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The rise in popularity of Python means insurance companies, and vendors, have a growing body of actuaries, 

quantitative developers, and software engineers capable of building innovative and bespoke solutions for both data 

management and modeling. This comes at a time when many of these same organizations are leveraging cloud 

services to maintain data and to execute models, and may be challenged to improve efficiency and better manage 

cloud-related expenses. Additionally, economizing on cloud use can help organizations reduce carbon footprints, 

thereby aligning with sustainability goals. Accordingly, the runtime performance of such models can have a material 

impact not just on turnaround time and the quality of analytics but on operating costs and environmental stressors. 

We believe one potentially powerful tool in the effort to accelerate Python is Numba, a technology for transforming 

Python code to native machine code. Our experience with Numba has enabled Milliman to deliver increased value to 

our clients, through both collaborative development and improved service delivery, and to further enhance that value 

by innovating beyond out-of-the-box capabilities. 

In this paper, we explore the background of Numba as a just-in-time (JIT) compiler to accelerate the increasingly 

popular Python programming language, identifying key benefits and trade-offs inherent in its use. A deeper dive into 

the underlying mechanics of Numba highlights a number of technical challenges, as well as techniques for 

customizing or extending Numba to navigate those challenges. We proceed with a high-level analysis of out-of-the-

box and proprietary solutions for use of basic object-oriented programming (OOP) features in Numba, including 

Milliman-developed technology with potentially superior performance characteristics. Finally, we conclude with the 

thesis that extensive knowledge and expertise with the internal machinery of Numba afford opportunities to improve 

developer efficiency, maximize runtime performance, and minimize cloud-computing costs. 

The Python programming language: A brief background 
The first version of the Python programming language was released 30 years ago, in 1994, after development 

commenced in 1989. The intention of its creator, Guido van Rossum, was to prioritize readability, maintainability, 

simplicity, and consistency. He subscribed to the belief that Python should be easy to learn, free of unnecessary 

complexity, and fun to use.1 

Fast forward to present day, and those founding principles have propelled Python to the top of some very compelling 

rankings. In 2014, it supplanted Java as the primary introductory computer programming language at top U.S. 

universities;2 as of 2018, it is the most popular language for which online tutorials are searched, per the Popularity of 

Programming Language (PYPL) Index;3 it has occupied the top spot in the TIOBE index of programming languages 

since 2022;4 it ranks second behind only perennial front-runner Javascript in a 2024 Stack Overflow developer 

survey, where it also ranks first excluding respondents who are professional developers;5 and in 2024, it overtook 

Javascript as the most popular language on GitHub.6 While the methodology behind some of these studies may open 

the door to debate, year-over-year trends unambiguously support the thesis that adoption of Python has skyrocketed 

over the past 10 years. 

The reasons behind such impressive growth in adoption include a relatively straightforward syntax, a feature-rich 

ecosystem of helpful libraries, expansive online documentation, and developer-friendly tooling—like notebooks that 

facilitate immediate interaction with code—that can reward beginning and intermediate developers with workable 

solutions given modest effort. 

 

1. Quotes attributable to the creator of Python, Guido van Rossum, illuminate his motivation and principles, some of which are catalogued at 

https://www.bookey.app/quote-author/guido-van-rossum. 

2. Guo, P. (2014, July 7). Python Is Now the Most Popular Introductory Teaching Language at Top U.S. Universities. Communications of the ACM. 

Retrieved April 7, 2025, from https://cacm.acm.org/blogcacm/python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities. 

3. PYPL Index (2025, April). PYPL Popularity of Programming Language Index. PYPL. Retrieved April 7, 2025, from https://pypl.github.io/PYPL.html. 

4. Jansen, P. (2025, April). TIOBE Index for April 2025. TIOBE. Retrieved April 7, 2025, from https://www.tiobe.com/tiobe-index. 

5. Stack Overflow. (2024). 2024 Developer Survey. Retrieved April 7, 2025, from https://survey.stackoverflow.co/2024/technology#most-popular-

technologies-language-learn. Note that our citation here excludes HTML and CSS rankings, as these are web presentation technologies often paired 

with Javascript but are not standalone languages for expression of computer logic. 

