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In today’s evolving insurance landscape, market consolidations and 

increasingly sophisticated models are rapidly increasing portfolio sizes and 

computational demands. As regulatory reporting, risk management, and 

capital management all require timely and accurate model runs, both 

runtime efficiency and information availability have become critical 

priorities. This paper explores novel and evolving clustering techniques for 

model compression, offering significant computational efficiency gains and 

providing practical solutions to these pressing industry challenges. 

Introduction 
Part of the job of life insurance actuaries involves performing financial projections on large blocks of contracts. For 

some projections where it is too time consuming to run a seriatim projection (where each contract is projected 

separately), model cells are used. The extent to which model cells are used varies, e.g., by region and use case, but 

the main goal is to approximately reproduce relevant cash flows and other values. For large blocks of business, this 

approach can reduce runtimes and computational cost and time by a factor of hundreds or more, clearly 

demonstrating its value to life insurers.  

The traditional method for creating model cells is roughly as follows: Contracts are combined into one cell if they 

match on certain characteristics (e.g., plan code) and also are in the same range for others (e.g., issue age). The 

input file is created by using one representative cell for each such group of contracts, which uses the characteristics 

common to all of the contracts in the group (or a representative value if the characteristics vary) and otherwise uses 

input values that in some way represent an average of the contracts in the group. The cell is also grossed up by a 

scalar so that it can stand in for the entire group. 

This procedure is reasonable for many types of business. However, problems arose in the U.S. during the early 2000s 

for variable annuities. Because of the large number of scenarios required to assess these products, it may be necessary 

to use cell models (the same thing can happen for any product where large numbers of sensitivities, rather than 

scenarios, are to be run). However, largely because of the presence of guarantees, which are option-like (i.e., nonlinear), 

a cell using values for its inputs created by taking averages will not yield appropriate outputs; rather, the outputs will be 

systematically biased in one direction, limiting if not eliminating altogether the usefulness of the projection. 

To address this problem, Milliman in 2008 introduced another method, known as cluster modeling. Here, model cells 

are created in a manner designed to approximately reproduce various outputs (in this paper we call these “model fit 

variables”). The process used to do so uses cluster analysis, hence the name of the method. Each model fit variable 

is typically a present value of some type (or types) of cash flows under a particular “calibration scenario.”1 The 

selection of the set of scenarios and variables is done in such a way that the user expects that matching those 

variables is likely to ensure matching the variables that are important for the task (e.g., a 95 conditional tail 

expectation [CTE] over a large set of scenarios). Once the user is persuaded that the process is working as 

designed, it is not necessary, in future periods, to run all of the scenarios on the seriatim model; it is necessary only 

to run the calibration scenarios, generate the clustered model, and then run the smaller (clustered) model through 

all scenarios. 

  

 

1. Rather than a projected cash flow, a model fit variable might also represent, for example, some item known as of the projection date without doing 

any projection, or a projected balance sheet amount. It is not necessary for a calibration scenario to be fully realistic; it is only necessary that it 

enables you to determine what policies will perform similarly in important realistic scenarios. In particular, you may want to turn off asset-liability 

interactions in your calibration scenarios, especially if there are a large number of policies in the block. 
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In this paper, we describe cluster modeling and also introduce a new way to use it, one that allows the algorithm to 

target specified tolerances that can be defined for each model fit variable. We also present a novel second method, 

“replicating policies,” which uses an optimization routine to construct a small portfolio of insurance policies that 

closely matches key characteristics of the full portfolio within specified tolerances.  

Our analyses and experience demonstrate that both methods perform well for the intended tasks. Both techniques 

can be used in various ways within the reporting pipelines of insurance companies; additionally, cluster modeling is 

currently available within Milliman’s software solution Integrate. 

Key use cases for compression methods include reducing runtime of stochastic and deterministic valuations or 

required capital computations for large life insurance portfolios. They can also streamline calculations for sensitivity 

analyses, what-if scenarios, and calibrations for curve-fitting and replicating portfolios. Projection runtimes and 

computational cost tend to scale with the compression factor, although the time to prepare and run the compression 

must be considered as well. 

Although this paper focuses on large portfolios of insurance contracts, these compression techniques can be applied 

to other large sets of observations; examples include asset portfolios and scenario sets, where runtimes are also a 

constraint. While we do not explore these additional applications in more detail here, the methods discussed here are 

broadly applicable. 

After describing the two compression methods, we apply both to two case studies to illustrate the steps involved in 

using the methods in practice and give an idea of the results. Although clustering may be applied to blocks of 

business with millions of cells, the blocks here are much smaller. We contrast the approaches and describe lessons 

learned from years of experience relating to the practical use of cluster modeling and getting senior management 

and auditors comfortable with its use, most of which also apply to replicating policies. Finally, we present 

concluding comments. 

Cluster modeling 
The cluster modeling process was laid out in a 2008 paper, with some additional remarks in a 2009 article.2 We give 

a brief description here of the most common way to use the technique. 

For each contract being considered, the following information is required: 

▪ Which segment the contract belongs to, i.e., each cluster will contain contracts from only one segment. 

▪ The values of the “location variables” for each contract. Here we assume that these are the same as the model fit 

variables as described previously. 

▪ The size of the contract, which might be, for example, amount of insurance or account value. Each location 

variable will be divided by the size; therefore, we try to use a size variable such that, if, for two policies, the ratios 

of the location variables are all close to N:1, we expect that the same will be true of the size variable. 

The algorithm used in cluster modeling since the 2008 paper is described in more detail in Figure 3, which can be 

found in Appendix I. Like most methods of cluster analysis, it uses a pairwise distance function and aims to put in the 

same cluster contracts that are relatively “close” to each other, i.e., the distance between them is small. For purposes 

of setting up this distance function, cluster modeling requires the user to specify a weight for each location variable, 

where a higher weight means that the user wants to prioritize the variable more in the clustering process. 

