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Not Yet!!

Is Microarray Dead?



• Organism well annotatated. • Organism does not need to be well annotated

• Evaluates expression of known 
genes.

• Less cost per sample. Cost depends 
on number of probes used 

Microarray
RNAseq

• Higher cost per sample. Cost depends 
on depth of sequencing.

• Evaluates expression of known as well as 
unknown gene/non-coding transcripts .

• Relative abundance. Intensity. • Absolute abundance. Read counts.

• Analysis fast. Finishes in hours • Analysis slow. Takes days

• High error and  background noise, 
due to issues with hybridization.

• Low error and background noise.



Design the 
experiment

Perform the 
experiment Analyze the Data

§ What is the 
ultimate goal of 
the experiment?

§ Has this study 
been done 
before?

§ Is the organism 
well annotated?

§ Number of 
replicates/sampl
es?

Life cycle of a Genomic Experiment



Design the 
experiment

Perform the 
experiment Analyze the Data

§ Extraction of 
DNA sample 
depends upon 
the tissue/cell 
used. What kit 
to use?

§ How is the 
quality of the 
RNA?

§ What is the 
quantity of the 
RNA?

Life cycle of a Genomic Experiment



Design the 
experiment

Perform the 
experiment Analyze the Data

§ Is this a novel 
experiment?

§ If not is there 
available 
literature for the 
pathway 
analyzed.

§ If novel is it on a 
known tissue/ 
cell type.

§ What platform 
used

Life cycle of a Genomic Experiment



Design of the experiment

Goal of the experimentUse RNAseq

Discovery of novel 
transcript and Gene 
Expression

Organism well annotated

Expression of genes

No

Use RNAseq

Has the study been done 
before?

Check  public 
repositories like 
Gene Expression 

omnibus (GEO) and 
arrayexpress for 

data

Yes No
Proceed with the 

experiment

Yes

Design of an Experiment



• More sample=More accuracy of experiment.

• Power of a binary hypothesis test is the probability that the test rejects the null hypothesis (H0) when a 

specific alternative hypothesis (H1) is true.

• Statistical power ranges from 0 to 1, and as statistical power increases, the probability of making a type II 

error (wrongly failing to reject the null) decrease

• Parameters to determine Power are:

I) mean number of false positive

II) The anticipated number of undifferentially expressed genes in the experiment

III) The specified power level for an individual gene, which represents the expected 

proportion of                  differentially expressed genes that will be declared as such by the tests

IV) Mean difference in log-expression between treatment and control conditions as 

postulated  under the alternative hypothesis H1.

V) The anticipated standard deviation of the difference in log-expression between 

treatment and control conditions

https://sph.umd.edu/department/epib/sample-size-calculation-completely-randomized-treatment-control-

designs

Power of an Experiment

https://sph.umd.edu/department/epib/sample-size-calculation-completely-randomized-treatment-control-designs


Ideally, if the experiment were repeated with new, independently
obtained samples, the effect would likely be observed again.

Variation in data – are they actual biological changes or are just caused by
chance?

Replication for Reproducibility!

Replicates – why? 

Without replicates, what do you miss?

• Identification of random Variation
• Accuracy of measurement



Replicates

• Biological replicates measure a quantity from difference sources
under the same conditions
Øe.g., Tumors from 5 different people with lung cancer may show 

similar gene expression patterns. These replicates are useful to 
show what is similar in your replicates and how they are different 
from a different set of conditions (ie. treated, normal).

• Technical replicates measure quantity from 1 source. This measures 
the reproducibility of the results. The differences are based only on 
technical issues in the measurement.
Øe.g., sequence the same sample twice but get different results



Technical replicates are: S1 /S2  and S5 / S6
Biological replicates are: S3 – S1/S2 and S4 - S5/S6

S1 S3S2 S6S4 S5

To make inferences about  the population you need biological replicates

Replicates



• Array-based Assays
Ø $200-800/sample, depending on type of array
Ø Affymetrix mRNA and miRNA Expression Profiling Microarrays, 3’ ivt

and exome
Ø RIN ≥ 6, 260/280/230 ratios, quantity as low as 100 ng, but more is 

better (~300 ng)

• RNA Sequencing
Ø Priced per run ~$200-1,800/sample, depth and coverage increase 

cost
Ø Illumina miRNA Sequencing
Ø Illumina RNA Sequencing (PolyA, Custom,  Whole Transcriptome, 

Depleted (Mito/Ribo) Whole Transcriptome)
Ø Oxford Nanopore GridION Sequencing (Long Read)
Ø RIN ≥8, 260/280/230 ratios, ≥500 ng preferred;  >1 ug for depletion 

methods (lose 90%)

Transcriptomics in the Genomics Core



Is the experiment novel?

