

Concussion Management for the Primary Care Pediatrician

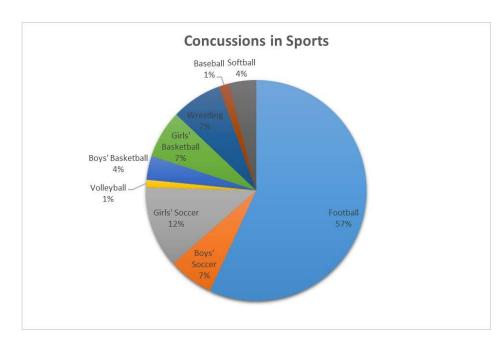
Keyur Desai, MD Attending Physician, Primary Care Sports Medicine Fight for Children Sports Medicine Center Division of Orthopaedics, Children's National Hospital

Disclosures

• None

Objectives

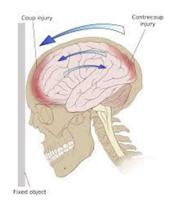
- Define sport-related concussion (SRC)
- 2. Review the epidemiology and pathophysiology of sport-related concussion
- 3. Identify signs or symptoms of non-concussion injuries
- 4. Develop a workflow for in-office evaluation, management, and return to play considerations for concussed athletes
- Apply recent evidence-based therapies in concussion treatment and recovery

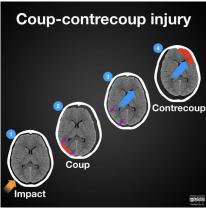

Definition

- Sport related concussion is a traumatic brain injury induced by biomechanical forces. Features may include:
- A direct blow with an impulsive force transmitted to the head.
- Rapid onset of short-lived impairment of neurological function that resolves spontaneously.
- No abnormality is seen on standard structural neuroimaging studies.
- May or may not involve loss of consciousness.

Epidemiology

- Between 1-2 million pediatric sports-related concussions annually in the U.S.
- Males > Females
- Gender-comparable sports: females greater than males
- Top male sports:
 - Tackle football
 - Lacrosse
 - Ice hockey
- Top female sports:
 - Soccer
 - Lacrosse
 - Field hockey




Where Patients Get Care

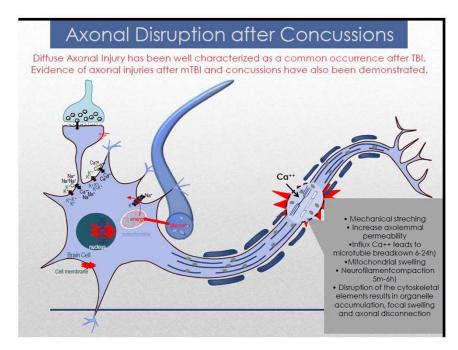
- Exact data unclear due to underreporting of symptoms
- At home, self-directed (i.e. do not seek medical care)
 - Up to 45-65% of SRC patients
- Emergency department
 - Estimated 500,000-1,000,000 visits annually
 - Increasing numbers year-to-year
- PCP office
 - Up to 75% of SRC patients
- Specialist office (neurology, sports medicine, PM&R)

Pathophysiology

- Direct impact or
- Coup-Contrecoup mechanism
 - Coup
 - · Impact at skull
 - Brain adjacent to skull forcibly impinged
 - Focal damage
 - Contrecoup
 - Due to impact, intracranial contents travel in direction of skull
 - Skull stops
 - Brain impacts skull

Pathophysiology

- Shearing and stretching forces → Diffuse neuronal depolarization → Immediate post-injury symptoms
 - Excitatory neurotransmitter release (acetylcholine, glutamate, aspartate)
 - Increased GLUT-to-GABA ratio at 2 weeks


