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Yield stability analysis reveals 
sources of large-scale nitrogen  
loss from the Us Midwest
Bruno Basso  1,2,3, Guanyuan shuai1, Jinshui Zhang4,1 & G. Philip Robertson  2,3,5

Loss of reactive nitrogen (N) from agricultural fields in the U.S. Midwest is a principal cause of the 
persistent hypoxic zone in the Gulf of Mexico. We used eight years of high resolution satellite imagery, 
field boundaries, crop data layers, and yield stability classes to estimate the proportion of N fertilizer 
removed in harvest (NUE) versus left as surplus N in 8 million corn (Zea mays) fields at subfield 
resolutions of 30 × 30 m (0.09 ha) across 30 million ha of 10 Midwest states. On average, 26% of 
subfields in the region could be classified as stable low yield, 28% as unstable (low yield some years, 
high others), and 46% as stable high yield. NUE varied from 48% in stable low yield areas to 88% in 
stable high yield areas. We estimate regional average N losses of 1.12 (0.64–1.67) Tg N y−1 from stable 
and unstable low yield areas, corresponding to USD 485 (267–702) million dollars of fertilizer value, 79 
(45–113) TJ of energy, and greenhouse gas emissions of 6.8 (3.4–10.1) MMT CO2 equivalents. Matching 
N fertilizer rates to crop yield stability classes could reduce regional reactive N losses substantially with 
no impact on crop yields, thereby enhancing the sustainability of corn-based cropping systems.

Reactive nitrogen loss to the environment is one of the most widespread and recalcitrant environmental problems 
in major crop-producing regions of the world today. It is especially problematic in those areas where N fertilizer 
is used extensively, such as the United States, China, and Europe1–4, and leads to coastal5 and surface water6 
eutrophication, ground water contamination7, elevated rates of N deposition from gaseous emissions of NH3 
and NOx

8, atmospheric greenhouse gas loading9, and stratospheric ozone depletion10. The ~110 Tg of N fertilizer 
applied annually to crops11, often in excess of plant requirements3,12,13, is almost twice that entering the biosphere 
during pre-industrial times14. Future reactive N losses from excessive N fertilizer use will be further exacer-
bated by rising demands for food and other agricultural products as global population and affluence increase15. 
Solutions to the imbalance between crop N requirements and the regional amount of N fertilizer applied have 
been elusive, in part because of the difficulty of linking large scale effects to small scale practices16.

The pressure on farmers to increase crop yields for greater economic return often leads to excessive N fer-
tilizer application, despite its economic and environmental cost1,17–19. In most of the world, fertilizer is applied 
uniformly at the beginning of a cropping season in anticipation of high yields and efficient use, even though 
farmers recognize that yields and N use will be neither uniform nor necessarily efficient in any given year, and that 
fertilizer not taken up by crops will be lost from fields, thereby lowering profits and harming the environment.

Ideally, N application rates should vary across fields to match the well-known variability of crop growth condi-
tions, which are largely a function of soil, weather, and position in the landscape20,21. However, applying fertilizer 
at variable rates across fields (called precision agriculture) is challenging because precision agriculture requires a 
detailed understanding of subfield variability and the relationship of this variability to weather and crop growth12. 
For more than a decade gains in N fertilizer use efficiency (and associated gains in environmental protection) 
were hoped to be achieved through precision N management, but that promise has yet to be realized.

In large part this is because current use of variable rate technologies is low even in technologically advanced 
countries like the U.S. due to the complexity of converting geospatial information on soil and plant status into 
appropriate crop management information, and as well to low economic returns based on current application 
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practices22–24. In 2012 yield mapping was used on about half of U.S. corn and soybean farms but variable rate 
application technology, whether for seeds, pesticides, lime, or fertilizers, on only 16–26% in aggregate25.

Here we provide a novel remote sensing approach to derive fine-scale yield stability classes that respond dif-
ferentially to N fertilizer based on historical yield performance. Using non-commercial widely available remote 
sensing imagery, we quantify the spatial and temporal variability of corn and soybean yields based on in-season 
growth patterns and provide for subfield areas a partial N balance for corn years, calculated as N fertilizer addi-
tion less plant harvest N removal. This value, a form of N use efficiency (the fraction of N input harvested as 
product), sometimes defined as N recovery efficiency or nitrogen partial factor productivity13,18,19,26–29, provides 
a conservative estimate of the amount of N fertilizer not used by the crop and thereby unnecessarily lost from the 
system, subsequently providing an estimate of the monetary and environmental savings that could be realized by 
more precise application of N fertilizers using available geospatial technologies at the subfield scale.

Results
Figure 1 shows subfield yield stability classes for each field in the region planted with corn or soybean for at least 
three years of the eight-year study period, including fields planted continuously to corn, to corn-soybean, or 
(infrequently) more complex rotations. Croplands that did not meet this three-year requirement appear as white 
pixels in figures. Examination of county and section-level subregions (e.g., Fig. 1B,C, Table 1) shows remarkably 
high yield variation for a region with yields often considered uniformly stable and high. On average, 46% of the 
cropland analyzed had stable high yields, 26% stable low yields, and 28% unstable yields (Table 1).