6. GitHub. (2024, November 22). Octoverse 2024. Retrieved April 7, 2025, from https://github.blog/news-insights/octoverse/octoverse-2024. 

https://www.bookey.app/quote-author/guido-van-rossum
https://cacm.acm.org/blogcacm/python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities
https://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index
https://survey.stackoverflow.co/2024/technology#most-popular-technologies-language-learn
https://survey.stackoverflow.co/2024/technology#most-popular-technologies-language-learn
https://github.blog/news-insights/octoverse/octoverse-2024
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Like C# or Java, Python offers developers the benefits of OOP design and access to a wealth of existing libraries 

that, to name only a few, include data analytics, machine learning, artificial intelligence, network communication, 

web APIs, database integration, and encryption and security. But like VBA or SAS, Python can be coded and run 

interactively, without the rigor of explicitly invoking compilers and other toolchains to transform human-readable 

source code into something runnable. This combination of support for modern development methodology and 

immediate accessibility enables Python developers to build fit-for-purpose solutions rapidly, without necessarily 

compromising good development practices (e.g., separation of concerns, use of polymorphism, rigorous unit  

testing, etc.) or re-inventing wheels. 

The mainstream distribution of Python, known as conventional Python, 

or CPython, is implemented as an interpreter. This means as a Python 

program is run, the CPython analyzes the source code and then, 

following the program flow of control, looks at each Python instruction 

and executes a series of internal operations to achieve the correct 

interpreter state. A compiled program, on the other hand, is converted 

from source code into native machine-level operations before the 

program is run; by the time such a program is executed, the 

instructions needed to run it are already at machine level and require 

no additional interpretation. This distinction makes conventional Python 

(CPython considerably slower than compiled C or C++. 

CPython divides the interpretation process into two parts. The first part 

analyzes Python source code and translates that code into a more 

convenient representation of the program called bytecode. Bytecode is 

a more granular expression of logic than, say, a single line of Python 

code, so it offers a more compact representation of simple operations 

than the original source code, which might carry programmer 

comments and other whitespace, and must be validated for correct 

syntax. Nevertheless, even though the original source code is replaced 

by more economical bytecode, such code must still be interpreted. The 

second part of the interpretation process, then, is the reading of 

bytecode and the translation of those lower-level Python instructions 

into machine-level operations as the program is run. 

Numba: A JIT compiler for Python 
To mitigate the performance penalty inherent in CPython, the Numba open-source project, initiated in 2012 by Travis 

Oliphant, attempted to apply the process of compilation (like with C or C++) to eligible parts of an otherwise-

interpreted Python program. Because the compilation process is performed on demand, as the program is running, 

it is a flavor of compilation known as just-in-time, or JIT. JIT compilation is a widely employed technology across 

many programming languages, including Julia, Lua, and Rust. (For more about Julia, refer to the 2024 Milliman 

publication An actuary’s guide to Julia.)7 

NUMBA PROCESSING OVERVIEW 

FIGURE 1: NUMBA PROCESSING FLOW FROM PYTHON SOURCE CODE TO MACHINE CODE 

 

 

7. See https://www.milliman.com/en/insight/an-actuary-guide-to-julia-use-cases-performance-benchmarking-insurance. 

      
             

      
          

                          

    
            

Languages like C# and Java are 

also compiled like C or C++, but 

rather than targeting machine-level 

instructions directly, a similar set of 

virtual machine instructions are 

used to represent the compiled 

program in a more portable way. 

These hardware-independent 

virtual machine instructions are 

then translated to hardware-

specific machine instructions at 

runtime, in a process reminiscent 

of an interpreter; however, because 

the virtual machine instructions are 

at much closer parity to the native 

machine instruction set than the 

original source code, performance 

tends to be competitive with C or 

C++, and thus still much faster than 

interpreted Python.’ 

https://www.milliman.com/en/insight/an-actuary-guide-to-julia-use-cases-performance-benchmarking-insurance
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Numba supports JIT on a function-by-function (or, in some cases, class-by-class) basis using Python decorators.  

A Python decorator is a shorthand way of giving one body of Python code an opportunity to access and potentially 

modify another. By applying Numba decorators, a Python programmer can signify that select parts of the program 

should be handled by Numba rather than the default Python interpreter. This makes it relatively straightforward to 

undertake integration of Numba with an existing Python program. 

