

A Case of COVID-19-Induced Takotsubo Cardiomyopathy Mimicking STEMI

Genevieve Ngo, MS2; Richa Tikaria, MD

Background

- Takotsubo cardiomyopathy (stress cardiomyopathy) is a transient systolic dysfunction of the left ventricle, typically triggered by emotional or physical stress⁵
- Mechanism: Caused by excessive catecholamine release causes myocardial stunning without infarction⁵
- Relevance:
- COVID-19 infection can act as both a physiological and emotional stressor, precipitating stress cardiomyopathy⁵
- A study of 1.65 million hospitalized COVID-19 patients found a 0.1% incidence of stress cardiomyopathy¹
- Clinical importance: often mimics acute coronary syndrome (STEMI) which can lead to unnecessary interventions if not recognized⁴

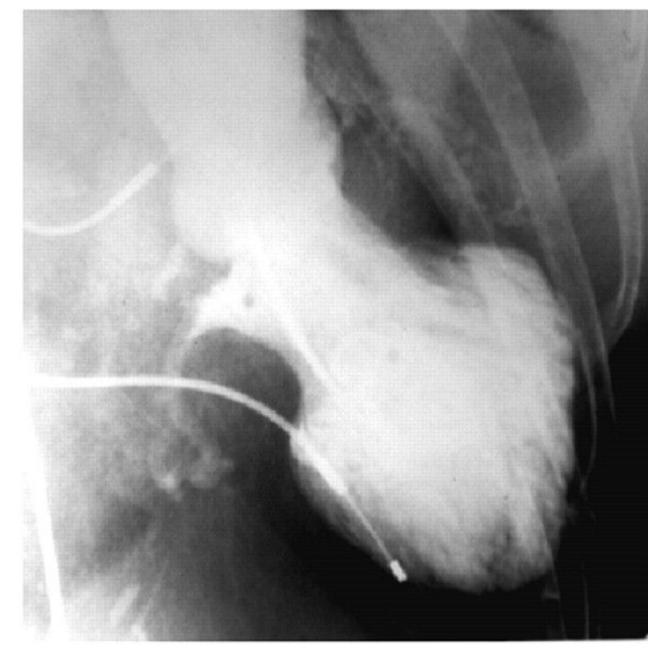


Figure 1. Typical findings for stress cardiomyopathy with apical ballooning Adapted from Prasad A et al., Circulation. 2008;118(25):2754–2762.

Case Presentation

- Patient: 82-year-old woman with no significant cardiac history
- Chief Complaint: Dyspnea on exertion lasting ~8 minutes and cough for 3 days
- Recent exposure: sick contact with husband; COVID-19 positive
- Initial findings:
 - Troponin uptrending from 63 to 3779 ng/L
 - BNP: normal
 - CXR: small pleural effusion
 - EKG: ST elevations in I/aVL (lateral leads) and ST depressions in III/aVF (inferior leads)
- Initial management
 - Started on heparin for presumed STEMI
 - Urgent cardiac catheterization demonstrated mild non-obstructive CAD
- Echocardiogram: reduced left ventricular ejection fraction with *apical akinesis, consistent with stress cardiomyopathy

Figure 2. EKG findings from the patient's stay during the emergency department

Blue = ST elevations

Red = ST depressions

Intervention

- COVID-19 treatment:
- Treated with Remdesivir and prednisone 6mg IV
- Required 1L nasal cannula O2, and was later weaned to room
- Cardiac management:
- Initially started on heparin for presumed STEMI, discontinued after catheterization results
- Began Cozaar 50mg and Toprol-XL 25mg, but later held due to hypotension
- Continued aspirin 81mg and statin 40mg
- LifeVest initiated for arrhythmia protection
- Planned for outpatient guideline-directed medical therapy (GDMT) during follow-up with cardiology for monitoring for heart failure or thromboembolic complications

Acknowledgements

 Thank you to Sparrow Hospital FIRM STATE team throughout my experience.

residents and Dr. Tikaria for your guidance and teaching

Discussion

- Pathophysiology:
- Catecholamine surge due to a large emotional/physiological stress.
- COVID-19 virus also causes direct viral myocardial injury via ACE2 receptors.²
- This leads to systemic inflammation and cytokine-mediated myocardial stunning.
- Clinical significance:
 - Presentation can mimic STEMI with similar EKG changes, a rise in troponin, shortness of breath, and chest discomfort⁴
 - Distinguishing features of stress cardiomyopathy include non-obstructive coronary arteries, apical ballooning pattern of ventricles on echocardiogram, and a modest troponin elevation relative to the degree of wall-motion abnormality⁵
- Hypotension in this case limited GDMT protocol but demonstrates the reduced contractility due to transient left ventricular akinesis¹

Conclusion

- COVID-19 induced stress cardiomyopathy can present similarly to STEMI but shows non-obstructive coronary findings on angiography⁴
- Diagnosis relies on combining clinical, EKG, echocardiographic and catheterization findings
- This case reinforces the importance of considering stress cardiomyopathy in COVID-19 patients presenting with acute coronary features
- Early recognition of COVID-19 as a potential trigger can initiate more accurate diagnosis and tailored management, improving patient outcomes¹

References

- Davis MG, Bobba A, Majeed H, Bilal MI, Nasrullah A, Ratmeyer GM, Chourasia P, Gangu K, Farooq A, Avula SR, Sheikh AB. COVID-19 With Stress Cardiomyopathy Mortality and Outcomes Among Patients Hospitalized in the United States: A Propensity Matched Analysis Using the National Inpatient Sample Database. Curr Probl Cardiol. 2023;48(5):101607.
- doi:10.1016/j.cpcardiol.2023.101607 2. Sharma T, Mansour M, Al-Emam AR, et al. Stress cardiomyopathy in patients with COVID-19 infection. Clin Cardiol J.
- 2021;5(2):1-3. El-Battrawy I, Santoro F, Stiermaier T, et al. COVID-19: A double threat to takotsubo cardiomyopathy and spontaneous
- coronary artery dissection? Int J Cardiol Heart Vasc. 2020;31:100638. doi:10.1016/j.ijcha.2020.100638 Singh K, Carson K, Usmani Z, Sawhney G, Shah R, Horowitz J. In-hospital outcomes of Takotsubo cardiomyopathy during the COVID-19 pandemic: A propensity-matched national cohort. JACC Cardiovasc Interv. 2023;16(2):211–220. doi:10.1016/j.jcin.2022.12.013
- 5. Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Takotsubo or stress cardiomyopathy): a new form of transient left ventricular dysfunction. Circulation. 2008;118(25):2754-2762. doi:10.1161/circulationaha.108.767012
- 6. Background image: Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Takotsubo cardiomyopathy): A new form of transient left ventricular dysfunction. Circulation. 2008;118(25):2754-2762. doi:10.1161/circulationaha.108.767012