There were remarkably few differences among states with respect to the proportion of areas in each class. 
Stable high yield areas constitute 38–52% of total corn and soybean cropland across these states, with the highest 
proportions in Wisconsin, Iowa, Minnesota, and the Dakotas (Table 1)—all located in the northwest portion of 
the region. Likewise, the proportion of land in the low stability class was between 19 and 31% among all states, 

Figure 1. Crop yield stability maps for (A) ten U.S. Midwest states and subregions of (B) 10,000 km2, (C) 196 km2, 
and (D) 118 ha. Colors represent yield stability areas for 0.09 ha portions of fields planted to corn or corn-soybean 
for at least three years during 2010-2017 (~30 Mha total).

State Area (ha)

Percentage of area (%)*
Unstable area yield 
class (%)

Stable high 
yield

Stable low 
yield

Unstable 
yield

High 
yield

Low 
yield

Illinois 6,516,484 47 (±7) 30 (±5) 23 (±8) 64 36

Indiana 3,153,424 41 (±7) 25 (±4) 34 (±10) 64 36

Iowa 7,497,549 51 (±8) 31 (±8) 19 (±14) 69 31

Michigan 121,673 38 (±11) 24 (±10) 38 (±17) 64 36

Minnesota 3,894,599 51 (±8) 23 (±6) 26 (±11) 67 33

Missouri 1,414,243 41 (±10) 29 (±8) 30 (±15) 61 39

North Dakota 704,829 50 (±13) 19 (±12) 31 (±14) 67 33

Ohio 1,830,759 42 (±8) 27 (±7) 31 (±13) 62 38

South Dakota 2,064,051 51 (±14) 22 (±11) 28 (±19) 68 32

Wisconsin 867,204 52 (±5) 31 (±3) 16 (±5) 68 32

Average 46 26 28 65 35

Table 1. State-level yield stability trends for 2010–2017. *Numbers after ± are the standard deviation values 
calculated from county-level stability statistics.
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with unstable areas constituting the remaining 16–38% of total corn and soybean cropland, with the highest pro-
portions in Michigan, Indiana, and Ohio—the easternmost states in the region.

We combined estimates of yield with fertilizer application rates based on the USDA ARMS survey30 and 
university-based recommendations (see Methods). N fertilizer rates from ARMS (Table S1), not including 
manure inputs, averaged 160 (±24 SD) kg N ha−1 yr−1 across the 10 states, ranging from 117 to 197 kg N ha−1 yr−1.  
These values are self-reported by farmers and lower than university recommendations, and thus provide a con-
servative, likely minimum fertilizer rate for corn.

University-based N fertilizer recommendations are based on the maximum return to nitrogen (MRTN) data-
base for most states in the region31. MRTN rates are ~10% higher than those reported in the ARMS survey and 
range from 129 to 209 kg N ha−1 yr−1 (Table 2), for an average rate of 177 (±27 SD) kg N ha−1 yr−1. Farmers in 
general17 and U.S. farmers specifically32 more often use N fertilizer recommendations from fertilizer and seed 
dealers than from university extension, and when used, MRTN rates are commonly used as starting points for 
N rate decisions. We thus set our maximum range to 20% greater than local MRTN values to obtain a plausible 
bracketing.

Using our remotely sensed based crop yields and estimated N fertilizer rates, we calculated average annual N 
uptake, NUE, and surplus N loss for each stability class (Table 2). Estimated reactive N losses (surplus N) from 
stable high yield areas ranged from none (indicating the partial use of another source of N such as manure or 
residual N fixed by soybeans in corn-soybean rotations) to 142 kg N ha−1 y−1. Annual N losses from stable high 
yield areas averaged only 51 kg N ha−1 (Table 2). In contrast, estimated average N losses from stable low yield areas 
were 83 kg N ha−1 (63% higher), and unstable yield areas had intermediate N losses of 63 kg N ha−1. NUE varied 
correspondingly (Table 2), from an average of 76% for high yield areas to 57% for low yield areas. In unstable 
subfield areas NUE averaged 70%.

We estimate that over-fertilization of stable low yield areas every year and of unstable areas in low yielding 
years costs farmers in the region ~USD 485 (267–702) million per year in unused N fertilizer lost to the envi-
ronment (Table 3). The global warming impact of this N is also significant: Based on the CO2 cost of N fertilizer 
manufacturing plus direct9 and indirect33 nitrous oxide (N2O) emissions from the N fertilizer applied—one of the 
largest sources of global warming impact in cropping systems34—we estimate that 6.8 (3.4–10.1) MMT of CO2 
equivalents are emitted to the atmosphere from excessive N fertilization (Table 3).

All told, then, we estimate (Table 3) that ~1155 (636–1673) Gg N is unnecessarily lost from low yielding 
stable plus low yielding unstable areas in the region annually. Losses would be even higher in years with very 
unfavorable growing conditions, such as 2012 when most unstable areas had low yields. At a small watershed 
scale, county-level surface water nitrate concentrations from USGS6 appear well correlated with N loss patterns 
predicted by crop stability classes (Fig. S5).