  

 

2. Freedman, A. & Reynolds, C. (August 1, 2008). Cluster analysis: A spatial approach to actuarial modeling. Milliman. Retrieved October 16, 2025, 

from https://www.milliman.com/en/insight/cluster-analysis-a-spatial-approach-to-actuarial-modeling; Freedman, A. & Reynolds, C. (2009). Cluster 

Modeling: A New Technique To Improve Model Efficiency. CompAct, 32, 4–8, Retrieved October 16, 2025, from 

https://www.soa.org/globalassets/assets/library/newsletters/compact/2009/july/com-2009-iss32.pdf. 

https://www.milliman.com/en/insight/cluster-analysis-a-spatial-approach-to-actuarial-modeling
https://www.soa.org/globalassets/assets/library/newsletters/compact/2009/july/com-2009-iss32.pdf
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Once the clusters are determined, a representative contract is selected from each cluster. The contract selected is 

the one closest to the size-weighted average of all contracts in the cluster.3 To create the cell model, each 

representative contract is scaled based on the size variable, i.e., by the ratio of the total size of contracts in the 

cluster, divided by the size of the representative policy.4 

The clustering process depends on the selection of weights. A higher weight on a variable can be expected to lead to 

a smaller error in the variable. However, it is appealing to be able to specify tolerances for each variable (that is, the 

percentage error in the variable that is considered acceptable) and have an algorithm selecting weights to try to meet 

those tolerances. 

In this paper, we describe a way to directly incorporate tolerances.5 The clustering is run with an initial set of weights. 

For each location variable, we calculate the ratio of (a) the absolute value of the percentage error in the variable over 

(b) the percentage tolerance. If any ratios are above 100%, we take some of those variables, increase the weight of 

those variables by a specified percentage, and redo the clustering. The iteration continues until all variables are 

within tolerance, or at some other stopping point. 

For the case studies in this paper, we proceed at each iteration based on how many variables have a ratio over 

100%. If this number is positive, we increase by x% the weights of half of those variables in the next iteration; the 

variables with the largest ratios are used for this purpose. Otherwise, the single variable with the largest ratio has its 

weight increased by y% in the next iteration. The process is cut off after a maximum number of iterations, and the 

results are reviewed. Information about the fit for all iterations is saved; we do not simply assume that the last 

iteration will provide the best fit. In practice, it does not always happen that the set of ratios always improves in some 

sense from one iteration to another. Future research may develop modifications to the method that tend to converge 

on a better set of weights more quickly. 

The iterative-weights algorithm requires multiple clustering runs and, therefore, takes more time than if the weights 

are simply specified and not changed. However, intuitively, it is reasonable to suppose that, at future valuation dates 

for the same block, the weights will not need to change much, and fewer iterations will be necessary. 

Replicating policies 
The replicating polices approach has emerged from the evolution of model compression techniques. At its core, the 

method uses an optimization routine to select a subset of scaled policies, or cells, from a portfolio of interest. The 

objective is to closely match key characteristics of the full portfolio using this subset.  

The term “replicating policies” is inspired by the concept of replicating portfolios, where a limited set of market 

instruments is used to approximate the behavior of a large portfolio. A major advantage of the replicating policies 

technique, as compared to replicating portfolios, is its ability to efficiently produce sensitivities to both market 

parameters and non-market risk parameters. This capability is particularly valuable for (regulatory) reporting, as well 

as for risk and capital management. 

The specific implementation of this approach varies on the use case. Variations may include the selection of model fit 

variables, acceptable replication error, choice of optimization function and algorithm, and technical implementation. 

The required inputs are similar to those used in cluster modeling, although scaling by a size variable is typically not 

applied. Model fit variables may include aggregate present values and aggregate cash flows, often across multiple 

sensitivities. Additional targets, such as martingale tests, may also be included in the optimization function. 

 

3. An alternative, not further discussed here, is to use error correction such that the target is offset from the size-weighted average by an amount that 

would offset deviations from previously selected representative cells. 

4. An alternative, not further discussed here, is to adjust the scalars; where there are more clusters than model fit variables, this can be done so as to 

exactly match the model fit variables, perhaps also meeting some least-squares criterion. However, problems may result if there is a variable that is a 

linear combination of the others; additionally, if there is a variable that is close to a linear combination of the others, the resulting scalars may not be 

meaningful. In a sense, this is similar to the replicating- portfolio approach but likely to be less robust. 

5. Since the 2008 paper, cluster modeling has been available in MG-ALFA and, more recently, in the Integrate Calculation Engine, which subsumes 

MG-ALFA. The iterative process described here uses a proof-of-concept version of the calculation engine that is not yet available to Integrate clients. 

This feature, as well as other enhancements to model compression as a distinct engine within Integrate, is being considered for further development. 

In the meantime, it may be simulated manually. 
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A highly effective implementation involves a reasonably straightforward two-step approach: 

▪ Segmentation: The portfolio is divided into blocks of policies that should not be mixed.  

▪ Optimization: For each block, an optimization routine is used to select a minimal subset of scaled policies or 

cells, such that, in aggregate, the model fit variables of the compressed portfolio match those of the full portfolio 

within a specified tolerance. 

For very large portfolios, an optional preliminary clustering step can be applied using k-means clustering or the 

method used for cluster modeling or any other clustering method, though it is often not necessary. To illustrate, a 

portfolio containing 800,000 policies with 1,000 location variables could still feasibly be processed in-memory on a 

consumer-grade laptop. The final optimization step requires a robust optimization algorithm to ensure that number of 

selected cells is minimized. In practice, we typically employ an established linear programming algorithm, which is 

also used in the case studies presented in this paper. 

More specifically, the optimization process rephrases the problem as a linear programming task, where location 

variables for each policy are scaled by a factor. The objective is to minimize the total scaling factors, the number of 

nonzero factors, and the difference (error) between the total original and the total scaled location variables. 

Optionally, the error can be weighted, allowing users to adjust its importance during optimization. The approach 

performs the optimization subject to the constraint that the error must not exceed a predefined tolerance. 

The approach can be integrated easily into existing reporting pipelines with various user interface options. Our typical 

implementation uses Python, though other programming languages may also be employed. 

Case studies  
Here, we illustrate the compression procedures using two case studies: first, a portfolio of fixed indexed annuities 

(FIAs), and second, a portfolio comprising endowments and annuities.   

