



# Introduction

- Chronic cerebral hypoxia is often observed in anatomical changes of the neonatal and perinatal brain.
- There is increasing evidence mounting in the linkage between brain remodeling and pulmonary disease of prematurity<sup>1-3</sup>.
- Cerebral hypoxia has been linked with inflammatory cytokine release resulting in increased permeability of the blood-cerebrospinal fluid (CSF) barrier and subsequent vasogenic edema and altered CSF flow dynamics<sup>4</sup>.
- Highly prevalent in premature neonates, bronchopulmonary dysplasia (BPD) and persistent pulmonary hypertension (PHTN) present the ideal nidus for widespread chronic hypoxia<sup>5,6</sup>.
- Hypoxia-inducible factors (HIFs) upregulated by hypoxia result in necrosis and damage to the choroid plexus and ependymal cells lining the ventricles<sup>4,7-8</sup>.
- We present seven cases in which we hypothesize these neuroinflammatory mechanisms result in local destruction and increased permeability leading to vasogenic edema and ventriculomegaly.

## Methods

- Literature reviewed: PubMed, Scopus, Google Scholar.
- Search modifiers included: ventriculomegaly, hydrocephalus, hypoxia, ischemia, pulmonary hypertension, bronchopulmonary dysplasia, premature, neonatal, perinatal.
- Articles were included based based on study relevance, language, format, and strength of evidence.
- Patient information was extracted retrospectively from a secure electronic medical record.

# Perinatal Ventriculomegaly in the Context of Bronchopulmonary Dysplasia and Pulmonary Hypertension: A Case Series

Michael Morrison<sup>1</sup>, Jake Haver<sup>1</sup>, Nina Shank MD<sup>2</sup>, Michael Marian Bercu MD<sup>2</sup>

- 1. College of Human Medicine, Michigan State University
- 2. Division of Neurological Surgery, Corewell Health West Michigan, Grand Rapids, MI

## Case Series

- Seven neonates with severe respiratory complications developed ventriculomegaly.
- Six were delivered preterm.
- Most (5/7) were tracheostomy-ventilator dependent.
- Maternal risk factors: substance use, preeclampsia, hypertension, diabetes, poor prenatal care.
- Ventricular changes detected at birth or within first months.

Table 1. Details of Cases Included in Series

| Patient (Age/Sex) | Gestatio-<br>nal Age<br>at<br>Delivery | Birth<br>Weight<br>(kg) |               | Ventricul-<br>omegaly<br>Onset | IVH<br>(Grade)             | Shunt |
|-------------------|----------------------------------------|-------------------------|---------------|--------------------------------|----------------------------|-------|
| #1<br>2Y F        | 23w2d                                  | 0.60                    | BPD           | Birth                          | IVH<br>(Grades<br>3 and 4) | Y     |
| #2<br>5Y M        | 26w2d                                  | 1.22                    | TBM,<br>PHTN  | Birth                          | IVH<br>(Grade<br>1)        | N     |
| #3<br>3Y M        | 29w6d                                  | 0.74                    | NRDS,<br>PHTN | 4 months old                   | N/A                        | N     |
| #4<br>8m M        | 35w0d                                  | 2.41                    | NRDS          | 3 months old)                  | N/A                        | N     |
| #5<br>12m M       | 23w0d                                  | 0.42                    | BPD,<br>PHTN  | Birth                          | N/A                        | N     |
| #6<br>4Y F        | 39w0d                                  | 4.19                    | LGM,<br>NRDS  | Birth                          | N/A                        | N     |
| #7<br>5Y M        | 22w0d                                  | 0.53                    | NRDS,<br>PHTN | Birth                          | IVH<br>(Grades<br>1 and 3) | Y     |

\*BPD, Bronchopulmonary dysplasia; IVH, Intraventricular hemorrhage; TBM, Tracheobronchomalacia; PHTN, Pulmonary hypertension; LGM, Larnygomalacia

### Discussion

- Long established is the relationship between premature birth with BPD and germinal matrix hemorrhage; however, little attention has been devoted to the role of chronic hypoxia in ventricular development.
- HIFs possess local neuroinflammatory activity on transcription factors at the blood-brain barrier.
- HIFs have been found to be elevated in rat studies in which chronic hypoxia resulted in increased local vascular permeability and insult to the choroid plexus<sup>8</sup>.
- A study performed on dogs revealed increased radiolabeled albumin inside the basal cistern after inducing hypoxia in the cerebrum<sup>7</sup>.
- Hypoxia has also been found to upregulate aquaporin channel activity in astrocytes and ependymal cells, resulting in decreased CSF outflow and subsequent hydrocephalus<sup>9,10</sup>.
- From a clinical perspective, the findings in the cases and in animal models suggest that further attention must be allocated to the intracranial manifestations of premature pulmonary disease to ensure early recognition and the need for early neurosurgical intervention to improve quality of life and functional outcomes.

#### References

- 1. Shabani N and Proverbio AM (2025) Neonatal hypoxia: impacts on the developing mind and brain. Front. Cognit. 4:1565759. doi: 10.3389/fcogn.2025.1565759
- 2. Im SA, Tomita E, Oh MY, Kim SY, Kang HM, Youn YA. Volumetric changes in brain MRI of infants with hypoxic-ischemic encephalopathy and abnormal neurodevelopment who underwent therapeutic hypothermia. Brain Res. 2024;1825:148703. doi:10.1016/j.brainres.2023.148703
- 3. Piešová M, Mach M. Impact of perinatal hypoxia on the developing brain. Physiol Res. 2020;69(2):199-213. doi:10.33549/physiolres.934198
- 4. Dunn JF, Isaacs AM. The impact of hypoxia on blood-brain, blood-CSF, and CSF-brain barriers. J Appl *Physiol* (1985). 2021;131(3):977-985. doi:10.1152/japplphysiol.00108.2020
- 5. Hansmann G, Sallmon H, Roehr CC, et al. Pulmonary hypertension in bronchopulmonary dysplasia.
- Pediatr Res. 2021;89(3):446-455. doi:10.1038/s41390-020-0993-4 6. El-Saie A, Varghese NP, Webb MK, et al. Bronchopulmonary dysplasia - associated pulmonary
- hypertension: An updated review. Semin Perinatol. 2023;47(6):151817. doi:10.1016/j.semperi.2023.151817 7. Rothstein RP, Levison SW. Damage to the choroid plexus, ependyma and subependyma as a consequence of perinatal hypoxia/ischemia. Dev Neurosci. 2002;24(5):426-436. doi:10.1159/000069052 8. Sivakumar V, Lu J, Ling EA, Kaur C. Vascular endothelial growth factor and nitric oxide production in response to hypoxia in the choroid plexus in neonatal brain. Brain Pathol. 2008;18(1):71-85. doi:10.1111/j.1750-3639.2007.00104.x
- 9. Rosu GC, Pirici I, Grigorie AA, et al. Distribution of Aquaporins 1 and 4 in the Central Nervous System. Curr Health Sci J. 2019;45(2):218-226. doi:10.12865/CHSJ.45.02.14
- 10. Wang C, Yan M, Jiang H, et al. Mechanism of aquaporin 4 (AQP 4) up-regulation in rat cerebral edema under hypobaric hypoxia and the preventative effect of puerarin. Life Sci. 2018;193:270-281. doi:10.1016/j.lfs.2017.10.021