Once Numba is aware of each function to be JIT-compiled, it first translates the CPython bytecode described in the 

previous section into an intermediate representation (IR) specific to Numba. This Numba IR is then modified and 

analyzed to infer the actual data types required for every function parameter and variable. Such inference is required 

because, while Python is flexible with respect to data types (which CPython resolves as the program is interpreted 

and run), machine-level compiled code must commit to specific data types in advance. If type inference succeeds, the 

corresponding typed Numba IR is further modified to leverage automatic parallelization and to apply a series of 

optimizations. At this point, the Numba IR is ready to be compiled to machine-level code. 

To perform the final stage of compilation, Numba relies on an 

independent, open-source project dedicated to the development of 

tools useful for compilers. This suite of tools, called LLVM, includes a 

compiler library capable of translating an LLVM-specific IR, known as 

LLVM IR, into the final hardware-specific machine code that is 

ultimately executed by the operating system. This compiler library is 

also capable of applying a host of optimizations intended to boost 

performance by increasing efficiency without compromising behavior. 

To invoke the library, Numba must first translate, or lower, the typed 

Numba IR into LLVM IR. Once LLVM has compiled LLVM IR into 

machine code, Numba can substitute the resulting implementation for 

the original Python function. 

Ideally, subsequent invocations of the same Python function would 

short-circuit the expense of compiling bytecode to machine code. 

However, recall that Python functions are flexible with respect to 

parameter data types, whereas machine-level code is bound to 

specific data types. To account for the possibility of different types 

passed to the same function, Numba effectively prepends logic to 

each JIT function that performs a runtime analysis of the types used in 

the current call. If this analysis is compatible with a type-specific 

version of the function that has already been compiled, then short-

circuiting is indeed applied; otherwise, Numba must repeat the 

translation, type inference, and lowering steps described previously to 

obtain a new type-specific version. Numba support for compilation 

and reuse of different type-specific implementations of the same 

Python function is known as polymorphic dispatching. 

BENEFITS OF NUMBA 

The most obvious advantage of Numba is runtime performance. Numba-compiled code can run approximately one to 

two orders of magnitude faster than its interpreted counterpart. (See OOP Paradigms for some analysis of 

performance using a reference model developed for this paper.) Even taking into consideration the time required to 

invoke the Numba and LLVM compiler chain, plus the overhead of dynamic dispatching, this boost in performance is 

impressive. The value proposition is even more compelling when the original Python code is already compatible with 

Numba constraints, in which case only the trivial application of a decorator is required. (As noted subsequently, 

however, this is not always the case.) 

LLVM, developed in 2000, is a 

broadly adopted technology. 

Organizations including AMD, 

Apple, IBM, Intel, and Nvidia 

leverage LLVM as the core of their 

C, C++, Objective-C, CUDA, 

OpenCL and Fortran compilers. 

LLVM is also used as the basis for 

JIT compilation in many 

programming languages other than 

Python, including Julia, Lua, Rust, 

Swift, and Mono. LLVM was 

originally an initialism for low-level 

virtual machine, but has distanced 

itself from the initialism and has 

evolved to represent the full name 

of the project. The use of LLVM in 

Numba is accomplished through a 

Numba subproject called llvmlite, 

which exposes a subset of the 

native LLVM API, implemented in 

C++, to Python. 
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A related advantage of Numba is support for compiling code to run on graphics processing units (GPUs). GPUs are 

specialized devices capable of running thousands of concurrent computational procedures in parallel, opening the 

door to significantly more throughput per unit time than possible on conventional central processing units (CPUs). 

CUDA, a technology developed by Nvidia to express GPU algorithms using the same concepts and structures as 

traditional CPU-based algorithms, is integrated with Numba proper and with the LLVM compiler suite. This integration 

exposes functions to Python programmers to explicitly move data to and from the device and allows JIT-decorated 

functions to run (as kernels) on the GPU. Well-designed kernels can accelerate processing by one or two orders of 

magnitude compared to their CPU counterparts. 

Performance boosts attributable to Numba can dramatically reduce turnaround time for Python programs. This has 

the potential to deliver business value by obtaining results in less elapsed time and potentially freeing up computing 

resources for other use. Additionally, when contemplating use of Python in the cloud, where resources like CPU time 

are metered, Numba can also be viewed as a mechanism for reducing cloud expenditure by way of corresponding 

reductions in resource retention time. 

