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Single Cell RNA seq: What is 1t?
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Single cell Studies: What we can learn.

Single-cell transcriptomics of 20 mouse
organs creates a Tabula Muris
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Profiled 100k cells from 20 organs and
tissues.
Approaches used
v" High throughput 3’-end counting
approach.
v FACs sorting of full transcriptomics.
Foundation for a mouse single cell atlas.
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Profiled 80,600 cells from prefrontal cortex of 48 individuals
with varying degrees of Alzheimer’s disease pathology.

« Transcriptionally distinct subpopulations identified.
» Female cells were overrepresented in disease-associated

subpopulations and transcriptional responses were
substantially different between sexes



Single Cell RNA seq: Workflow

Single Cell RNA Sequencing Workflow
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https://upload.wikimedia.org/wikipedia/commons/d/d5/Single cell RNA-Seq workflow.pdf
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Single Cell RNA seq: Design of the experiment

Differential expression
between conditions

Use bulk RNAseq Goal of the experiment

Denovo discovery of cell

population
No
Use bulk RNAseq Is cell population
heterogeneous?

Yes

Use single cell RNAseq
Consider for:

Input cell numbers
Sequencing depth
Tissue type
Intra population heterogenity



Single Cell methods: 1solation and library generation
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https://www.frontiersin.org/articles/10.3389/fimmu.2018.01553/full
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Single Cell methods:

Cell isolation

Amplification
method

Sequencing
method

Application
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https://www.nature.com/articles/nri.2017.76
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*10X has recently released a 5'barcoding that allows reconstruction of full length idiotype sequences
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01553/full
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Single Cell methods: droplet based method (10X)
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Cells get encapsulated into oil droplets along
with the beads (nanoparticles) and lysis buffer.

The bead “tentacles” have PCR handle, a
barcode for cell identification, an Unique
Molecular Identifier (UMI), and a “30 bp oligo-
dT to prime polyadenylated RNA transcripts”.

Cells are lysed. Oligo DT primer of the beads,
reverse transcribes the poly-A RNA to cDNA.

cDNA thus formed has a cell barcode, a UMI
and template switching oligo at 3’end.

Emulsion is broken. cDNA extracted and
amplified, library prepared and 3’sequenced.



Unique molecular 1dentifiers (UMIs)

Cell 1 Cell 2 Reverse transcription, barcoding and UMI labeling
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Overview of 10x Single-cell RNA-Seq pipeline

Single cell/nuclei 10x Chromium lllumina Sequencer Data analysis
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Cost and amount of sample required

Single RNA Sequencing

>

>

Cell isolation and addition of 10X barcodes: $500 per sample.

Sequencing: 8,000 cells you need 288, 000, 000 good reads, with sequencing cost in Novogene
approximately $1300

Total cost: Approximately $2000 to $3000 per sample depending on number of cells sequenced
RIN >8, 260/280/230 ratios, 700-1200 cell/ul.
Check Cell viability before and after the nuclei/cell isolation

A picture of the cell suspension (to make sure that the suspension is free from clumps, aggregates,
debris that can cause a clog)

Wash twice the cells or nuclei prior to loading on the chip in PBS + BSA 0.04%, sometimes the nuclei
especially from brain are very sticky and the tend to clump together, using BSA 2% will help to prevent
the clumping.



Bioinformatics pipeline: Single Cell RNA-seq
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Raw reads
(Fastq)

Alignment and Quantification
(Alignment: STAR,
Quantification: CellRanger (10X))

Clustering , Differential Expression,
visualization,
(Seurat and Monocle)

Downstream Functional Analysis
(DAVID)
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Case Study: Limb Girdle Muscular Dystrophy

« Mutations in Dysferlin cause Limb Girdle Muscular Dystrophy Type
2B, a rare disease which features progressive muscle weakness in the

shoulder and hip joints.

* A major driver of the pathology is the replacement of functional

muscle fibers with fat.

» Major Goal of this experiment, how is the fat forming?
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Dysferlin KO muscle shows a progressive
accumulation of fibro/adipogenic progenitors
(FAPs), compared to Wild Type (WT).

12Mo WT

Macrophages are known to influence FAPs. In
a Dysferlin KO mouse, macrophages(F4/80)
are increased, compared to WT.
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12month old dysferlin knock out (KO)
mouse (12Mo B6A/J) quadriceps

showing replacement of muscle with
fat.

a5

Macrophages and FAPs (PDGFRa)
are closely associated in areas of
pathology in dysferlin-deficient
muscle.