Table 1 Acute neurometabolic changes following mTBI

	Post-injury change	Mechanism	Pathophysiologic effect	Recovery timeline
Glutamate	Immediate release from injured neurons followed by region-specific decrease	"Mechanoporation" produces neuronal depolarization and neurotransmitter release	Promotes feedback loop of depolarization and neuron hyperexcitability	Initial increase normalizes within minutes of injury Region-specific decrease at
			Promotes influx of sodium and calcium	72 h recovers by 2 weeks post-injury
Gamma-amino- butyric-acid (GABA)	Decreased in a region-specific and time-dependant manner	Loss of GABA-ergic interneurons has been suggested [14]	Decreased neuronal inhibitory effect	Region-specific decrease up to 2 weeks
Potassium	Extraneuronal increase	Glutamate stimulates potassium efflux via ligand-gated potassium channels	Stimulation of feedback loop of depolarization and hyperexcitability	Within 10 min from injury
Calcium	Intraneuronal increase/accumulation	Initial neuronal "mechanoporation" Promoted by glutamate release	Cell damage and mitochondrial impairment	Approximately 3 to 4 days after injury
Glucose	Increase followed by decrease	Increased neuronal glycolysis followed by hypometabolism + blood flow-uncoupling	Decreased ATP from deficient oxidative metabolism Ineffective anaerobic metabolism	Hyperglycolitic phase: • 30 min to 6 h Hypometabolic phase: • 5 to 10 days
Blood flow	Global as well as regional and time-dependant decreases	Autoregulatory and vasoreactive disturbances induced by CO ₂ Local and diffuse structural vessel damage	Promotes anaerobic metabolism "Window of vulnerability" to repeated head impacts	Approximately 10 days

Pathophysiology

- Microstructural axonal damage
- Neurofilament and microtubule deformation → Mechanical axonal injury → Disrupted axonal transport, Accumulation of beta-amyloid precursor protein

Making the Diagnosis

HPI

- More commonly during competition play
- Mechanism: Injury to head, neck, face, or body with transmission to head
- Confusion
- May or may not have loss of consciousness
- May have immediate short-term amnesia in the peri-impact time frame
- "Seeing stars", "got my bell rung"

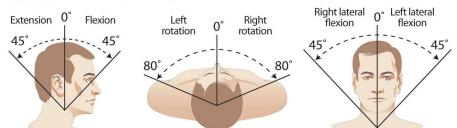
Acute Evaluation

- At the time of injury
- Focused history
 - "Who is your opponent? What is the quarter? What is the score?"
 - "Do you remember the injury?"
 - Current symptoms
- Focused physical exam
 - Neuro
 - Cervical spine

What venue are we at today?	Y	N
Which half is it now?	Y	N
Who scored last in this match?	Y	N
What team did you play last week / game?	Y	N
Did your team win the last game?	Υ	N

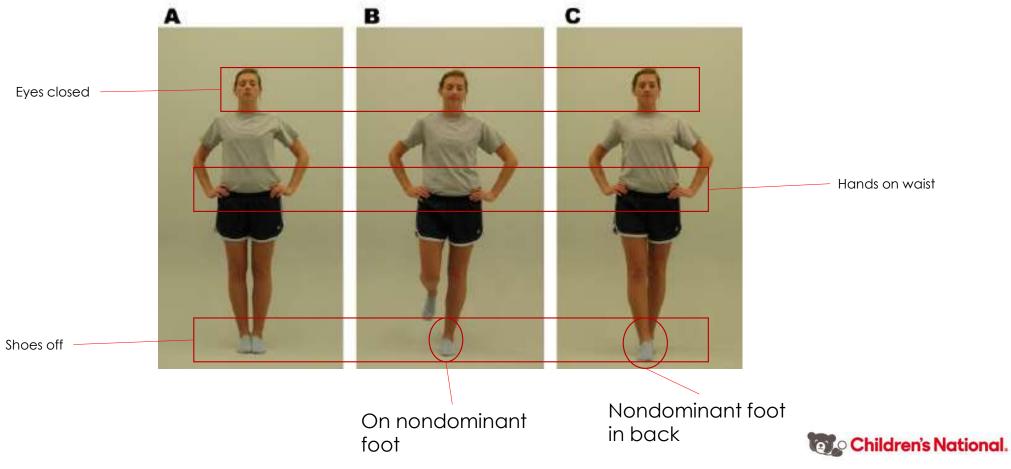
Red Flags

- High-risk mechanism
- High-risk medical history/medical problems
- Fluctuating/deteriorating consciousness, prolonged LOC, prolonged confusion
- Skull fractures, penetrating skull injury
- Persistent vomiting
- Focal neurologic findings
- Seizure or seizure-like movements
- Cervical spine pain or tenderness
- Double vision
- Severe or increasing headache
- Increasingly restless, agitated or combative