The degree to which Numba can deliver reductions in time and cost is dependent on many factors, including how 

much Python code qualifies as jittable, what proportion of time is required for input/output (I/O), what efficiencies are 

already realized in the original Python logic, and the extent to which compiler optimizations can accelerate generated 

code. Some of these considerations are addressed in subsequent sections of this paper. 

NUMBA TRADE-OFFS 

It was noted previously that, when applicable, the realization of substantial performance gains in exchange for the 

minimal effort required to apply a decorator is a clear and obvious win. However, this best-case scenario is not 

always realistic. Numba simply cannot translate all possible Python code into machine code; instead, there are  

limits on what Python constructs are eligible for JIT compilation. These limits mean not all existing code can  

be accelerated. 

To work around such limitations, it may be necessary in some 

cases to rewrite Python logic to accommodate Numba constraints 

or, in other cases, to abandon compilation altogether. There are 

also cases where Python code can be compiled only if 

experimental features of Numba are leveraged. Experimental 

features are those that are either not fully developed and tested 

or whose interfaces and behaviors are not fully decided, and thus 

subject to potentially radical change. In the former case, the risk 

of incorrect program behavior is elevated, while in the latter, 

future iterations of Numba may require significant rewrite or even 

a retreat to interpreted Python. 

Another potential work-around beyond use of experimental 

Numba features is to develop extensions to Numba that can 

deliver capabilities not available out of the box. Numba, to its 

credit, contemplates this type of extensibility, and there is at least 

some official documentation available on how to leverage a 

number of these extension points. (In fact, most of the extension 

mechanisms available to Numba users are also leveraged within 

Numba itself to support its higher-level features.) However, the 

technical knowledge required to take advantage of Numba 

extensions is formidable and likely to be accessible to only a 

small subset of Numba users. 

The remainder of this paper addresses some examples of challenges in the use of Numba and explores approaches 

to mitigating those potential impediments. 

The thesis that Numba extension 

development is limited to a small 

population of Numba users is 

supported by a search of public GitHub 

repositories. At the time of writing, 

results suggest Numba extension 

interfaces are imported at a rate of less 

than 2% across Python source files in 

which any Numba import occurs. Fewer 

than 1% include imports related to 

LLVM code generation. A cursory 

review of these results suggests 

Numba extension references are 

concentrated in projects specifically 

intended to integrate existing 

technologies with Numba, leading to a 

much smaller proportion of these 

extensions in the general population 

than file-count statistics indicate. 
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Challenges in Numba adoption 
OBJECT-ORIENTED PROGRAMMING (OOP) 

Python is an OOP language, and as such, code is commonly organized accordingly. This enables developers to 

leverage OOP principles like polymorphism, inheritance, and encapsulation to build solutions that can be easier to 

read and understand, are less prone to disruption when modified, and can facilitate efficient reuse of code. 

Unfortunately, Numba does not have seamless 

support for compiling Python code that makes use of 

classes. Instead, to preserve some class-like 

behavior, namely, the encapsulation of code and 

data into a single object, Numba offers an 

experimental feature called jitclasses. Applying the 

jitclass decorator to a Python class signifies that the 

associated methods are to be compiled and enables 

the programmer to declare the names and data 

types of associated member variables. This 

requirement to prescribe member and types differs 

from the traditional Python paradigm whereby 

attributes can be assigned to an object on-demand 

(customarily, concentrated in the __init__ method) 

and with no constraints imposed on the data types 

assigned to those attributes. 

Methods in jitclasses are subject to the same 

language limitations as standalone functions to be 

compiled by Numba. Additionally, Python classes to 

be compiled via Numba jitclass are forbidden from 

participating in subclassing, meaning that 

functionality from one class cannot be inherited in 

another. This limitation not only inhibits code reuse 

but also precludes traditional polymorphism, where 

two or more objects that share a common ancestor 

can be used interchangeably (and with distinct 

behavior) any place the ancestor may be used. This 

follows from the fact that no concept of ancestry can 

apply when inheritance is unsupported and from the 

requirement that the type of every variable must be 

resolved by Numba at compile time. 