CASE STUDY: FIA PORTFOLIO  

In the first case study, we focus on a stochastically valued portfolio composed of various insurance policies of a typical 

U.S. annuity insurer. The portfolio consists of fixed indexed annuities with guaranteed lifetime income. About 30,000 

policies were issued over multiple years, and they include different variants (plan codes), distinguished by factors such 

as underlying assumptions and specific product structures. The portfolio is backed by an asset portfolio of typical bonds 

and commercial mortgages that are synonymous with those held by typical U.S. insurance companies. 

The goal of the compression is to match the present value of cash flows over multiple time buckets with the present 

value over 30 years to be the most important one. The reason to match cash flows over multiple shorter time buckets 

is to aid with asset liability management.  

The cash flows for the portfolio are calculated and subjected to the more than 1,000 U.S. statutory scenarios plus 

shocks that are both economic and non-economic in nature. We choose to calibrate the compression across five 

economic scenarios and test it across 1,400 stochastic scenarios. In other words, the five in-sample scenarios are 

used to train or calibrate the models, whereas the other scenarios serve as a validation set to evaluate how well the 

compressed set of model cells generalizes previously unseen conditions.  

We define the net present value (NPV) of liability cash flows as a location variable and capture it across various time 

buckets for each policy for each of the five economic scenarios. In total, we capture five location variables per 

scenario, yielding 25 location variables. We also defined a compound variable based on the 25 location variables. 

The goal of this variable is to help ensure a tighter asset liability match. Defining a compound location variable is not 

typical practice; however, given the research nature of this analysis, we created this location variable. 
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To compare compression and replication quality in this case study, we use the following metrics: 

▪ Compression ratio: percentage of policies removed from the compressed portfolio 

▪ Goodness-of-fit (GoF) ratio: ratio of compressed to original portfolio6 NPVs for the full 30 years, shown for the 

average, and two CTE confidence levels, each generated using 1,400 scenarios 

▪ Coefficient of determination (R2): calculated for the NPV over 30 years across scenarios 

The GoF ratios for CTE showcase the levels of fit not only at the average but also at the extreme tail. 

Next, we describe the application and results for both compression methods. 

Cluster modeling approach 

The size variable was a net of cash flows from one of the calibration scenarios.7  

Typically, clusters are produced with compression ratios of 90% to 95% for production runs by insurers. On occasion, 

we have also produced clusters at 99% compression levels if enough homogenous data points within an in-force file 

exist. Irrespective of the compression level, the reserves or capital calculated via clustering typically falls in a GoF 

range of 99% to 101% when compared to full seriatim calculations.  

Given this was a research project, we chose to test the boundaries of clustering and replicating policies producing 

compression rates of between 99.8% and 99.9%.  

Replicating policies approach 

For the replicating policies approach, all five in-sample scenarios were again used for calibration. As is standard 

practice, all available location variables informed the compressed portfolio. A uniform weight of one was assigned to 

each variable, and an error tolerance of 10-19 was applied. 

The resulting compression ratio follows from the optimization approach restricted by the predefined in-sample error of 

tolerance. Given the relatively small number of variables in this case study, the achieved compression ratio was high, 

at 99.9%, corresponding to a 30-cell model. Despite the limited number of location variables, the fit to the original 

portfolio was strong, as demonstrated in Figure 1. 

For illustrative purposes, we combined the two compression approaches to show that can also be used to achieve 

good results. 

Results comparison for the first case study 

Figure 1 presents the results for the metrics introduced earlier for both compression methods. 

FIGURE 1: KEY METRICS FOR CLUSTER MODELING AND REPLICATING POLICIES FOR THE FIRST CASE STUDY 

METRIC CLUSTER REP. POLICIES CLUSTER + REP. PORTFOLIO 

Compression ratio 99.8% 99.9% 99.8% 

GoF ratio | average 100.1% 100.2% 100.1% 

GoF ratio | CTE 75 100.3% 100.6% 100.2% 

GoF ratio | CTE 98 100.4% 101.3% 100.6% 

R2 99.97% 99.82% 99.92% 

 

  

 

6. We measured the model fit against a 90% compressed cluster model as it was too time consuming to run the seriatim in-force file across 1,400 

scenarios.  

7. Typically, we would use account value as the size variable for FIAs. Given the research nature of this analysis, we experimented with using a 

variable that was derived from the location variables. For this case study, the outcomes aligned with our expectations. 
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The three sets of results are based on (1) a 50-cell cluster, (2) a 30-cell replicating policies portfolio, and (3) a 50-cell 

replicating policies portfolio based on a 250-cell cluster.  

Figure 1 shows that all three methods produce very good results even at high compression levels. Combining the 

cluster and replicating policies methods yields a better fit in some but not all cases. In Figure 1, the tail metric is 

noisier than only clustering; however, we believe that if we were to try and jointly optimize, we may get a tighter fit. 

While these results look good, we analyze results across all scenarios in more detail in a GoF graph and analyze 

the trendline when reviewing results for the 1,400 stochastic scenarios. The corresponding R2 numbers are given 

in Figure 1 

FIGURE 2: SERIATIM VS. COMPRESSED PORTFOLIO VALUES FOR THE VARIOUS TESTED COMPRESSION METHODS 

   

While the present value for 30 years looked good, we saw more noise when analyzing results for smaller time 

tranches. In those tranches, clustering performed better than replicating policies, but given clustering is at a slightly 

lower compression level, that outcome was within our expectations. In practice, the application of either method  

could be refined, e.g., through additional calibration scenarios or alternative calibration settings, to achieve the 

desired GoF. 

CASE STUDY: ENDOWMENT AND ANNUITY PORTFOLIO 

In the second case study, we shift our focus to the other side of the Atlantic, toward a deterministically valued 

portfolio composed of various insurance policies of a typical Belgian life insurer. Unlike typical practice, where an 

initial segmentation step is performed before applying any compression method, we intentionally omit this step to 

demonstrate that effective replication can be achieved even without prior segmentation. 