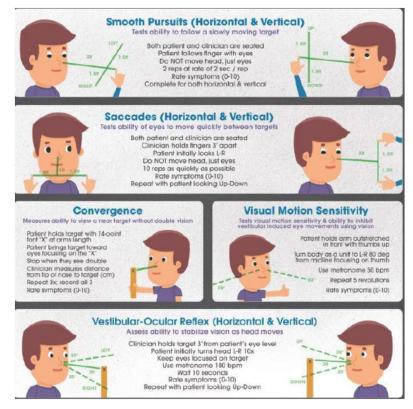


Physical Exam

- Cranial nerve exam
- Cervical exam
 - Neck ROM (flexion/extension, lateral bends, and rotation)
 - Palpation over midline and paraspinal musculature
- General neuro exam
- Cerebellar testing: FNF, HTS, rapid alternating movements



(Turn to look over shoulder)


Figure 1: Cervical spine range of motion

Modified Balance Error Scoring System (mBESS)

VOMS: Vestibular-Ocular Motor Screening

Management: Acute

- If diagnosed/suspected at a sporting event:
- When in doubt, keep them out.
- Symptom increase over 24-48 hours
 - 24-48 hours cognitive rest
 - Complete physical rest until reevaluated

Management: Pharmacotherapy

- Initial 48 hours
 - Avoid NSAIDs, aspirin
 - Minimize acetaminophen
- Duration of concussion
 - Use acetaminophen, NSAIDs sparingly
 - Need to be off medications to return to sports
 - Do not use prophylactically
- Resume preexisting headache medications

"If you didn't have a concussion, would you take medicine for this headache?"

Additional Testing

- CT
 - Acute evaluation for ICH and skull fracture
- MRI
 - No role for acute <u>or</u> prolonged postconcussive symptoms
 - Klein et al: 1 out of 138 prospective sportsrelated concussion athletes had an acute, injury-related finding
 - High rate of nonspecific MRI changes
- Lab testing
 - No evidence for lab testing

SCAT-5 Post-Concussive Symptom Sheet

- Filled out at every visit
 - "Fill out how you feel right now"
- Symptom underreporting common, so do not trust a "0"
 - <u>Example</u>: Patient reports 0 symptoms but is not caught up on school and has ongoing objective findings, or parental concern
- Not all patients may reach a "0"
 - <u>Example</u>: Patient with baseline insomnia may always report "trouble falling asleep"

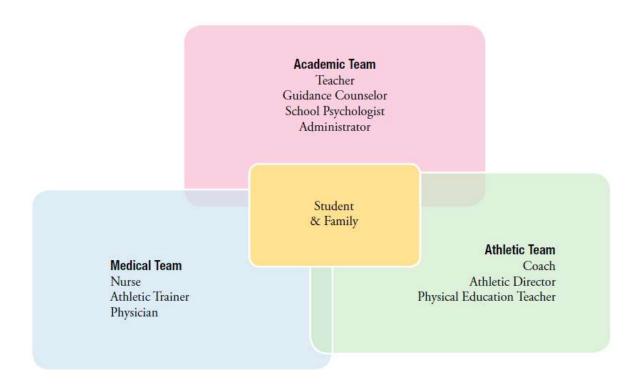
	none	m	ild	mod	erate	sev	ere
Headache	0	1	2	3	4	5	6
"Pressure in head"	0	1	2	3	4	5	6
Neck Pain	0	1	2	3	4	5	6
Nausea or vomiting	0	1	2	3	4	5	6
Dizziness	0	1	2	3	4	5	6
Blurred vision	0	1	2	3	4	5	6
Balance problems	0	1	2	3	4	5	6
Sensitivity to light	0	1	2	3	4	5	6
Sensitivity to noise	0	1	2	3	4	5	6
Feeling slowed down	0	1	2	3	4	5	6
Feeling like "in a fog"	0	1	2	3	4	5	6
"Don't feel right"	0	1	2	3	4	5	6
Difficulty concentrating	0	1	2	3	4	5	6
Difficulty remembering	0	1	2	3	4	5	6
Fatigue or low energy	0	1	2	3	4	5	6
Confusion	0	1	2	3	4	5	6
Drowsiness	0	1	2	3	4	5	6
More emotional	0	1	2	3	4	5	6
Irritability	0	1	2	3	4	5	6
Sadness	0	1	2	3	4	5	6
Nervous or Anxious	0	1	2	3	4	5	6
Trouble falling asleep (if applicable)	0	1	2	3	4	5	6
Total number of symptoms:						c	f 22
Symptom severity score:						of	132