Discussion
Stable high yield subfield areas made up 46% of corn-soybean cropland in the 10 Midwest states analyzed here 
and appear to utilize fertilizer N much more efficiently than low yield areas, which appeared incapable of sup-
porting crop growth at a level sufficient to utilize the majority of the N applied. As a result, stable low yielding 
areas appeared to contribute most of the reactive N lost to the environment (~44%), with another 31% lost from 
unstable yield areas in years with low yields (Tables 1, 2, S2). The cost of this lost N is substantial, both to farmers 
in terms of the monetary value of unused fertilizer N and to society in terms of reactive N that pollutes aquifers, 
inland and coastal surface waters, and as well adds to the atmosphere’s greenhouse gas burden.

All states had a similar proportion of stable high yield subfield areas (38–52%) and stable low yield areas (19–
31%), though there appeared to be a greater percentage of unstable areas in eastern states. This greater percentage 
may be due to a greater proportion of fields in eastern states with shallower soils and rolling terrains, which create 
greater dependence on rainfall amounts and distributions compared to prairie states like Iowa and Minnesota, 

State
Fertilizer 
N Rate

Harvested N Surplus N NUE

Stable 
High

Stable 
Low Unstable

Stable 
High

Stable 
Low Unstable

Stable 
High

Stable 
Low Unstable

IL 179–229 145 108 131 34–84 71–121 48–98 63–81 47–60 57–73

IN 168–251 135 99 122 33–116 69–152 46–129 54–80 39–59 49–73

IA 152–208 148 115 138 4–60 37–93 14–70 71–97 55–76 66–91

MI 143–198 131 95 118 12–67 48–103 25–80 66–92 48–66 60–83

MN 154–212 145 115 135 9–67 39–97 19–77 68–94 54–75 64–88

MO 189–260 118 85 105 71–142 104–175 84–155 45–62 33–45 40–56

ND 137–190 111 83 102 26–79 54–107 35–88 58–81 44–61 54–74

OH 155–234 136 100 122 19–98 55–134 33–112 58–88 43–65 52–79

SD 134–182 118 89 109 16–64 45–93 25–73 65–88 49–66 60–81

WI 111–155 132 100 122 0–23 11–55 0–33 85–119 65–90 79–110

Total Average 152–212 132 99 120 22–80 53–113 33–92 63–88 48–66 58–81

Table 2. N removed by harvest, N fertilizer surplus, and apparent N use efficiency (NUE) within yield stability 
classes. Values are for corn in stable high yield, stable low yield, and unstable yield areas by US state. All values 
are kg N ha−1 y−1 except NUE is kg grain N kg−1 N fertilizer.
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which in general have deeper soils and greater soil water availability. Unstable areas were high yielding 65% of the 
time, on average (Table 1).

Nitrogen fertilizer recommendations based on yield stability class could thus provide substantial N savings. 
How practical might such recommendations based on crop yield stability classes be in reality? Non-commercial 
satellite imagery sufficient to generate NDVI-based yield stability maps is available for most if not all fields in the 
U.S., and most grain farmers also have access to harvest combine monitors that can produce annual yield maps 
for individual fields with even greater precision than satellite imagery. Once stable low yield areas are identified, 
N fertilizer rates could be adjusted downward to match consistently low crop yields in those areas and thereby 
reduce both economic costs and environmental harm35,36. Variable rate technology for N fertilizer application is 
readily available on commercial market24. In unstable yield areas, a modeling-based strategy that, at the time of 
fertilization, incorporates recent and projected weather could be used to better match N fertilizer rates to that 
year’s expected crop needs mid-season36.

Our estimated cost savings for avoided fertilizer use covers only the monetary value of lost fertilizer, and 
thus represents only one facet of a full economic analysis that must also include, at the farm scale, the costs of 
equipment, labor, and information handling, and at the societal scale, the costs of environmental degradation and 
mitigation. The absolute economic savings, while likely significant, are thus uncertain.

However, our analysis applies only to N fertilization. Performing this analysis for other inputs such as phos-
phorus, lime, seeds, herbicides, and labor may show that stable low yielding areas are not only environmentally 
vulnerable but are also economically unprofitable35,36. In such cases it may be that these areas are better planted to 
conservation strips37 or, in the future, to perennial biofuel crops38–40.

There are several other sources of uncertainty in our analysis. Perhaps the greatest is our estimate of farmer 
N fertilizer use. Because there are no verifiable sources of reliable N application rates in the U.S., we used a range 
bracketed by the ARMS survey of self-reported rates for minimum likely values and university recommended 
rates plus 20% for likely maximum values. We believe this provides a reasonable, conservative estimate of likely 
minimum and maximum fertilizer rates used by farmers. Estimates of NUE (Table 2), however, suggest that even 
these fertilizer estimates are too conservative insofar as our NUE estimates are higher than those reported for 
field studies26. If so, then we might expect NUE for low yielding areas to be <50%, with correspondingly higher N 
losses. The relative importance of different yield stability classes, however, should remain unchanged.

Another source of uncertainty is our assumption that farmers apply N fertilizer at similar rates to all fields 
cropped similarly. Direct evidence for this is lacking, but we infer that this is mostly the case from very low coef-
ficients of variation for farmer-reported N fertilizer rates in the ARMS survey30 (Table S1).