In addition to the language-related limitations of jitclasses, there is also an architecture-related limitation: jitclasses 

work (as an experimental feature) when compiling for CPU but are not yet supported when compiling for GPU. 

DEBUGGING 

Interpreted languages lend themselves to interactive debugging more readily than compiled languages. This is 

because an interpreter is required to explicitly track flow of control through program source code, as well as the scope 

and currently assigned value of all variables and arguments. The information needed by a debugger to expose the 

intermediate program state is already represented within the interpreter as it advances through program instructions. 

Conversely, although compiled code is derived from source code, this derivation is typically far removed from the 

original structure of the program as expressed by the developer. For example, named variables are replaced by 

pointers to memory addresses or hardware registers, and constructs like function calls or loops may be transformed 

by the compiler to the point they are no longer identifiable.  

Numba is not entirely without polymorphism. The 

types of arguments and variables for a particular 

Python function are permitted to change with each 

call to that function, but for each such call, the types 

must be known by Numba at the time the call is 

compiled. Numba will compile a unique version of 

the called function for each combination of 

applicable data types and then reference that 

particular version as it generates machine-level 

code. The relationship between a single CPython 

function and potentially many type-specific compiled 

versions of that function is known as polymorphic 

dispatching. This type of polymorphism is more 

closely related to the concept of template functions 

in C than to the OOP concept of inheritance 

between C classes. The former depends on the 

resolution of types at compile time, whereas the 

latter relies on compiler-generated tables of function 

pointers (called virtual tables or  

v-tables) to jump to different type-specific 

implementations at runtime. The distinction between 

the two in C++ is quite clear-cut, but because 

Numba compiles on the fly, the compile-time nature 

of polymorphic dispatching is still driven by runtime 

conditions in the Python interpreter. Nevertheless, 

setting aside interpreter runtime and contemplating 

the difference between compile time and compiled-

code runtime can be a useful framework for 

understanding the nuances of Numba. 
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However, for a debugging session to be useful to the developer, the debugger must be capable of exposing program 

state in terms of those original constructs, translating from the hardware domain back into the source code domain. 

For example, the compiler can export supplemental information as it transforms source code to machine code, and 

the debugger can then import that additional information for use in translating machine code back to source code. 

However, even with that supplemental information available, it can still be all but impossible to decipher modifications 

applied by compiler optimization; thus, either the debugging session lacks complete information (for example, some 

breakpoints cannot be applied to some lines of source code) or two versions of compiled output must be generated 

and maintained (one optimized for normal execution and one devoid of optimization to accommodate debugging). 

Numba includes support for emitting supplemental information in a format that can be consumed by the GNU Project 

Debugger (GDB). The GNU Project is the open-source initiative under which the Linux operating system is 

developed, along with a myriad of related tools and programs, including the GNU Compiler Collection (GCC) and its 

companion debugger, GDB. While GCC and GDB are common to many compiled programming languages supported 

by the GNU Project, most prominent of which are C and C++, Python is not one of them; instead, interpreted Python 

is normally debugged using PDB, the Python Debugger. This means that two different debugging solutions are 

applicable when using Python and Numba: PDB for interpreted code and GDB for compiled code. 

Use of GDB forfeits the Python-friendly features of PDB and instead requires the programmer to operate at a lower 

level of abstraction, closer to the machine-level code generated by Numba than the original Python source code. 

Although the use of supplemental debug information emitted by Numba facilitates some conveniences with respect to 

Python function and variable names, such as the ability to set breakpoints on named functions or to inspect values 

assigned to primitive Python variables, more complex data structures, like lists, are not trivial to inspect, and default 

optimization levels at compile time can undermine the integrity of the debug information. Additionally, the skill 

required to operate GDB is considerable, generally requiring command-line interaction and familiarity with concepts 

like stack frames and memory layout, concerns that would not apply to the use of PDB with interpreted Python. 

Fortunately, in many cases, the technicalities of machine-level abstractions and use of GDB can be avoided. This is 

because the behavior of Numba-compiled code is usually faithful to the behavior of the Python source code to which 

it is applied. Accordingly, a developer can follow the dichotomy described previously of using separate execution and 

debugging programs by temporarily disabling JIT compilation, working with pure Python code during the debugging 

cycle (using PDB and possibly a front-end, like Microsoft Visual Studio Code), then restoring JIT compilation after the 

debugging exercise is complete. This enables GDB to be reserved for more esoteric cases, like debugging Numba 

proper or the by-product of Numba extensions (like intrinsic functions, described subsequently). 