The portfolio consists of two main product types: endowment and annuity policies. The endowment product 

represents a significantly larger portion of the portfolio, with 50,000 policies, while the annuity product consists of 

5,000 policies. For the annuity product, only a single variant exists. In contrast, the endowment product includes 17 

different variants, distinguished by factors such as underlying assumptions and specific product structures. Figure 6 

provides background information on these variants, including their respective sizes within the portfolio. As shown in 

Figure 6, there is considerable variation among the variants, both in terms of the insured sums and the number of 

policies. The portfolio is a synthetic portfolio; the product characteristics of the portfolio are modeled after those of an 

average, mid-sized, western European life insurer. A broader set of statistics can be found in Appendix II. 

The cash flows for the portfolio are calculated and subjected to the standard formula Solvency II shocks, as well as to 

exacerbated shocks at 150% of their standard levels. This results in 21 scenarios: one central scenario and 20 

shocked scenarios. In addition to the central scenario, four shocks are considered in-sample: catastrophe, mortality, 

interest down, and expense. The remaining shocks are treated as out-of-sample. In other words, the five in-sample 

scenarios are used to train or calibrate the models, whereas the other scenarios serve as a validation set to evaluate 

how well the compressed set of model cells generalizes previously unseen conditions.  
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The dataset contains NPVs and cash flows for up to 150 projection years, covering a total of 14 different variables. 

However, most policies mature before reaching the maximum projection horizon. This results in a theoretical total of 

2,114 location variables per scenario, a number consistent with implementations observed at insurers.  

For analysis, we focus on 14 key variables related to NPVs of different underlying cash flows. Additionally, a single 

net variable is constructed. We refer to Appendix II for details on these 14 key variables and the construction of the 

net variable. 

To compare compression and replication quality in this case study, we use the following metrics: 

▪ Compression ratio: percentage of policies removed from the compressed portfolio 

▪ Root mean squared error (RMSE): calculated for the single net variable, relative to its base scenario value 

▪ Coefficient of determination (R2): calculated for the 14 NPV variables across out-of-sample scenarios 

Next, we outline the application and results for both compression approaches. 

Cluster modeling approach 

For the clustering approach, we used the five in-sample scenarios for calibration and generated a 100-cell model 

corresponding to a 99.8% compression ratio.  

While the endowment policies contained a logical size variable given by the sum assured, the annuity contracts did 

not. Therefore, no size variable was introduced. As mentioned, for a real project we would have treated the two 

blocks separately, but here we treated them without segmentation.  

There are 92 location variables, primarily the net of the NPV and cash flow variables in the base scenario and the net 

of the NPV variables in the other four calibration scenarios. The key net NPV variables match closely, within or 

slightly outside of tolerance, for the in-sample scenarios, as these were also given the most weight. Further details 

and commentary are provided in Appendix II.  

Replicating policies approach 

For the replicating policies approach, all five in-sample scenarios were again used for calibration. As is standard, all 

available location variables informed the compressed portfolio. A uniform error tolerance of 0.001% was applied, with 

default weighting: Each variable received equal weight, except NPVs, which were scaled according to the number of 

years with nonzero cash flows. The framework also allows for manual adjustment of weights if preferred. 

The replication policies approach resulted in a decent compression ratio of 98.5%, which corresponds to 840-cell 

model. The compressed results fit the original portfolio well, both in- and out-of-sample.  

There are also cases when it is relevant to look at individual variables. When doing so, it is interesting to consider the 

maximum relative error. In this case, the maximum error can be attributed to the NPV of the maturity benefit outgo in 

the out-of-sample lapse up 150% scenario, where the error was 3.85%. 

Selling TBAs provides the lender with price certainty at the time of sale. Lenders can sell forward into TBAs and 

deliver a pool of mortgages or lenders can trade TBAs (selling at the time of lock and repurchasing the securities prior 

to delivery) to hedge price risk. Selling forward requires a specified amount of delivery at a specified date and 

introduces additional risks to lenders. Therefore, most lenders trade TBAs to manage price risk using a duration 

matching strategy.  
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Results comparison for second case study  

Figure 3 presents the results for the metrics introduced earlier for both compression methods. 

FIGURE 3: KEY METRICS FOR CLUSTER MODELING AND REPLICATING POLICIES FOR THE SECOND CASE STUDY 

METRIC CLUSTER MODELING REPLICATING POLICIES 

Compression ratio 99.8% 98.5% 

RMSE net variable (in-sample) 0.05302% 0.00078% 

RMSE net variable (out-of-sample) 0.36% 0.88% 

R2 of 14 key variables (out-of-sample) 0.9995 0.9999 

We have the following observations: 

The replicating policies approach achieves a lower compression ratio, which is driven by the higher number of 

location variables in combination with the chosen tolerance. This is a natural outcome of the difference in the usual 

treatment of location variables between the approaches. For cluster modeling, the typical approach is to work with a 

manageable set, although there is no hard limit on the number. For replicating policies, it is typical to use all available 

variables.  

Both techniques achieve near-zero relative in-sample RMSE, consistent with their calibration tolerances.  

The relative out-of-sample RMSE is low for both approaches, though somewhat higher for the replicating policies 

approach. 

The out-of-sample R2 results are high for both methods and align with the RMSE results. 

Figure 4 visualizes the GoF graph for both techniques, displaying all NPVs, including a trendline that is fitted to the 

out-of-sample data points. The accompanying R2 is given in Figure 3. 

FIGURE 4: ACTUAL VS. COMPRESSED PORTFOLIO VALUES FOR CLUSTER MODELING ON THE LEFT AND REPLICATING POLICIES ON 

THE RIGHT WITH NUMBERS IN EUR BLN 
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Best practices for practical implementation 
The successful application of model compression techniques necessitates meticulous validation, regular calibration, 

strategic automation, effective communication with stakeholders, and a critical evaluation of its cost-benefit balance. 

This section delves into these considerations to ensure that compression methodologies deliver optimal value. 

MODEL COMPRESSION USE CASES 

Grids or cloud computing may make a line-by-line or seriatim approach feasible for some projects, but this is not 

always the case, especially when either the modeling involves (1) asset-liability interactions, (2) a huge number of 

stochastic scenarios, or (3) nested stochastic modeling. In these situations, model compression techniques, such as 

clustering and replicating policies, offer advantages over classical cell models.  