And finally, uncertainties in yield stability validation, while low (Fig. S1), stem from mismatched resolutions 
between yield monitor data (2 m) and our satellite-based approach (30 m), and by the fact that much more spatial 
variation is captured using high-resolution yield monitor data from harvesters at their finer resolution. The time 
interval between the availability of NDVI imagery and yield monitor data can introduce additional error.

Multiple approaches are needed to address the widespread problem of excess agricultural N in the environ-
ment1,3. Within41–43 and edge of field37,44,45 remediation measures as well as 4R type approaches46 to improving 
fertilizer use efficiency offer promise for reducing the environmental burden of agricultural N use. Variable rate 
N fertilizer application based on subfield yield stability as described here provides an additional, nonexclusive 
means for meeting environmental goals thus far difficult to achieve.

Methods
Cropland data layers (CDL). CDLs are annual raster-format land-use maps created by the USDA National 
Agricultural Statistics Service (NASS) (www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php).  
In 2006, CDLs had a spatial resolution of 56 m and land-use categories were based on the Landsat 5 TM, Landsat 
7 Enhanced Thematic Mapper (ETM+), the Indian Remote Sensing RESOURCESAT-1 (IRS-P6), and Advanced 

State
Surplus N Loss 
(Gg y−1)

Monetary Value 
(million USD y−1)

Embedded Energy 
(106 GJ y−1)

CO2eq Emissions 
(Mt y−1)

IL 192–380 80.6–159.5 13.4–26.6 1.2–2.3

IN 88–241 36.9–101.1 6.1–16.9 0.5–1.5

IA 87–304 36.6–127.6 6.1–21.3 0.5–1.8

MI 6–17 2.3–7.0 0.4–1.2 0.0–0.1

MN 57–204 23.9–85.8 4.0–14.3 0.3–1.2

MO 72–132 30.3–55.6 5.0–9.3 0.4–0.8

ND 35–85 14.7–35.7 2.6–5.9 0.2–0.5

OH 40–133 16.7–55.8 2.8–9.3 0.2–0.8

SD 51–134 21.3–56.1 3.5–9.3 0.3–0.8

WI 8–43 3.6–18.1 0.6–3.0 0.1–0.3

Total Average 1155 (636–1673) 485 (267–702) 78.8 (45–113) 6.8 (3.5–10.1)

Table 3. Surplus fertilizer N loss from stable and unstable low yield areas and its monetary value, embedded 
energy, and associated CO2-equivalent emissions. Embedded energy refers to the energy cost of producing 
surplus N. CO2-equivalents are greenhouse gas emissions during fertilizer manufacture plus nitrous oxide 
emissions from applied fertilizer. The N fertilizer price used in this study is the 2017 price of 210 USD/MT.
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Wide Field Sensors (AWiFS). Since 2008, the CDLs utilized Landsat TM/ETM + and AWiFS imagery for produc-
tion of a 30 m product covering the continental US. For our study period CDLs were processed using the Albers 
Equal-Area Conic Projection with the North American Datum 1983 (NAD83); we re-projected from Albers to 
the dominant Universal Transverse Mercator (UTM) zone with a spheroid and datum of World Geodetic System 
1984 (WGS84). We used CDL data to extract fields in the study area that grew either corn or soybeans.

Satellite Data. We acquired Google Earth Engine Landsat 5, 7, and 8 images (30 m resolution) between 2010 
and 2017 that were consistent with CDL data. The projection of Landsat imagery is dominant UTM with a datum 
of WGS 84. In 2010 and 2011, Landsat 5 data were preferred due to the SLC failure in the Landsat 7 images. In 
2012, only Landsat 7 was used, and the gaps were filled by applying a medium-kernel to the Landsat 7 SLC-off 
images. For 2013–2017, Landsat 8 data was used as the main source, supplemented by Landsat 7 images. For each 
growing season, Landsat images during the last two weeks of July were preferred to represent variation in crop 
growth as there is a high correlation between NDVI and crop yield during this period47. While other satellite 
imagery is also available, NASA Landsat provides the longest continuous quality-assured record at the appropri-
ate scale for subfield analysis.

Areas with cloud cover were replaced with clear pixels from images collected during adjacent periods. Two 
thresholds were applied to identify cloudy pixels: one threshold of 0.2 was applied to the near infrared (nir) band 
and another threshold of 1 to the simple cloud-likelihood score image, an internal index in Google Earth Engine 
derived using a combination of brightness, temperature, and normalized difference snow index (NDSI). After 
replacing cloudy areas, one composite Landsat image covering ten states was created for each year. The NDVI 
image was then calculated using Red and Nir bands of this composite image48.

Common Land Unit (CLU). The CLU data layer is a standardized Geographic Information System (GIS) 
layer that characterizes the smallest unit of land with a permanent contiguous boundary and common land cover 
and management. The CLU was established by the USDA Farm Service Agency (FSA) to map the nation’s farm 
fields, rangeland, and pastureland at a confidence level of 90% with a tolerance of 3 m from ground features visible 
in the imagery (https://datagateway.nrcs.usda.gov/). This layer is used to implement farm service programs such 
as crop monitoring, insurance, and disaster assistance. We used the CLU polygons as the spatial boundary for 
within-field yield variability analysis. The spatial reference of the CLU layer is UTM dominant zone with a datum 
of NAD83. We converted the original NAD83 datum into WGS84 to keep consistent with other data sources.