ERROR DETECTION AND REPORTING 

To its credit, Numba is engineered to report any compilation problems it encounters with as much detail as possible, 

including reference to the applicable Python source code. Often, this error-reporting mechanism is both informative 

and accurate and is essential to quickly correcting source-level problems. However, there are cases where Numba 

error reporting falls short of the apparent intention, leading to messages that are obscure and unhelpful or, worse,  

to a red herring. 

One area where compile-time errors can emerge without the benefit of helpful error messages is type inference. 

Recall that Numba must resolve every Python variable, function argument, and return value to a concrete data type 

when generating code for the embedded LLVM compiler. Because interpreted Python does not require the 

programmer to express this type information the same way a language like C, C++, Java, or C# would, the work 

required to achieve resolution can be quite extensive as type information is propagated and validated throughout 

potentially thousands of variables. If Numba encounters a particular case where type information is either unresolved 

or inconsistent, then compilation fails, and a corresponding error is emitted. 

A simple example of a type-inference error is given in Figure 2. 



MILLIMAN REPORT 

Python and Numba 7 April 2025 

Techniques for maximizing acceleration   

FIGURE 2: EXAMPLE OF A TYPE-INFERENCE ERROR 

 
from numba import njit 
 
@njit 
def foo(n): 
    return 0.0 if n % 2 == 0 else 1 
 
@njit 
def bar(n): 
    return (n, -n)[foo(n)] 
 
print(bar(7)) 

 

In this contrived example, the return value from foo is either 0.0 or 1, the former of which is a floating-point constant 

and the latter an integer. The actual return value is determined by whether the input argument n is even or odd. The 

calling function bar uses the return value to select between two elements of a tuple, the first of which is the input 

argument n and the second of which is its negative. Finally, the print statement calls bar with a value of 7. 

Interpreted Python would evaluate 7 in the call to foo as odd, return integer 1, and compel bar to select the second 

(counting from zero) element of the local tuple, -7, for display via print. 

With the Numba decorator njit applied to both foo and bar, however, an attempt to run the code in Figure 2 

generates an error, shown in Figure 3. 

FIGURE 3: EXAMPLE OF A TYPING ERROR AS A CONSEQUENCE OF TYPE INFERENCE 

 
Traceback (most recent call last): 
  File "numba_error_tests.py", line 11, in <module> 
    print(bar(7)) 
  File "lib\site-packages\numba\core\dispatcher.py", line 468, in _compile_for_args 
    error_rewrite(e, 'typing') 
  File "lib\site-packages\numba\core\dispatcher.py", line 409, in error_rewrite 
    raise e.with_traceback(None) 
numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend) 
No implementation of function Function(<built-in function getitem>) found for signature: 
 
 >>> getitem(UniTuple(int64 x 2), float64) 
 
There are 22 candidate implementations: 
  - Of which 22 did not match due to: 
  Overload of function 'getitem': File: <numerous>: Line N/A. 
    With argument(s): '(UniTuple(int64 x 2), float64)': 
   No match. 
 
During: typing of intrinsic-call at numba_error_tests.py (9) 
 
File "numba_error_tests.py", line 9: 
def bar(n): 
    return (n, -n)[foo(n)] 
    ^ 

This typing error is a consequence of type inference. Specifically, Numba determines at compile time that the return 

type of foo should be floating point, as this accommodates both possible return values of zero and one by promoting 

the integer 1 to 1.0. This determination is made before the specific value of n is known, unlike in interpreted Python, 

where no constraints on the return type of foo are imposed before it is called. 
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After Numba commits to a return type for foo, the tuple indexing logic in bar is forced to work with a floating-point 

index value. However, floating-point indices are not supported. At this point, Numba generates a typing error to  

reflect this. 

Note that interpreted Python is also incapable of indexing a tuple by floating-point value. Calling bar with a value of 8, 

for example, instead of 7, induces the interpreter to select 0.0 as the return value from foo at runtime. In this case, 

Python raises a TypeError exception from bar         ff     f “tuple indices must be integers or slices, not float.” 