Is a new pathway being analyzed?

Yes

Yes

Proceed with the 
experiment

Provide the analyst  
with a list of gene

No

Provide the analyst with 
a list of gene

No

Genomic Experiment (Data Analysis)



ØDesign of the experiment 
§ Number of samples used?
§ Does your question require biological or technical 

replicates?
§ What kind of probes needed to answer your question?

ØFiles and Information Required
§ Raw intensity files: If done in-house, the .CEL files from 

Affymetrix platform. If done elsewhere and done on other 
platforms, the platform name and raw data from the same.

§ Sample Names: Names associated to each sample.
§ Condition/Group: Condition associated to each sample. 

Example: Sample 1-4 are control, Sample 5-8 are experimental.

Files and Information Required for analysis: Microarray



Clariom S and D arrays



1. Extraction
2. Quality Check
3. Background 

Correction
4. Differential Gene 

Expression

Extraction

Normalization

Differential 
Gene 

Expression

Basic R

affy

Affy
(RMA)

affy

Quality Check

Background
Correction

Limma

Microarray Analysis Pipeline 



Introduction to TACC



Importing CEL Files 



Apply Condition 



Selecting Statistical Methods

Method chosen: 
eBayes or 

ANOVA
Threshold to 
detect genes 

above  
backgroundArea under 

curve: 
Determines 
separation 

ofexons from 
introns



Files and Information Required for analysis RNAseq
ØDesign of the experiment 

§ Number of samples used?
§ Does your question require biological or technical 

replicates?
§ What is the coverage required for ?

ØFiles and Information Required
§ Raw Read files: The output from the sequencers Fastq is 

needed. If done in other facility, fastq (or bam) has to be 
provided to the analysts, along with information about the 
sequencers, spike ins used, library type,etc.

§ Sample Names: Names associated to each sample.
§ Condition: Condition associated to each sample.

Files and Information Required for analysis: RNA-seq



Sample and Library Preparation

qSingle end vs Paired end

qPolyA vs Ribodepletion



Single end and Paired end

SE = single endPE = paired end 
(mate pairs)

The sequencer reads from one end of a 
fragment to the other end. 

The sequencer instrument read from one
end to the other end, and then start another
round of reading from the opposite end.

PE sequencing provides additional positioning information in the genome



PolyA or RiboDepletion? (RNA)

• Ribosomal RNA (rRNA) constitutes >70% of the purified total cell RNA.

• RiboDepletion removes specifically ribosomal RNA, leaving all other 
RNA transcripts, however it is not 100% efficient. 

• PolyA selection is very efficient, but it will only select polyadenylated  
RNA, therefore many long, non coding RNAs will be lost.

Poly A Ribo-depletion

Eukaryotes mostly Prokaryotes/eukaryotes

mRNA mRNA along with non-coding RNA like 

lncRNA etc

3 prime bias -



Read Length

• Read length refers to the number of base pairs that are read at a 
time.
• For a read length of 50 base pairs, single end reads would read 50 base pairs 

from each fragment,
• while paired end reads would consist of 2 x 50bp reads, covering up to 100 

base pairs on the same fragment.

While longer read lengths give you more accurate information on the 
relative positions of your bases in a genome, they are more expensive 
than shorter ones.



Coverage (RNA)

A more useful metric for RNA-Seq is determining the total number of 
mapped reads.
• It is important to distinguish between total reads and mapped reads, as 

not all reads will map onto a reference genome

So, the number of usable reads will be less than the number of actual reads. 