NASS statistics. County-level corn and soybean yields were obtained by USDA NASS49, and farmer-reported 
N application rates to corn were provided by the ERS ARMS30.

N fertilizer rate. Nitrogen fertilizer application rates for individual fields are not directly represented in 
USDA or other databases. We thus estimated application rates by two independent measures. First are rates 
reported by farmers in the 2016 USDA Agricultural Resource Management Survey (ARMS) of corn farmers30. 
This survey, conducted on a 5-year cycle for each major commodity, is based on in-person interviews with farm-
ers (1209 farmers in the 10 states covered in our analysis), and we use reported average rates, with variation 
among rates within states to provide a measure of uncertainty, for all fields within a county.

The second measure was constructed from university-based recommendations. For six states in the region 
university extension recommendations are based on the Maximum Return to Nitrogen (MRTN) calculator 
(http://cnrc.agron.iastate.edu/About.aspx)31. The MRTN calculator determines an average economically optimal 
corn N fertilizer rate for fields within IL, IA, MI, MN, OH, and WI based on thousands of research trials con-
ducted for corn following corn and corn following soybean rotations. Because calculator values are generally used 
to define a baseline value for any given field, with actual fertilizer recommendations rates usually greater than 
MRTN calculated values, the calculator provides a second conservative estimate of fertilizer use in the region.

We used the MRTN calculator to estimate optimal fertilizer rates using a common 1:10 price ratio of corn 
and N fertilizer (USD 4/bu and USD 0.42/lb, respectively, equivalent to USD 157/MT and USD 210/MT, respec-
tively)31. For states where MRTN data were not available, we used ARMS rates plus 10.3%, the average difference 
between MRTN and ARMS rates for all states with both data available. We held the amount of applied N constant 
from 2010 to 2017.

Crop residues are assumed to be recycled internally and to not accumulate or increase SOM, thus they are not 
considered here.

NDVI Stability Classes. Crop yield stability classes have long been used to create management zones within 
the field based on inter-annual yield variation47,50–53. Typically, data are collected from georeferenced yield mon-
itor systems mounted on harvesters, with yield stabilities resolved to few m2.

We estimated yield stabilities in the absence of high-resolution yield monitor data by analyzing year-to-year 
variability of satellite-derived NDVI for 0.09 ha subfield areas within individual fields. We used eight years of 
available imagery and CDL data to determine how a given 30 × 30 m subfield pixel changed from year to year 
relative to the mean NDVI for the entire field. This analysis was performed to determine areas that had, over the 
studied years, (1) consistently higher NDVI compared to the mean NDVI of the field (high & stable yields, SH), 
(2) a consistently lower NDVI (low & stable yields, SL), or (3) an inconsistent (lower some years, higher others) 
NDVI (unstable yields, U).

For the ith year, the average NDVI value of the jth CLU polygon was calculated and all pixels within this 
polygon were classified into two types (higher than average of the field and lower than average of the field for a 
given year):
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where n and k indicate the total number of pixels and kth pixel in the jth polygon. rNDVI is relative NDVI, and 
snNDVI is the spatially normalized NDVI for a given year.

We then determined the temporal variation of snNDVI expressed as degree of stability, or tnNDVI (tempo-
rally normalized NDVI). We calculated year-by-year variation for each corn and soybean pixel and then classified 
each pixel as stable high, stable low, or unstable NDVI, using the following equations:
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Stable high NDVI pixels were identified where the pixelwise NDVI over the eight years was always greater 
than the average of the field with a tnNDVI less than 0.15. Stable low NDVI pixels were identified where the mean 
NDVI for each pixel for the eight years was always lower than the average of the field with a tnNDVI less than 
0.15. Unstable areas were identified where the tnNDVI was greater than 0.15.

Yield and N Uptake Estimates. We estimated subfield yields by deconvoluting observed USDA NASS 
county-level yields for any given year into high and low yield areas using equations (1–3) based on their respective 
NDVI values to maintain the proportionality of differences among NDVI using the following equations:
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where Areahigh j,  and Arealow j,  indicated the acreage of high and low NDVI areas, respectively. NDVIhigh j,  and 
NDVIlow j,  are mean NDVI values for area. We directly assigned the county-level yield to Yieldi j,  based on the 
assumption that summed crop yields for all fields within a county are equal to the county-level yield.

Grain N uptake (NUP) was determined by multiplying yield by grain N percent (1.2%)54,55. Residues are 
assumed to be retained on the soil and decomposed. NUE, defined as kg grain kg−1 N applied assuming no 
change in total soil N26, was derived by dividing grain N uptake (NUP) by N applied (Napp).

=NUE NUP N/ (9)app

Nitrogen Balance Calculations. Estimated N loss for a given subfield area was calculated as the difference 
between N fertilizer applied and grain N output for a given year3,13,19. Grain N output was calculated as yield × N 
content; modern grain varieties have a remarkably consistent grain N content of 1.2%54,55.