Model compression is particularly valuable when a seriatim approach is not feasible. Classical cell compression 

based on grouping rules may be preferred over more complex methods due to its simplicity. However, such an 

approach may not be capable of generating a cell model that is both sufficiently small and sufficiently accurate, 

especially where the important variables are nonlinear, as is the case with products featuring minimum guaranteed 

benefits. In this case, more complex compression techniques should be exploited.  

Compression techniques can also complement or replace other proxy techniques to create computational efficiency. 

For example, in stochastic economic or required capital calculations, replicating functions or loss functions are often 

used to make the large number of scenarios, frequently nested, computationally feasible. Compression techniques 

can streamline these processes, e.g., by efficiently producing calibration data for the proxies or even by directly 

substituting existing proxy methods. 

More generally, the fundamental requirement for applying compression is that the computationally expensive problem 

involves the sum of a large number of vectors with location variables, in which case compression reduces this to the 

sum of a much more manageable number of representative scaled vectors. 

SELECTING A COMPRESSION TECHNIQUE 

Clustering and replicating policies have certain things in common. Most importantly, both are well suited to the task of 

portfolio compression. They share a focus on model fit variables and their respective tolerances. However, there are 

also differences, which often come down to user preference and practical considerations.  

For example, the replicating policies method is designed to work with many variables, up to many hundreds, and 

ensure reasonable tolerances for all of them simultaneously. By contrast, although cluster modeling can mechanically 

handle as many variables as desired, it generally works better if they are pruned to a more manageable set of 

variables—perhaps by using present values for fewer time periods and combining different types of cash flows. This 

requires more thinking up front about which variables to use and which to place the highest weight on than is the 

case with the replicating policies method. In either case, it is important to validate that the process is capable of 

generating realistic values for the quantities that are important to the user. 

In cluster modeling, the number of cells that the clustered cell model is meant to contain is set as a parameter. With 

replicating policies, the tolerances are set, and the model size is determined by the algorithm. A user might prefer one 

of these approaches over the other. 

A distinction between the two approaches is how their results connect to the underlying policies. In cluster modeling, 

the link is built into the method: each specific cell directly represents a set of policies that are similar in meaningful 

ways. In contrast, the replicating policies method produces scalars that allow the replication of aggregate portfolio 

behavior. These scalars can be linked back to specific policies, but this connection is not intrinsic to the method. 

Again, a user might prefer one of the methods due to this distinction. 
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VALIDATING COMPRESSED MODEL RESULTS 

Validation is a critical step in the process to ensure that a compressed model is a reasonable representation of the 

seriatim model, given the purposes of the analysis. Evidence of validation of the compressed model is a key output 

necessary for stakeholder communication and model governance, particularly when the model is used for financial or 

regulatory reporting or for strategic applications, such as financial planning and analysis. 

Approaches to validation of these models can be classified into two categories: external validation and internal 

validation. External validation utilizes data other than the information supplied to the algorithm, typically the 

performance of compressed and uncompressed models under additional scenarios, whereas internal validation 

leverages only the data available from the inputs or outputs of the algorithm to assess the quality of a model. 

Although external validation is often the more robust approach, there are benefits to also conducting internal 

validation to investigate the stability of the results and in cases where it is difficult or expensive to obtain sufficient 

data for external validation. 

External validation 

External validation generally involves partitioning the training data to create an out-of-sample dataset; this was done 

in the case studies by using some scenarios or sensitivities to create the location variables and then analyzing the 

output from the seriatim and reduced models under other scenarios or sensitivities. If it appears appropriate, post-

model adjustments can be applied to correct deviations. An important consideration for the external validation data is 

that it should cover the types of sensitivities or scenarios under which the model is expected to be used.  

Since this process requires potentially expensive runs of the seriatim model, it may be beneficial to try to reduce the 

number of out-of-sample scenarios by using techniques designed to generate well-spaced scenarios; this may 

include using the results from the reduced model itself. 

Once the external validation scenarios have been determined and results from the seriatim and reduced models 

obtained, traditional regression metrics such as RMSE can be calculated to assess the fit in aggregate. Additionally, it 

may be appropriate to specify metrics for tolerances, e.g. “no more than 5% of validation scenarios have an error 

greater than 2%.” Best practice would be to consider materiality thresholds, as well as the purpose of the analysis, in 

specifying these metrics and to communicate compressed model accuracy to stakeholders to factor in decision 

making. 

Additionally, the error distribution (i.e., the residuals) should be examined for potential bias or other anomalies that 

would indicate that it is not simply random noise. Several statistical tests can quantify the degree to which the errors 

are normally distributed, such as the Kolmogorov-Smirnov or Anderson-Darling tests. If the reduced model appears to 

contain a bias, a post-model adjustment can be applied; for example, a compressed model that consistently 

underestimates the result obtained from the seriatim model could benefit from a bias-correction adjustment, such as 

adding the average error or baseline error to the compressed model result. As a result, metrics that measure absolute 

fit, such as the RMSE, can improve.  

Internal validation 

In the case of cluster modeling, internal validation generally involves analysis of the clusters themselves or 

comparison of the clusters to the original data prior to clustering. Ideally, clusters are both distinct (separate) and 

compact (cohesive), and various metrics have been developed to score a cluster based on these criteria. For 

example, the silhouette score measures how different the constituents of a cluster are from their own cluster 

compared to other clusters. A low silhouette score indicates that clusters may be overlapping and possibly that some 

points may be better assigned to a different cluster. It may be that more clusters are warranted because diverse 

points are grouped together or that the number of clusters could be reduced to create more distinction by grouping 

similar clusters together. A shift in the rate of improvement of the silhouette score versus the number of clusters can 

indicate an optimal number of clusters, which can be visualized as an “elbow” in the graph of the silhouette score 

against the number of clusters. 
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Stability analysis 

It may also be of interest to analyze the stability of clusters when the dataset is perturbed. This can be done by 

adding or removing data from the set, for example, by using bootstrap resampling or by using a different scenario or 

set of scenario results as the basis for clustering. This perturbation is followed by re-clustering and comparing the 

new cluster set to the unmodified cluster set to see if similar clusters are formed. For example, when removing a 

single seriatim point from the dataset, a harmonious result would be that no clusters are modified except for the 

cluster containing the removed point.  

