapy (CD19 or CD22 targeting immunotherapy prior to CAR-T and as an alternative)
- Optimal lymphodepleting chemotherapy
- Deep remission (utility of <u>NGS</u>-long-term disease surveillance)
- Durability of remission (type of CAR-T and its persistence; duration of B-cell aplasia, molecular MRD, and role of HCT)
- Mechanisms of failure of CAR-T cells
- Mechanisms of toxicity of CAR-T cells
- Best strategy which is financially viable in the long run

Research database and guidelines development

Other administrative
databases looking at
Quality and Cost
Outcomes of different
institutions for
benchmarking against
peers, reduce variations,
expedite data collection

Building a CAR Garage: Preparing for the Delivery of Commercial CAR T Cell Products at Memorial Sloan Kettering Cancer Center

Karlo Perica ¹, Kevin J. Curran ^{2,3}, Renier J. Brentjens ^{1,3}, Sergio A. Giralt ^{3,4,*}

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
Pediatric Bone Marrow Transplant Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York

Guideline

ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells

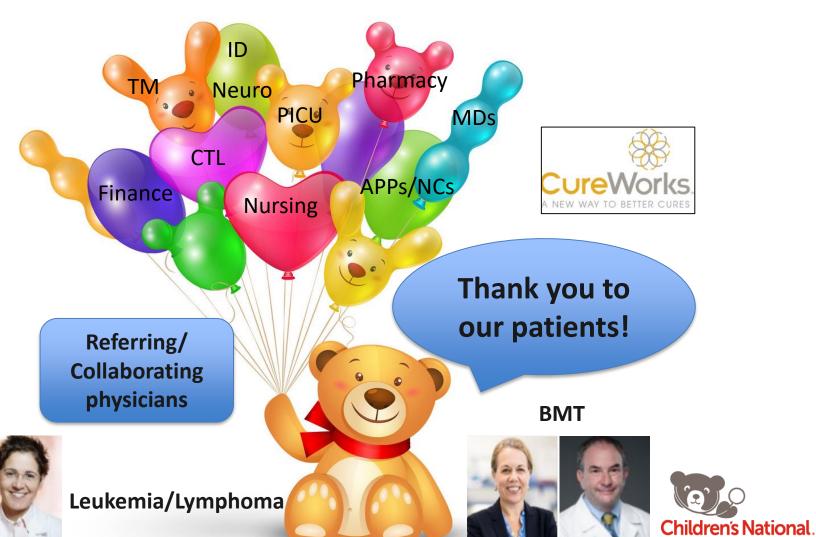
Daniel W. Lee^{1,#}, Bianca D. Santomasso^{2,#}, Frederick L. Locke³, Armin Ghobadi⁴,

Chimeric antigen receptor T-cell therapy — assessment and management of toxicities

Sattva S. Neelapu¹, Sudhakar Tummala², Partow Kebriaei⁵, William Wierda⁴, Cristina Gutierrez⁵, Frederick L. Locke⁵, Krishna V. Komanduriˀ, Yi Lin⁵, Nitin Jain⁴, Naval Daver⁴, Jason Westin¹, Alison M. Gulbis⁵, Monica E. Loghin², John F. de Groot², Sherry Adkins¹, Suzanne E. Davis¹º, Katayoun Rezvani⁵, Patrick Hwu¹º, Elizabeth J. Shpall⁵

How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies

Joshua A. Hill¹⁻⁴ and Susan K. Seo^{5,6}



Summary

- <u>Early referral</u> of relapsed/refractory ALL patient for potential need for CAR-T therapy
- NGS should be sent at diagnosis of relapse/ refractory B-ALL
- Very high disease burden and late leukapheresis compromises the T cell yield (qualitative and quantitative) for CAR-T production
- Pre-CAR-T use of Blina or Inotuzumab may negatively impact the efficacy of CAR-T cells
- Bridging chemo should be less toxic with the goal of decreasing disease burden
- <u>Early B-cell recovery</u> is a surrogate marker for impending post-CAR-T relapse
- Post CAR-T consolidation with HCT is recommended if patient is a good candidate for HCT