Our partial N calculation assumes stable internal stores of N (as soil organic matter including crop residue), 
since any increase in internal storage might otherwise be mis-attributed to N loss. Soil organic matter is known 
to be stable or declining across the US Midwest except where permanent no-till or cover crops are present (low 
single digit percentages of cropland56–58), so we expect no regional changes in soil organic matter that would 
significantly reduce our loss estimates. Our calculation also assumes there are no significant changes in other N 
inputs across the region. Nitrogen inputs additional to fertilizer in these systems include atmospheric N depo-
sition and N fixed by a prior soybean crop. We do not include either in our analysis because both are negligible 
(<10 kg N ha−1 yr−1) in comparison to the amount of N fertilizer used, and their inclusion would in any case 
increase rather than decrease our estimates of N loss. Thus their exclusion makes our environmental loss term 
even more conservative.

https://doi.org/10.1038/s41598-019-42271-1
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We do not differentiate between hydrologic and gaseous losses of N except to estimate the amount of nitrous 
oxide (N2O) emissions (both direct and indirect) from added fertilizer, calculated using IPCC emission factors59.

Monetary value and Environmental losses. Direct monetary value and environmental losses were cal-
culated as:

= . ×USD Loss USD ha USD kg NLoss( / ) 0 42 / (10)

Energy Loss MJ ha MJ kg NLoss( / ) 70 / (11)= ×

CO equivalent kg ha NLoss( / ) 6 04 (12)2 = × .

The monetary value of lost fertilizer N is based on the 2017 fertilizer value of USD 210 USD/MT (0.42 USD 
per kg N). The coefficients used in equation 11 and 12 were obtained from59,60.

Yield Stability Validation. We verified yield estimates (at 30 m resolution) for corn and soybean against 
data from combine harvester monitors (at 2 m resolution) for 508 corn fields across the region (Fig. S1–4). Most 
fields were in a corn and soybean rotation for at least 3 years. Yield data were collected from combine harvesters 
equipped with yield monitors and recorded as point data at a 2 m interval for each row. Stability maps were gener-
ated from yield monitor data using the same procedure as for NDVI images. Comparisons of our calculated yield 
stability classes vs. high resolution yield monitor data for the 508 fields are given in Figs S1–S3.

References
 1. Robertson, G. P. & Vitousek, P. M. Nitrogen in agriculture: Balancing the cost of an essential resource. Annual Review of Environment 

and Resources 34, 97–125, https://doi.org/10.1146/annurev.environ.032108.105046 (2009).
 2. Vitousek, P. M. et al. Nutrient imbalances in agricultural development. Science 324, 1519–1520 (2009).
 3. Lassaletta, L. et al. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, 

trade, and dietary demand. Environmental Research Letters 11, 095007 (2016).
 4. Mueller, N. D. et al. Declining spatial efficiency of global cropland nitrogen allocation. Global Biogeochemical Cycles 31, 245–257 

(2017).
 5. Howarth, R. et al. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. 

Frontiers in Ecology and the Environment 9, 18–26 (2011).
 6. Van Metre, P. C. et al. High nitrate concentrations in some Midwest United States streams in 2013 after the 2012 drought. Journal of 

Environmental Quality 45, 1696–1704 (2016).
 7. Nolan, B. T., Ruddy, B. C., Hitt, K. J. & Helsel, D. R. Risk of Nitrate in groundwaters of the United States a national perspective. 

Environmental Science & Technology 31, 2229–2236 (1997).
 8. Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462, http://www.nature.com/nature/journal/v494/n7438/

abs/nature11917.html#supplementary-information (2013).
 9. Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to 

fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America 111, 9199–9204 (2014).
 10. Ravishankara, A., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st 

century. Science 326, 123–125 (2009).
 11. FAO (Food and Agriculture Organization of the United Nations). World fertilizer trends and outlook to 2020: Summary report. 

(FAO, Rome, http://www.fao.org/3/a-i6895e.pdf 2017).
 12. Cassman, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO: A 

Journal of the Human Environment 31, 132–140 (2002).
 13. Conant, R. T., Berdanier, A. B. & Grace, P. R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world 

agriculture. Global Biogeochemical Cycles 27, 558–566 (2013).
 14. Vitousek, P. M., Menge, D. N., Reed, S. C. & Cleveland, C. C. Biological nitrogen fixation: rates, patterns and ecological controls in 

terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20130119 (2013).
 15. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proceedings of the 

National Academy of Sciences of the United States of America 108, 20260–20264 (2011).
 16. Stuart, D. et al. The need for a coupled human and natural systems understanding of agricultural nitrogen loss. BioScience 65, 

571–578 (2015).
 17. Pannell, D. J. Economic perspectives on nitrogen in farming systems: managing trade-offs between production, risk and the 

environment. Soil Research 55, 473–478, https://doi.org/10.1071/SR16284 (2017).
 18. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51 (2015).
 19. Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363 (2018).
 20. Kravchenko, A. N., Robertson, G., Thelen, K. & Harwood, R. Management, topographical, and weather effects on spatial variability 

of crop grain yields. Agronomy Journal 97, 514–523 (2005).
 21. Basso, B. et al. Landscape position and precipitation effects on spatial variability of wheat yield and grain protein in Southern Italy. 