Management: Initial Visit

- HPI and PE
- Detailed risk factor history:
 - Concussion history, including delayed return to play
 - Learning disorders and IEPs
 - Mental health disorders.
 - Notably depression, anxiety, ADHD
 - Sleep hygiene
 - Screen time
 - Emotional lability
- Assess current symptomatology
- Provide restrictions to school

Management: Follow-Up

- Post-Concussion Symptom sheet
- Focused exam: BESS, VOMS, and any abnormal findings
- If not improving:
 - Screen time, screen time, screen time
 - Consider referral
 - Sports medicine
 - Neurology
 - Neuropsychological testing
 - Physical therapy


The Role of Rest: Sub-Symptomatic Exercise

- Acute phase (first 48 hours): Complete physical rest
- High quality evidence supporting sub-symptomatic exercise
 - Quicker concussion recovery
 - Does not lead to acute exacerbations
- Sample activities:
 - Walk
 - Stationary bike
 - Elliptical
- Avoid:
 - Weight training
 - Activities with head injury risk

A Concussion Treatment Plan

Concussion Return to School Form

Returning to School After a Concussion

Based on the student's current symptoms, I recommend that the student:

Be permitted to return to school and activities while school professionals closely monitor the student. School professionals should observe and check in with the student for the first two weeks, and note if symptoms
worsen. If symptoms do not worsen during an activity, then this activity is OK for the student. If symptoms worsen, the student should cut back on time spent engaging in that activity, and may need some short-term support at school. Tell the student to update his or her teachers and school counselor if symptoms worsen.

☐ Is excused from school for ______ days.

The student is currer	ntly reporting t	the following symp	toms
-----------------------	------------------	--------------------	------

204	
	PHYSICAL

- ☐ Bothered by light
- ☐ Dizziness or balance
- ☐ Feeling tired, no energy
- ☐ Headaches
- ☐ Nausea or vomiting
- ☐ Vision problems

- Attention or concentration problems
- ☐ Feeling slowed down
- ☐ Foggy or groggy
- Problems with shortor long-term memory
- ☐ Trouble thinking clearly

- SOCIAL OR EMOTIONAL
- ☐ Anxiety or nervousness
- ☐ Irritability or easily angered
- ☐ Feeling more emotional
- ☐ Sadness

- SLEEP
- ☐ Sleeping less than usual
- ☐ Sleeping more than usual
- ☐ Trouble falling asleep

- □ No physical activity during recess
- ☐ No physical education (PE) class
- ☐ No after school sports
- ☐ Shorten school day
- □ Later school start time
- Reduce the amount of homework
- Postpone classroom tests or standardized testing
- Provide extended time to complete school work, homework, or take tests
- Provide written notes for school lessons and assignments (when possible)

- Allow for a quiet place to take rest breaks throughout the day
- Lessen the amount of screen time for the student, such as on computers, tablets, etc.
- ☐ Give ibuprofen or acetaminophen to help with headaches (as needed)
- Allow the student to wear sunglasses, earplugs, or headphones if bothered by light or noise

	Other:	
_		

Concussion School Accommodations

- Concentrate first on general cognitive skills, such as flexible thinking and organization, rather than academic content.
- Focus on what the student does well and expand the curriculum to more challenging content as concussion symptoms subside.
- Adjust the student's schedule as needed to avoid fatigue: shorten day, time most challenging classes with time when student is most alert, allow for rest breaks, reduced course load.
- Adjust the learning environment to reduce identified distractions or protect the student from irritations such as too-bright light or loud noises.
- Use self-paced, computer-assisted, or audio learning systems for the student having reading comprehension problems.