Work Flow of the experiment
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Summary of Samples: Quality Metrics: Clean

Sample

Cell Ranger - W1M_exp -
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| Estimated Number of Cells |
I I
| 1,424
- .|
Mean Reads per Cell Median Genes per Cell
174,560 2,317
Sequencing
Number of Reads 248 574,748
Valid Barcodes 95.5%
Sequencing Saturation 85.1%

UMI counts

SN wu

1000

5]
SN

—
HN UON ®

Cells
100% Cells
(951/951) Cells
Background

1 10 100 1000 10k
Barcodes

100k 1M

Primary Quality matrices are: Estimated Number of cells, Reads Mapped
Confidently to Transcriptome, Reads mapped Antisense to gene, Fractions of

Reads per cell.
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Median UMI Counts per Cell 7,405



Summary of Samples: Quality Metrics: Contaminated Sample

Cell Ranger - W2M_exp - .
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Principal component analysis (PCA)

Introduction to Principal Component Analysis

Dimensionality Reduction

Pcl comporent

“In statistics, machine learning, and information theory, dimensionality
reduction or dimension reduction is the process of reducing the number of
random variables under consideration by obtaining a set of principal
variables.”(Wikipedia)

In other words we have ~1500 cells per sample and ~750 genes per cells
(1500 X 750 dimensions), it is completely impossible to analyze this data
with current available computational power we reduce the number of
dimensions to more reasonable numbers for ease of computation.

Principle component Analysis (PCA) is one method used for dimensionality
reduction.



Clustering

Original unclustered data

Clustered data

* Clustering is the technique of grouping objects
based on certain features.

 They are unsupervised, and are based on the
characteristics of the samples and not on any
other previous knowledge of the samples.

* The clusters for single cell analysis are based on
gene expression patterns, and the clusters may
or may not represent cell clusters of biological
significance.
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https://mubaris.com/posts/kmeans-clustering/
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tSNE vs UMAP

t-SNE

Cell types

® Contaminant (includingB) @ CD4T @CD8T @MAIT @NK/ILC T

https://www.nature.com/articles/nbt.4314

In Seurat, we first do PCA reduction, followed by
clustering of the data and then another reduction
method t-Distributed Stochastic Neighbor
Embedding (t-SNE), which is the general method
of visual representation of the single cell RNAseq
data.

t-SNE, reduces the larger dimension datasets into
2 dimensions. The major goal of t-SNE plot is to
put the cells with similar property near each
other. It is just a visualization method.

UMAP is a new popular dimension reduction
method, faster too

Distances between clusters in a tSNE plot does
not mean anything, UMAP does!


https://www.nature.com/articles/nbt.4314

Contamination: What Is 1t?

t-SNE projection of Cells Colored by Automated Clustering
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https://www.biorxiv.org/content/10.1101/704015v1.full

 Single cell RNA-seq experiences contamination due to “ambient RNA”.

« Ambient RNA is a pool of mMRNA molecules that have been released in the cell suspension, likely from cells that
are stressed or are dead (apoptosis).

« Cross-contamination occurs when the ambient RNA gets incorporated into droplets and is barcoded and amplified
along with a cell’s mRNA.

« This leads to a badly clustered t-sne plot.


https://www.biorxiv.org/content/10.1101/704015v1.full

t-SNE2

Clean vs Contaminated sample

t-SNE projection of Cells Colored by Automated Clustering
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Summary of the Samples: Macrophage

Sample ID Input Estimated | Reads Mapped | Reads Fraction Quality of the
Number | # of cells | Confidently to | mapped Reads per cell | sample
of cells Transcriptome | Antisense to
gene
Wild type macrophage 8000 1424 55.7% 1.1% 81.3% Clean
(W1M)
Wild type macrophage 8000 12,077 48.2% 2% 64% Contaminated
(W2M)
Diseased macrophage 8000 1453 55.3% 1.1% 81.1% Clean
(B1M)
Diseased macrophage 8000 2054 58.8% 1% 78.8% Clean

(B2M)



Summary of the Samples: FAPS

Fraction Quality of the
Reads per cell | sample

Sample ID Input Estimated | Reads Reads
Number | # of cells | Mapped mapped
of cells Confidently to | Antisense to
Transcriptom | gene
e
Wild type FAPs (W1F) 8000 14,201 53.2% 3.3%
Wild type FAPs (W2F) 8000 2073 59.4% 1.7%
Diseased FAPs 8000 1724 50.9% 1.4%
(B2F)

* Sample B1F was not sequenced as it did not meet RNA Quality (RIN) standards.