Journal of Agronomy and Crop Science 195, 301–312 (2009).
 22. Babcock, B. A. & Pautsch, G. R. Moving from uniform to variable fertilizer rates on Iowa corn: Effects on rates and returns. Journal 

of Agricultural and Resource Economics 23, 385–400 (1998).
 23. Liu, Y., Swinton, S. M. & Miller, N. R. Is site-specific yield response consistent over time? Does it pay? American Journal of 

Agricultural Economics 88, 471–483 (2006).
 24. Schimmelpfennig, D. Farm profits and adaption of precision agriculture. Report No. ERR-217, (U.S. Department of Agriculture, 

Economic Research Service, www.ers.usda.gov/publications/err-economic-research-report/err217 2016).
 25. Schimmelpfennig, D. Farm profits and adoption of precision agriculture. (United States Department of Agriculture, Economic 

Research Service, 2016).
 26. Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J. & van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: retrospects and 

prospects. Advances in Agronomy 87, 85–156 (2005).
 27. Chen, X.-P. et al. Integrated soil–crop system management for food security. Proceedings of the National Academy of Sciences 108, 

6399–6404 (2011).
 28. Zhang, W.-f. et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the 

National Academy of Sciences of the United States of America 110, 8375–8380, https://doi.org/10.1073/pnas.1210447110 (2013).

https://doi.org/10.1038/s41598-019-42271-1
https://doi.org/10.1146/annurev.environ.032108.105046
http://www.nature.com/nature/journal/v494/n7438/abs/nature11917.html#supplementary-information
http://www.nature.com/nature/journal/v494/n7438/abs/nature11917.html#supplementary-information
http://www.fao.org/3/a-i6895e.pdf
https://doi.org/10.1071/SR16284
http://www.ers.usda.gov/publications/err-economic-research-report/err217
https://doi.org/10.1073/pnas.1210447110


8Scientific RepoRts |          (2019) 9:5774  | https://doi.org/10.1038/s41598-019-42271-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

 29. Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: 
the relationship between yield and nitrogen input to cropland. Environmental Research Letters 9, 105011 (2014).

 30. ERS (Economic Research Service). Agricultural Resource Management Survey (ARMS), 2016).
 31. Sawyer, J. et al. Concepts and rationale for regional nitrogen rate guidelines for corn. Iowa State University (2006).
 32. Stuart, D., Schewe, R. & McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: 

Understanding farmer decision-making and potential barriers to change in the US. Land use policy 36, 210–218 (2014).
 33. Beaulieu, J. J. et al. Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of 

Sciences of the United States of America 2010, 11464 (2010).
 34. Robertson, G. P., Paul, E. A. & Harwood, R. R. Greenhouse gases in intensive agriculture: contributions of individual gases to the 

radiative forcing of the atmosphere. Science 289, 1922–1925 (2000).
 35. Basso, B. et al. Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Science of the 

Total Environment 545, 227–235 (2016).
 36. Basso, B., Ritchie, J. T., Cammarano, D. & Sartori, L. A strategic and tactical management approach to select optimal N fertilizer rates 

for wheat in a spatially variable field. European Journal of Agronomy 35, 215–222 (2011).
 37. Schulte, L. A. et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. 

Proceedings of the National Academy of Sciences of the United States of America 114, 11247–11252 (2017).
 38. Robertson, G. P. et al. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science 356, eaal2324 

(2017).
 39. Brandes, E. et al. Targeted subfield switchgrass integration could improve the farm economy, water quality, and bioenergy feedstock 

production. GCB Bioenergy 10, 199–212, https://doi.org/10.1111/gcbb.12481 (2018).
 40. Davis, S. C. et al. Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the 

US. Frontiers in Ecology and the Environment 10, 69–74, https://doi.org/10.1890/110003 (2011).
 41. Roley, S. S., Tank, J. L., Tyndall, J. C. & Witter, J. D. How cost-effective are cover crops. wetlands, and two-stage ditches for nitrogen 

removal in the Mississippi River Basin? Water Resources and Economics 15, 43–56 (2016).
 42. Zhou, X., Helmers, M. J., Asbjornsen, H., Kolka, R. & Tomer, M. D. Perennial filter strips reduce nitrate levels in soil and shallow 

groundwater after grassland-to-cropland conversion. Journal of Environmental Quality 39, 2006–2015 (2010).
 43. Tonitto, C., David, M. & Drinkwater, L. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-

analysis of crop yield and N dynamics. Agriculture, Ecosystems & Environment 112, 58–72 (2006).
 44. Christianson, L. et al. Performance evaluation of four field-scale agricultural drainage denitrification bioreactors in Iowa. 

Transactions of the ASABE 55, 2163–2174 (2012).
 45. Jaynes, D. B. & Isenhart, T. M. Reconnecting tile drainage to riparian buffer hydrology for enhanced nitrate removal. Journal of 

Environmental Quality 43, 631–638 (2014).
 46. Bruulsema, T., Fixen, P. & Sulewski, G. 4R plant nutrition manual: A manual for improving the management of plant nutrition. 