Externally, this can be extended to the period-to-period stability of clusters: In the case of a set of insurance policies, 

policy terminations or small changes in the market state should not have a significant impact on the cluster assignments. 

This can be measured by applying the prior period’s cluster groupings and assessing model fit via external validation 

methods or by assessing the number of cluster grouping changes from period to period. However, for products where 

policyholder behavior or other events can result in significant state changes, e.g., activation of a guaranteed minimum 

withdrawal benefit, index fund rebalancing, or transition from active to disabled, the expectation of cluster stability may 

not hold, and policies with observed state changes may need to be excluded from stability analysis. 

While this discussion is framed in the cluster modeling context, the same stability analysis principles can also be 

applied to the replicating policies approach. In that setting, stability checks can help ensure that the reduced model 

continues to approximate the liability profile consistently over time, even as minor changes occur in the underlying 

policy set or market environment. 

With respect to internal validation and stability analysis, it is worthwhile to remember that unlike in some other 

applications of model compression, here the purpose is not to generate a similar compressed model per se but rather 

to approximately replicate the performance of the compressed model under a variety of scenarios. These tools may 

reduce the occurrence of surprises due to random noise. 

Frequency of validation 

Regular calibration and validation are essential due to changing market conditions, policyholder behavior, and 

regulatory environments in order to maintain the relevance and accuracy of financial projections or valuation over 

time. A schedule should be established (e.g., annually) to validate the process when there is time and grid availability 

to perform the seriatim runs that may be necessary. This process may conclude that it is necessary to change the 

weights on the location variables or other parts of the compression approach design if this is not automated as part of 

the process. It is also possible to partially validate a compressed model more frequently, for example, performing a 

baseline seriatim valuation for comparison with the baseline compressed model results can indicate whether it is still 

well aligned with the seriatim model.  

For purposes of roll-forward attribution analysis when using cluster modeling, it may be beneficial to retain mappings 

of representative cells from the beginning of period to the end of period to avoid introducing noise, with 

reassignments of weights being an explicit step in the attribution.  

Significant events, such as mergers, economic shifts, new product launches, or changes in underwriting guidelines, 

may provide a reason to validate or calibrate off schedule. These changes may justify the selection of new segments 

or calibration scenarios. However, in the case of the last two causes, the immediate effect may be small since only 

new business is affected.  
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AUTOMATION OF COMPRESSION AND VALIDATION 

Automation can significantly enhance efficiency, reduce manual errors, and ensure consistency in the compression 

and validation processes. In particular, the cost-benefit tradeoff between the human expertise required to maintain 

and understand a compressed model and the computational savings from using it can be tipped in favor of 

compression if the process is streamlined and efficient. 

Aspects that may be automated include: 

▪ Compression modeling pipelines: Raw data may be processed in multiple steps to produce compressed in-force 

files without manual intervention, such as (in the case of replicating policies) using a preliminary clustering step. 

This may extend to automated tuning of key model hyperparameters to improve performance, typically using 

approaches such as iteration or grid search—for example, the iterative weights adjustment described previously 

(in the case of clustering).  

▪ Validation scripts: Scripts can be written that automatically calculate validation metrics post-compression to 

expedite the validation process. Alerts can be set up to flag unusual validation results for further investigation. 

▪ Integration with data systems: Linking the automated compression system with existing data warehouses and 

actuarial models ensures seamless data flow and the potential for near real-time updates if the compressed 

model is fast enough and model execution and reporting are part of the automation. 

▪ Reporting automation: Generating automated reports and dashboards facilitates quick dissemination of results 

and validation metrics to stakeholders. 

COMMUNICATING WITH AUDITORS AND MANAGEMENT 

Effective communication is vital to gain buy-in from management and satisfy audit requirements. Although lower 

computing cost certainly can resonate with management, and it is often the main selling point for a compressed 

model, there are other reasons why a compressed model can be useful. Compressed models can cut processing 

times significantly and thus allow management to perform more frequent analysis. If management is interested in 

metrics that require a Monte Carlo simulation, then utilization of a compressed model can help overcome uncertainty 

in the results by most efficiently utilizing the information in the entire system.  

As a simple example, suppose a simulation using 1,000 scenarios of a seriatim model can achieve a 95% confidence 

interval of +/-2% for the fair value of a seriatim in-force. A 99% compressed version of model is found to be very 

highly correlated with the seriatim model, and its errors in out-of-sample scenarios compared with the seriatim model 

are unbiased. A simulation of 100,000 scenarios using the compressed model could be expected to reduce the 

uncertainty in the simulation result by a factor of 10 (assuming errors are normally distributed) for the same 

computing cost. Thus, in this case, although the compressed model is a less accurate representation of the seriatim 

model for a single scenario, it ends up providing a more accurate answer due to a reduction in stochastic 

measurement error. 

Stakeholders should be informed of the limitations of a compressed model, such as its degree of accuracy, the scope 

of validation, and whether it was designed or fit to a particular use case, to ensure that users of the model can assess 

whether the model is fit-for-purpose. 

Comprehensive documentation should be prepared, covering: 

▪ Sources of data 

▪ A description of the algorithm 

▪ Parameter settings 

▪ Validation process (including the types of scenarios or sensitivities used for out-of-sample testing, e.g., insurance 

risks and economic risks) and results 

▪ Compliance with regulatory standards 
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When not to employ compression 

Compression techniques can add value, but they may not be optimal when maintenance costs outweigh benefits or 

when more efficient alternatives exist. One must ensure the model meets its intended purpose and that actuaries can 

explain, evaluate, and monitor model risk. This often requires specialized expertise, either in-house or via third party, 

and time for ongoing calibration and validation. Besides the direct costs of maintenance, one must also consider 

opportunity costs, as similar specialist personnel may also be useful in other areas, such as building predictive 

models for policyholder behavior, anomaly detection, and development of AI capabilities. 