60.3% Contaminated
85.3% Clean
84.9% Clean



Violin Plots: What does It represent?
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https://seaborn.pydata.org/generated/seaborn.violinplot.html

* Violin Plot represents the spread of the data, as well as a probability density representation of each element.

* Wider sections of the violin plot represent a higher probability that members of the population will take on the given
value; the skinnier sections represent a lower probability.

* For example, maximum people in a restaurant will have a total bill between $10-520 from Thursday- Sunday, with the
probability of people having a bill of 15S is highest on Thursday.


https://mode.com/blog/violin-plot-examples
https://seaborn.pydata.org/generated/seaborn.violinplot.html

Quality Check: Seurat

Commonly used Quality Check criterions are:
* Low quality cells or empty droplets, will have few genes/UMIls/transcripts, whereas doublets or multiplets (droplets
having two or multiple cells) will have more genes. The two features that represent this criteria are

eRNA  nCount_RNA

Unique genes (nFeature RNA) Unique UMIs (nCounts_RNA)

A
A
\

R2=0.92

nFesture_RNA

* Correlation between, nFeature RNA and nCount_RNA is generally high for a good sample. -

* The percentage of reads that map to the mitochondrial genome. |
Low-quality / dying cells often exhibit extensive mitochondrial contamination




Quality Check: Wild Type Macrophage (W1M) (Before vs

after Filtration)
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Single cell t-sne plots: W1M
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Single cell t-sne plots: B1M
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Differential expression (DE) of genes in each
cluster: W1M

Top Genes By Cluster (Log2 fold-change, p-value)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
Gene ID Gene name L2FC p-value L2FC p-value L2FC p-value L2FC p-value L2FC p-value L2FC p-value L2FC p-value
ENSMUSG00000030787 Lyvef 231 2e-32
ENSMUSG00000051504  Siglech 231 1e-24
ENSMUSG00000009185 Ccl8 2.26 1e-17
ENSMUSG00000022122 Ednrb 217 1e-24
ENSMUSG00000026938 Fcena 2.14 1e-24
ENSMUSG00000051906 Cd209f 2.14 1e-25
ENSMUSG00000055546 Timdd4 213 1e-22
ENSMUSG00000031495 Cd209d 2.10 3e-25
ENSMUSG00000032725 Folr2 2.08 2e-26
ENSMUSG00000079168 Cd209g 2.05 2e-22

* Differential gene expression between genes of cells in one cluster versus all the other cells in different clusters, gives us a
knowledge about the cell.

* For example, gene Lyvel has log2FC of 2.31 with adjusted p-value of 2e-32, for cluster 1, compared to all cells present in
clusters 2-7.

* Functional annotation of these DE genes gives the cell its identity.
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Differential Expression Csflr: B1IM and W1M
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Csfrl gene expression remains quite similar across
the clusters.

The difference occurs in cluster 9 and 11, where it is
more in Wild type than diseased condition.

Cluster 10 has no difference for both the conditions.
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Conclusion

Single cell RNA-sequencing method is a still evolving field, with
the amount of new technologies, and analysis tools being
created for the same.

Before a single cell experiment one has to be cautious of
various factors as illustrated in the workflow.

A future innovation in single cell technique is spatial
transcriptomics, where single cell rna-seq result is
superimposed on tissue images.

Barcoding &
Sample Prep Imaging Library Construction Sequencing Data Visualization

|

Study design

Single-cell isolation

Sequencing

Analysis

Further experimental
validation

https://www.frontiersin.org/articles/10.3389/fimmu.2018.01553/full



https://www.frontiersin.org/articles/10.3389/fimmu.2018.01553/full

Bioinformatics pipeline: Tools

@SC RNA-tOOlS Tools Analysis Updates Submit FAQs L 4 o

» Single Cell RNA seq
SRS analysis tools database.

« Atotal of 523 tools.