• The number of reads that will map depend on the 
vlibrary type
vquality of sample 
vhow complete the reference genome is 
vType of sequencers (Long/Short)



Coverage (RNA)

Coverage needed for a RNA is not always uniform:

vDifferent transcripts are expressed at different levels, meaning more 
reads will be captured from highly expressed genes while fewer reads 
will be captured by genes expressed at low levels

vAlternate expression



Coverage (RNA)



1. Quality check
2. Alignments
3. Data Pre-

processing
4. Reads Counts
5. Differential Gene 

Expression

Quality Check

Reads count

Differential 
Gene 

Expression

STAR/RSEM 
(2)

FastQC

RSEM

Samtools/
RSEM (1)

Alignment

Data 
preprocessing

RNA-Seq Analysis Pipeline 

Deseq2



Fastq Format

FASTQ format is a 
o Text-based format  
o Stores :

ØBiological sequence
ØCorresponding quality scores

Size of fastq files depend on:
§ Type of experiment – WGS > Exome > RNA
§ Type of Genome – Human > Mouse > Bacteria
§ Coverage – more the coverage greater the size of fastq file



FASTA Format

FASTQ Format
sequence identifier and an optional description 

raw sequence letters

quality values for the sequence



Tool: FastQC
Input: FastQ files
Output: HTML file

Quality Check



Good Quality Bad Quality

FastQC : Good vs Bad



Tools : STAR and RSEM(2)
Input: RNA Seq. Reads (.fastQ) 
& Indexes (previous step 
output)
Output: .BAM/.SAM files

RNA Seq. Reads Indexed Genome

STAR

RSEM (2)

Aligned Reads 
(BAM/SAM)

Gene Counts 
(.CSV)

Alignment 
(.BAM/.SAM)

Isoform 
Counts (.CSV)

Alignments and Reads count



Indexing genome



View by Samtools View by IGV

Aligned reads



samtools view -H Konzo82_aligned.sam

Samtool Headers



Integrated Genome Viewer (IGV)



• Raw reads: Number of reads that align to a reference sequence in the 
genome. It depends on amount of fragments sequenced and length 
of the reference sequence. 
• Counts Per Million (CPM): It is the raw counts (Xi) scaled by number of 

fragments sequenced (N) times one million.

Read Counts Normalization



• Reads per kilobase of exons 
per million (RPKM) is a 
normalized read count.

• Fragments per kilobase of 
exons per million (FPKM) is 
similar to RPKM, only it 
works for paired end reads.

https://izabelcavassim.wordpress.com/2015/03/09/rpkm-and-fpkm-normalization-units-of-expression/

Read Counts Normalization (contd..)

https://izabelcavassim.wordpress.com/2015/03/09/rpkm-and-fpkm-normalization-units-of-expression/


Read Counts Normalization (contd..)
Transcripts Per million
§ Divide the Number of reads of a transcript by the length of that gene in kilo bases 

(gene length divided by 103). This is the  Read per Kilobases (RPK).
§ Summation of all RPK values in a sample divided by 106, is the “per-million” scaling 

factor.
§ Divide RPK of each  gene by the per million scaling factor to get Transcripts per 

million (TPM).
Xi : Number of reads of 
transcript for Gene i
li : Length of  Gene i

§ Due to the normalization technique used TPM values are less variables between 
samples of the same condition.



Tool: DESeq2, edgeR

Input: Reads count (.CSV)

Output: TSV files and Read Counts 
(CSV)

DIFFERENTIAL GENE 
EXPRESSION

Isoform 
counts

DESeq2/edgeR

Statistic 
results (.tsv)

Differential Gene Expression 



Genome

Mapped reads - condition 1

Mapped reads - condition 2

Differential Expression



• Counting reads
• Statistical significance testing

Gene A

Sample_A Sample_B

Gene B

Fold_Change Significant?

1 2 2-fold

100 200 2-fold

No

Yes

Differential Expression (contd..)



SampleA

Example:  5000 total reads per sample.

Sample B

geneA 1 2

Hypothesis Test
(P-value)

geneB 10 20

1.00

0.098

100 200 < 0.001geneC

Observed 2-fold differences in read counts.

More Counts = more Statistical significance



PCA Plot Heatmap Differential Expression Table

Outputs from Microarray and RNAseq



Principle component Analysis (PCA) Plot

• Reduces the number of components for 
a condition.

• Helps in visualizing variabilities within 
samples of the same condition.

• In the figure on the right, there are 6 
experimental (Blue) and 5 control 
conditions (Red).

• We can see, 5 control samples are quite 
variable, whereas 2 out of 6 
experimental samples have least 
variability.