The cost-benefit balance can be shifted by either increasing the value of the model or by reducing the maintenance 

burden. For the former, this could mean avoiding overfitting to a specific use case and aiming to support multiple 

model metrics. A model that can support fair value, reserving, and capital calculations both instantaneously and on a 

projected basis is clearly superior to one that is more narrowly focused, but such a model may be difficult to calibrate. 

Expansion of the usage of a model through more frequent analysis or a greater number of sensitivities or scenarios 

can also add value, unlocking analysis that was previously too expensive or even completely infeasible. Examples 

include shifting from monthly to daily balance sheet monitoring or moving from a deterministic valuation to stochastic 

valuation. For the latter, the previously discussed automation approaches to calibration and validation can streamline 

the process. Models that require less frequent calibration and validation due to stability of the compressed model will 

also have lower maintenance costs, and thus stability versus accuracy becomes a potential tradeoff to evaluate. 

In some cases, the methods described in this paper may not be the ideal method for reducing computational costs. 

Other efficient techniques can be worth investigating in lieu of or in conjunction with them. These include hardware 

and software optimization, scenario-reduction techniques for stochastic models, curve-fitting models, and neural 

networks. 

Next steps 
Compression algorithms offer insurers powerful tools for managing large datasets and enhancing the efficiency of 

financial projections and valuations. To maximize the value of these techniques, their implementation must be 

accompanied by rigorous validation, ongoing calibration, strategic automation, and open communication with 

stakeholders. It is also critical to recognize when alternative approaches might be more suitable. By thoughtfully 

applying compression techniques and carefully evaluating their impact, insurers can optimize their reporting and 

monitoring processes, delivering more robust, reliable, and actionable insights. 

For further inquiries on how compression techniques and other advanced solutions can improve your reporting 

efficiency, please contact your Milliman consultant. We are dedicated to helping you achieve greater operational 

excellence and drive meaningful results for your organization. 
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Appendix I – Mathematical formulation of cluster modeling 
Figure 5 complements the earlier explanation of cluster modeling. 

FIGURE 5: OVERVIEW OF CLUSTERING ALGORITHM 

𝐺𝑖  is the segment containing contract 𝑖 

𝑆𝑖  is the size of contract 𝑖 

𝐿𝑖,𝑥 is the value of location variable 𝑥 for contract 𝑖 

𝐿′𝑖,𝑥 =  𝐿𝑖,𝑥  / 𝑆𝑖  is the unitized value of location variable 𝑥 for contract 𝑖 

𝑊𝑥 is the weight of location variable 𝑥  

𝐴𝑥 =  
∑𝑆𝑖𝐿′𝑖,𝑥

∑𝑆𝑖
is the average value of location variable 𝑥 

 

𝑆𝐷𝑥 = √ 
∑𝑆𝑖(𝐿′

𝑖,𝑥 − 𝐴𝑗)2

∑𝑆𝑖
is the standard deviation of location variable 𝑥 

𝐿′′𝑖,𝑥 =
𝐿′

𝑖,𝑥

𝑆𝐷𝑥
 ∗ 𝑊𝑥  is the unitized and standardized value of location value 𝑥 for contract 𝑖  

 

𝐷𝑖,𝑗 = √∑(𝐿′′
𝑖,𝑥

−  𝐿′′
𝑗,𝑥)2  is the distance between contract 𝑖 and contract 𝑗  

𝑁𝑁𝑖 , the nearest neighbor of 𝑖, is the value of j minimizing 𝐷𝑖,𝑗   

over all 𝑗 with 𝑗 ≠ 𝑖 and 𝐺𝑖 =  𝐺𝑗 

𝐼𝑖 = 𝑆𝑖 ∗  𝐷𝑖,𝑁𝑁𝑖
 is the importance of 𝑖 

 

The clustering process starts with each contract in its own cluster. At each iteration, the contract 𝑖 with the smallest 

importance is identified and “mapped into” its nearest neighbor, i.e., contract 𝑖 is eliminated, and the size of 

contract 𝑗 is updated by adding in the size of former contract 𝑖 (so that, at any stage, the sum of the sizes of all 

contracts that have not been eliminated equals the sum of the sizes of the original contracts). The process 

continues until the desired number of remaining contracts equals the desired number of clusters. 
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Appendix II – Details on endowment and annuity portfolio case study 
The endowment and annuity portfolio case study is modeled after that of an average, mid-sized European life insurer. 

In Figure 6, some background statistics are given on the size of the portfolio in terms of the number of policies, the 

average duration, and the average size of the policies. 

FIGURE 6: BACKGROUND STATISTICS ON THE ENDOWMENT AND ANNUITY PORTFOLIO 

VARIANT # POLICIES AVERAGE DURATION (MONTHS) AVERAGE SUM ASSURED AVERAGE ANNUITY 

1 7 411   €309,074  

 

2 7018 345   €478,580  

 

3 3836 342   €357,667  

 

4 4072 362   €523,409  

 

5 1050 317   €374,332  

 

6 4268 287   €465,438  

 

7 1209 248   €337,998  

 

8 2398 267   €541,512  

 

9 1265 323   €330,917  

 

10 1114 310   €335,014  

 

11 12442 274   €590,154  

 

12 2974 194   €672,419  

 

13 1185 202   €342,759  

 

15 1365 205   €698,796  

 

17 5777 173   €687,859  

 

18 1 146   €38,460  

 

19 19 272   €6,715  

 

20 5000 223   € -  €3,086  

 

This case study analyzes 14 key variables, each available both as annual cash flows and as an NPV at the start of 

the projection period. In addition to these variables, an aggregate net variable is derived by combining the individual 

variables. For context, Figure 7 lists the variables and illustrates how they are integrated into the net variable. 
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FIGURE 7: VARIABLES USED IN THE ENDOWMENT AND ANNUITY PORTFOLIO AND THEIR SIGN IN THE AGGREGATE VARIABLE 

VARIABLE CONTRIBUTION TO NET VARIABLE 

Premium Income + 

Taxable Income and Gains + 

Non-Taxable Gains + 

Death Benefits Paid - 

Surrender Payments - 

Partial Surrender Payments - 

Maturity Benefits - 

Annuity Payments - 

Rider Costs - 

Total Commissions - 

Total Expenses - 

Cash Bonuses Paid - 

Taxes Before Bonus + 

Increase in Active Initial Expenses + 

Scenarios 

The case study is based on a range of scenarios comprising a base case and a series of standard Solvency II shock 

scenarios. See Figure 8. To test model robustness, an additional set of out-of-sample scenarios is constructed by 

scaling each shock by a factor of 150%. 