- Allow extra time for test/in-class assignment completion. Help the student create a list of tasks and/ or daily organizer.
- Assign a peer to take notes for the student.
- Allow the student to record classes.
- Increase repetition in assignments to reinforce learning.
- Break assignments down into smaller chunks and offer recognition cues.
- Provide alternate methods for the student to demonstrate mastery, such as multiple-choice or allowing for spoken responses to questions rather than long essay responses.

Academics and Concussion Return

- No formal guidelines
- My rules of thumb:
 - Full school days without extra accommodations
 - Asymptomatic with schoolwork and homework
 - Caught up or a clear plan to catch up on exams, projects

Return to Play

Graduated Return to Sport Strategy

Exercise step	Functional exercise	
	at each step	Goal of each step
Symptom- limited activity	Daily activities that do not provoke symptoms.	Gradual reintroduc- tion of work/school activities.
2. Light aerobic exercise	Walking or stationary cycling at slow to medium pace. No resistance training.	Increase heart rate.
3. Sport-specific exercise	Running or skating drills. No head impact activities.	Add movement.
4. Non-contact training drills	Harder training drills, e.g., passing drills. May start progressive resistance training.	Exercise, coor- dination, and increased thinking.
5. Full contact practice	Following medical clear- ance, participate in normal training activities.	Restore confidence and assess functional skills by coaching staff.
6. Return to play/sport	Normal game play.	

Contact

Keyur Desai, MD

KDesai2@childrensnational.org

Fight For Children Sports Medicine Center
1 Inventa Place
Suite 150
Silver Spring, MD 20910
301-576-2000

References

- 1. McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. British Journal of Sports Medicine 2017;51:838-847.
- 2. Halstead ME, Walter KD, Moffatt K. Sport-Related Concussion in Children and Adolescents. Pediatrics. 2018; 142(6):e20183074
- 3. Schneider KJ, Leddy JJ, Guskiewicz KM, et al. Rest and treatment/rehabilitation following sport-related concussion: a systematic review. British Journal of Sports Medicine 2017;51:930-934.
- 4. Haider MN, Bezherano I, Wertheimer A, et al. Exercise for Sport-Related Concussion and Persistent Postconcussive Symptoms. Sports Health. 2021;13(2):154-160. doi:10.1177/1941738120946015
- 5. Echemendia R, Meeuwisse W, McCrory P, et al. The Sport Concussion Assessment Tool 5th Edition (SCAT5): Background and rationale. British Journal of Sports Medicine. 2017;51.
- 7. Romeu-Mejia R, Giza CC, Goldman JT. Concussion Pathophysiology and Injury Biomechanics. Curr Rev Musculoskelet Med. 2019;12(2):105-116. doi:10.1007/s12178-019-09536-8
- 8. Rowson S, Bland ML, Campolettano ET, et al. Biomechanical Perspectives on Concussion in Sport. Sports Med Arthrosc Rev. 2016;24(3):100-107. doi:10.1097/JSA.00000000000121
- 9. Klein AP, Tetzlaff JE, Bonis JM, et al. Prevalence of Potentially Clinically Significant Magnetic Resonance Imaging Findings in Athletes with and without Sport-Related Concussion. J Neurotrauma. 2019;36(11):1776-1785. doi:10.1089/neu.2018.6055

Subscribe and Follow Us

- FACEBOOK | @childrens.national
- TWITTER | @ChildrensNatl
- INSTAGRAM | childrensnational
- in LINKEDIN | Children's National Hospital

InnovationDistrict.ChildrensNational.org

Thank You!