* Maximum tools are

— . _ currently for visualization
ACTION C+HRMATLAB 10.1036/541467-018-03933-2 10 - Clustering, Dimensionality Reduction, Gene Networks ( 46%) ]

o . " | « Most of the tools are written

Tools Table

Search

PLATFORM CATEGORIES

Alternative Splicing, Cell Cycle, Classification, Clustering, Differential

.
; . EXDT’ESSlOn, Dlmeﬂs\oﬂa“w Reduction, Gene F”te”ng Gene Networks, I n R
IR (e O O T R B AR A i Rz Gene Sets, Interactive, Marker Genes, Normalisation, Quantification, .
Visualisation
anchor Python 10,1016/ molcel 2017.06.003 39 BSD-3-clause Modality
Clustering, Differential £ Gene Fitering, Interact
ASAP R/Python 10.1093/bioinformatics/btx337:10.1101/096222 a3 GPL-3 LBt IR S EET L (IS ST, [ AN
Normalisation, Visualisation
scend Q 101083/gigascienceigiz087- 10, 1104207704 . chLa Cell Cycle, Clustering, Differential Expression, Dimensionality Reduction,

Gene Filtering, Normalisation, Quality Control, Visualisation

R
500
% 52.6%
=]
= 30.0%
400 o
<4}
; 3
= c
5 300 g
é &
=2 200
C++
100 8.99% MATLAB
0,
6.9% Other

https://www.scrna-tools.org/




PanglaoDB is a database for the scientific community interested in
exploration of single cell RNA sequencing experiments from mouse and
human. We collect and integrate data from multiple studies and present
them through a unified framework.

Usage examples

® Run a gene search for SOX2 or PECAM1

* Browse the full list of samples

* Explore the list of cell type markers for Schwann cells

* Browse cell types of the mouse retina

* Look at the expression of CRX in photoreceptor cells

» Find cell clusters where both PECAMI and VCAMI are expressed
using a boolean search with the 'and” operator

* Find quiescent neural stem cells using AND+NOT

How to cite

Oscar Franzén, Li-Ming Gan, Johan L M Bjérkegren, PanglaoDB: a web
server for exploration of mouse and human single-cell RNA sequencing
data, Database, Volume 2019, 2019, baz046,
doi:10.1093/database/baz046

What is single cell RNA sequencing?

Adapted from the Wikipedia article on the topic: Single cell RNA
sequencing examines the transcriptomes from individual cells with
optimized next generation sequencing technologies, providing a higher
resolution of gene expression and a better understanding of the function of
an individual cell in the context of its microenvironment.

Single cell Databases: PanglaoDB

Database statistics

Mus musculus Homo sapiens

Samples 1063 305
Tissues @ 184 74

Cells @ 4459768 1,126,580
Clusters @ 8,651 1,748

Dataset of the day
Take a closer look at the cellular composition of Ventral striatum, using a
dataset which consists of 7663 cells. Clustering of this dataset resulted in

21 cell clusters, containing among others, Oligodendrocytes.

News

Updated the 2d view for data sets (now colors by cell type
and not by cluster and colors are consistent across data sets). For
example, see this data set.

SRR LAY Acdded more markers for Tanycytes.
YRR IR Added markers for Chromaffin cells.

Markers for an additional cell types added: meet the
sebocyte.
Added sensitivity and specificity to the marker list (shown

separately for mouse and human).

https://panglaodb.se/index.html



https://panglaodb.se/index.html

Single cell Databases: Allen Brain Institute

ALLEN BRAIN MAP < Cell Types Database: RNA-seq

Human - Multiple Cortical Areas Transcriptomics Explorer

Visualizations: t-SNE Color By: Gene Expression Gene: ADARB2

http://celltypes.brain-map.org/rnaseq



http://celltypes.brain-map.org/rnaseq

Contacts

Design of Experiment

- Susan Knoblach - SKnoblach@childrensnational.org

- CRI Bioinformatics Unit - https://cri-datacap.org/surveys/?s=3EJP7L8PLK
Cell Isolation and sample preparation

- Karuna Panchapakesan - KPanchapakesan@childrensnational.org
Using 10x system

- Karuna Panchapakesan - KPanchapakesan@childrensnational.org
Sequencing

- Susan Knoblach - SKnoblach@childrensnational.org
Bioinformatics

- Payal Banerjee - pbanerjee@childrensnational.org

- Surajit Bhattacharya - sbhattach2@childrensnational.org
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