• Also there is variability between the 
experimental and the control samples.



Heatmaps
• Heatmaps are visual representation 

of the expression of genes. 
• In the image on the right, color 

ranges from dark blue (low 
expression) to light yellow.

• Expression can be represented 
either raw (raw intensity in case of 
microarray; raw read counts in case 
of RNA-seq) or scaled (log or z-score 
values.

• Hierarchical clustering done, to 
group genes with similar expression.



Gene Condition I Condition II Log fold change T-value P-value Q-value

Gene X 100 10 3.32 282.59 2.2e-16 2.2e-14

Gene X Gene X

Expression of Gene in 
condition 1 and 

condition2

Differential Expression tables



Understanding output I (Hypothesis testing and pvalue)

Gene Condition I Condition II Log fold change T-value P-value Q-value

Gene X 100 10 3.32 282.59 2.2e-16 2.2e-14

Gene X Gene X

Change in expression 
in log based 2 

format.

Differential Expression tables



T-test
§ T-test is a statistical hypothesis testing to determine, if two conditions are significantly 

different or not.
§ For a Transcriptomic expression:

Ø Null Hypothesis (H0)= Means of expression of the gene X in 2 conditions are
equal

Ø Alternative Hypothesis (HA)= Means of expression of the gene X in 2 
conditions are not equal.

! –value= "#$% &' #()*#++,&% -#%# . /&%0,1,&%2 3"#$% &' 4()*#++,&% -#%# . 5&%0,1,&% 671$%0$*0 #**&* (74)

§ Positive t-values means condition 1 has a higher  value then condition 2; whereas 
negative value means expression of gene in condition 2 more than in 1.



P-values
§ P-value is the probability of occurrence of a given event.
§ In case of a t-test, higher p-value would signify the higher chance of Null 

Hypothesis being true. So a p-value of 0.99 means there is 99% chance that the 2 
genes have same mean expression.

§ Lower the p-value, lesser the chance of the null hypothesis being true, and higher 
chance of alternative hypothesis being true. A p-value of 0.05, would mean 5% 
chance of the 2 genes having, same mean expression across the two conditions.

§ For biological experiments threshold for p-value is 0.05. This assumes that 95% of 
the 

§ P-value depends on t-value and degrees of freedom, which is generally number of 
samples -1.



Gene Condition I Condition II Log fold change T-value P-value Q-value

Gene X 100 10 3.32 282.59 2.2e-16 2.2e-14

Gene X Gene X

Adjusted p-value 
for multiple test 
error correction

Differential Expression tables



Adjusted P-values
• Multiple hypothesis testing leads to the rejection of True Positives. So, the p-value is not the measure of 

the significance of the test.
• To reduce the error rate p values need to be corrected.
• Most of the differential expression tools calculate adjusted p-value by 2 methods 

v Bonferroni Correction: 
ü Adjusted p-value= "#$%&'( )*+ ,-( (."(+/0(1,

2'03(+ *) 4%0"&(4
ü Compare it with adjusted p-value threshold (0.05). If less; than alternative hypothesis 

significant.
v Benjamini Hochberg  False Discovery Rate (FDR): 

ü Sort the frequency in ascending order and rank them, i.e. lowest  p-value is rank 1, next rank 2 
and so on.

ü F56(8 − :;<=>) = (@%1A *) ,-( "#$%&'(2'03(+ *) 4%0"&(4 )*False Discovery rate
ü Compare it with q-value threshold (0.05). If less; than alternative hypothesis significant.

• For Multiple testing q-value is better than p-value to measure significance.
https://www.nature.com/news/statisticians-issue-warning-over-misuse-of-p-values-1.19503

https://www.nature.com/news/statisticians-issue-warning-over-misuse-of-p-values-1.19503


What to do with significant genes?

Significant Gene List

Functional Annotation Interaction Database



CBU Service Request 
Form

https://cri-datacap.org/surveys/?s=3EJP7L8PLK

Email : bioinformatics@childrensnational.org

https://cri-datacap.org/surveys/?s=3EJP7L8PLK
mailto:bioinformatics@childrensnational.org
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:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2435252/

• Microarray Analysis: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762517/
• Limma: https://academic.oup.com/nar/article/43/7/e47/2414268
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analysis-of-variance/
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