FIGURE 8: AN OVERVIEW OF THE TYPE OF SCENARIOS IN THE EUROPEAN CASE STUDY 

SCENARIO NAME DESCRIPTION 

Catastrophe 0.15% one-year increase in mortality rates 

Expense Maintenance expenses +10% and future expense inflation +1% 

Interest Down Yield curve lowered significantly at short terms, smaller drop at long terms 

Interest Up Yield curve raised significantly at short terms, smaller rise at long terms 

Mortality Permanent +15% to mortality rates for death-benefit contracts 

Disability +35% incidence rates, −25% recovery rates for disability/critical illness 

Lapse Down Lapse rates reduced by 50% 

Lapse Up Lapse rates increased by 50% 

Lapse Mass One-off lapse of 40% (retail) / 70% (group) 

Longevity Mortality rates reduced by 20% for annuity-type business 

 



MILLIMAN REPORT 

Clustering techniques: Innovations and practical implementation 17 October 2025 

Clustering approach 

Next, we provide more detail on the application of the clustering approach, with the calibration based on the five in-

sample scenarios as described earlier. All projections were as of year-end 2023. Contracts were grouped purely 

based on the policy-level cash flows and reserves. 

▪ For the base case: 32 variables consisting of (1) reserves in-force, (2–15) 14 NPVs per variable as of 2023, (16) 

net of the 14 NPV variables, and (17–32) net of the cash flows for each year 2023–2038.  

▪ For each of the other four scenarios: 15 variables consisting of the 14 separate NPV variables and the net NPV 

variable as in the base case. This is illustrated in more detail in Figure 9. 

Illustrative details of the model fit variables for the base case are provided in Figure 9 and for the other four scenarios 

in Figure 10. They show the initial weight, the desired tolerance, and the iterated weight. The highest importance is 

placed on the net NPV variables, which are bolded, and these are matched very closely, but the individual 

components match less closely. In fact, the desired tolerances were not met. It would be important, therefore, to 

make sure that the net NPV is actually a good representation of what is most important to match and that the 

calibration scenarios chosen reflect the types of variation that are expected to be important. This is what we assume 

for the case study. 

FIGURE 9: ILLUSTRATIVE DETAILS ON THE IN-SAMPLE BASE SCENARIO WITH NUMBERS IN EUR MLN 

YEAR VARIABLE INIT. WEIGHT ITER. WEIGHT TOLERANCE SERIATIM  CLUSTER  RATIO 

2023 Reserves in-force 1.00 1.00 0.5% 22,452 22,643 100.85% 

2023 NPV Premium income 1.00 1.00 2.0% 1,989 1,992 100.12% 

2023 NPV Tax. inc. and gains 1.00 1.00 2.0% 4,291 4,384 102.16% 

2023 NPV Inc. init. expenses 1.00 5.36 2.0% 7 7 94.97% 

2023 Net NPV 10.00 40.43 0.1% (13,688) (13,693) 100.04% 

2023 Net cash flow 1.00 1.00 1.0% - - -- 

2024 Net cash flow 3.00 12.17 0.3% (1,283) (1,290) 100.55% 

2038 Net cash flow 3.00 10.58 0.3% (482) (495) 102.75% 
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FIGURE 10: ILLUSTRATIVE DETAILS ON THE OTHER FOUR IN-SAMPLE SCENARIOS WITH NUMBERS IN EUR MLN 

SCENARIO VARIABLE INIT. WEIGHT ITER. WEIGHT TOLERANCE SERIATIM  CLUSTER  RATIO 

Catastrophe NPV Surrender out 1.00 1.00 1.0% 12,903 13,231 102.54% 

Catastrophe NPV Tax. inc. and gains 1.00 1.00 2.0% - - -- 

Catastrophe NPV Inc. init. expenses 1.00 5.36 2.0% 7 7 94.94% 

Catastrophe Net NPV 5.00 20.21 0.1% (13,680) (13,685) 100.03% 

Expense NPV Surrender out 1.00 1.00 2.0% 1,989 1,992 100.12% 

Expense NPV Tax. inc. and gains 1.00 1.00 2.0% 4,291 4,384 102.16% 

Expense NPV Inc. init. expenses 1.00 5.36 2.0% 7 7 94.97% 

Expense Net NPV 5.00 20.21 0.1% (13,688) (13,693) 100.04% 

Interest Down NPV Surrender out 1.00 1.00 2.0% 2,126 2,131 100.24% 

Interest Down NPV Tax. inc. and gains 1.00 1.00 2.0% 2,611 2,673 102.37% 

Interest Down NPV Inc. init. expenses 1.00 4.05 2.0% 3 3 99.60% 

Interest Down Net NPV 5.00 17.57 0.1% (15,778) (15,790) 100.08% 

Mortality NPV Surrender out 1.00 1.00 2.0% 1,981 1,983 100.10% 

Mortality NPV Tax. inc. and gains 1.00 1.00 2.0% 4,272 4,363 102.15% 

Mortality NPV Inc. init. expenses 1.00 8.14 2.0% 7 6 91.73% 

Mortality Net NPV 5.00 15.28 0.1% (13,628) (13,621) 99.95% 

 

Replicating policies 

The application of the replicating policies approach in this case study adopts a starting point consistent with that of 

the clustering approach, using the same variables from the five in-sample scenarios for calibration. Experience shows 

that the replicating policies method performs well when all available information is incorporated into the calibration 

process. Accordingly, the full set of NPVs and annual cash flows for all variables in each in-sample scenario was 

used, without relying on aggregated net cash flow or net NPV values. This approach eliminates the need for any pre-

processing of the raw data. The fit quality of the replicating policies approach is discussed together with the results 

presented earlier in this document. 
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