International Plant Nutrition Institute (IPNI), Norcross, GA, USA (2012).
 47. Maestrini, B. & Basso, B. Predicting spatial patterns of within-field crop yield variability. Field Crops Research 219, 106–112, https://

doi.org/10.1016/j.fcr.2018.01.028 (2018).
 48. Rouse, J. W. Jr., Haas, R., Schell, J. & Deering, D. Monitoring vegetation systems in the Great Plains with ERTS (1974).
 49. NASS. Quick stats, https://www.nass.usda.gov/Quick_Stats/ (2017).
 50. Lark, R. Forming spatially coherent regions by classification of multi-variate data: an example from the analysis of maps of crop 

yield. International Journal of Geographical Information Science 12, 83–98 (1998).
 51. Basso, B., Bertocco, M., Sartori, L. & Martin, E. C. Analyzing the effects of climate variability on spatial pattern of yield in a 

maize–wheat–soybean rotation. European Journal of Agronomy 26, 82–91 (2007).
 52. Blackmore, S. The interpretation of trends from multiple yield maps. Computers and Electronics in Agriculture 26, 37–51 (2000).
 53. Maestrini B, Basso B. Drivers of within-field spatial and temporal variability of crop yield across the US Midwest Scientific Reports, 

8(1), 2045–2322.
 54. Boone, L., Vasilas, B. & Welch, L. The nitrogen content of corn grain as affected by hybrid, population, and location. Communications 

in Soil Science and Plant Analysis 15, 639–650 (1984).
 55. Ciampitti, I. A. & Vyn, T. J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and 

associated nitrogen efficiencies: A review. Field Crops Research 133, 48–67 (2012).
 56. Horowitz, J., Ebel, R. & Ueda, K. Vol. Economic Information Bulletin Number 70 (Economic Information Bulletin Number 70. U.S. 

Department of Agriculture, Economic Research Service, Washington, D. C., USA, 2010).
 57. NASS (National Agricultural Statistics Service). 2012 Census of Agriculture. (U.S. Department of Agriculture, Washington, D.C., 

USA, 2014).
 58. Baranski, M. et al. Agricultural Conservation on Working Lands: Trends From 2004 to Present. Report No. Technical Bulletin 

Number 1950, 127 (Washington, D. C. 2018).
 59. De Klein, C. et al. IPCC guidelines for national greenhouse gas inventories, Volume 4, Chapter 11: N2O emissions from managed 

soils, and CO2 emissions from lime and urea application. (Technical Report 4-88788-032-4, Intergovernmental Panel on Climate 
Change, 2006).

 60. Hood. C.F. & Kidder, G. Fertilizers and energy, Fact Sheet EES-58, November 1992, Florida Cooperative Extension Service, 
University of Florida (1992).

Acknowledgements
We thank E. Anderson of NASS for access to county-specific fertilizer rate variability information in the 
ARMS survey, and J.A. Andresen, J.W. Jones, T.G. Reeves, J.T. Ritchie, and anonymous reviewers for many 
insightful comments on earlier versions of the manuscript. Financial support was provided by USDA/NIFA 
(award 2015-68007-23133), the U.S. National Science Foundation’s Dynamics of Coupled Natural and Human 
Systems Program (award 1313677), the NSF Long-term Ecological Research Program (award 1637653), the 
U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (awards DE-
SC0018409 and DE-FC02-07ER64494), and Michigan State University AgBioResearch.

Author Contributions
B.B. conceived, and designed the study. B.B. and G.P.R. wrote the paper; B.B., G.S., J.Z. and G.P.R. analyzed the 
data. Correspondence and requests for materials should be addressed to B.B.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-42271-1.
Competing Interests: The authors declare no competing interests.

https://doi.org/10.1038/s41598-019-42271-1
https://doi.org/10.1111/gcbb.12481
https://doi.org/10.1890/110003
https://doi.org/10.1016/j.fcr.2018.01.028
https://doi.org/10.1016/j.fcr.2018.01.028
https://www.nass.usda.gov/Quick_Stats/
https://doi.org/10.1038/s41598-019-42271-1


9Scientific RepoRts |          (2019) 9:5774  | https://doi.org/10.1038/s41598-019-42271-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-42271-1
http://creativecommons.org/licenses/by/4.0/

	Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest

	Results

	Discussion

	Methods

	Cropland data layers (CDL). 
	Satellite Data. 
	Common Land Unit (CLU). 
	NASS statistics. 
	N fertilizer rate. 
	NDVI Stability Classes. 
	Yield and N Uptake Estimates. 
	Nitrogen Balance Calculations. 
	Monetary value and Environmental losses. 
	Yield Stability Validation. 

	Acknowledgements

	Figure 1 Crop yield stability maps for (A) ten U.
	Table 1 State-level yield stability trends for 2010–2017.
	Table 2 N removed by harvest, N fertilizer surplus, and apparent N use efficiency (NUE) within yield stability classes.
	Table 3 Surplus fertilizer N loss from stable and unstable low yield areas and its monetary value, embedded energy, and associated CO2-equivalent emissions.