In this very simple example, the contrived error is easily rectified by replacing the constant 0.0 with 0 in foo. (In fact, 

the entire dependency on bar is readily removed by indexing with the expression n % 2 in foo, which resolves to 

integer 0 or 1 without an if-expression or use of any constants.) 

However, the example in Figure 3 does illustrate that the reach of type inference crosses function boundaries; in the 

case of a more realistic code base, this could span dozens of nested function calls, rather than just the one illustrated 

in Figure 3. This example, while exceedingly simple, also highlights the relative complexity of Numba error messages: 

the message in Figure 3 includes a stack trace into Numba libraries rather than the program source code and makes 

reference to built-ins, getitem, signatures, UniTuple, candidates, and intrinsic-call. Understandably, developers 

unfamiliar with these terms may be challenged to draw meaningful conclusions about what the message actually 

conveys and, more importantly, in how to pursue a fix.          s ,     f x f   “  pl        s   s         g  s    sl   s, 

    fl   ”        s   s l        v  . 

Another source of potentially unhelpful or misleading error messages is the lowering phase of compilation, during 

which Numba translates its intermediate representation (IR) of program code to that required by LLVM. In theory, any 

problems with source code or type inference should be resolved before lowering, but in practice, this is not always the 

case, particularly for code that is structurally complex or that leverages extensions to Numba that can effectively 

bypass the earlier guardrails. Although Numba maintains sufficient context to associate lowering errors with source 

code, the very nature of a lowering failure suggests a bug in Numba proper, defects in Numba-compatible libraries 

(like Numpy), or possible misuse of Numba extensions in the immediate code base. 

In all such cases, the association with Python source code may be a helpful hint but is unlikely to be the origin of any 

root cause. Unless Numba extensions are in scope, a lowering error may not be fixable in code at-hand, leading 

instead to a frustrating cycle of internet searches and trial-and-error changes to Python code in the hope an alternate 

implementation can    f        sk          ,                  f ,             s . 

COMPILER OPTIMIZATION 

As noted previously, Numba compilation operates first at a Python-specific level, advancing Numba IR step by step, 

        ,  f    l w    g           -specific level, engages the LLVM compiler to convert LLVM IR to optimized 

hardware instructions. This pipeline includes numerous touchpoints, some of which apply a similar concept at the two 

levels of representation (namely, Python versus machine). 

An example of this duality is the process of function inlining, whereby a compiler might decide that, rather than 

preserving a call from one function to another, it will be more efficient to duplicate the code of the called function 

directly inside the calling function. Numba applies function inlining both at the Python level (where the intermediate 

representation is Numba IR) and at the machine level (where the intermediate representation is LLVM IR). The 

former is governed by options in Python source code expressed as decorator parameters, while the latter is 

performed entirely at the discretion of the LLVM compiler (based on a single high-level optimization setting, for  

which the maximum value of three is the default). Naturally, if Numba IR inlining is triggered for a particular  

function call, LLVM inlining will not apply, since the caller/callee relationship is already lost by the time  

LLVM IR processing commences. 
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Taken as a whole, transformations applied by both Numba and LLVM 

optimizers can lead to code that is more compact and/or faster than a 

naive, non-optimized translation. However, as noted in Debugging, 

these optimizations can also lead to morphological differences 

between source and compiled code. Moreover, small changes in that 

source code can, by virtue of complexities inherent in optimization, 

realize changes in final machine code that are effectively 

unpredictable. These differences in compiled code do not lead to 

different computational outcomes, as this would violate the  

principle of optimization in the first place, but can lead to  

variations in performance. 

This opacity can hamper reasoning about the performance impact of 

source code changes, even to the point where modifications intended 

to reduce computational work actually increase runtime. This is 

presumably because the sequence of optimizations applied to the 

heavier workload achieves greater net efficiency than the sequence 

applied to the lighter. 

In addition to the representation of machine-level instructions after 

compile-time optimization, performance may also be influenced by 

the order and conditions under which flow-of-control instructions are 

executed at runtime. This is because of the way in which CPUs 

endeavor to accelerate performance by developing branch prediction 

rules designed to minimize cycles for the more-frequently observed 

outcomes. (GPUs, on the other hand, do not employ branch 

prediction because the underlying architecture effectively anticipates  

that the cycle-cost of both branches will be incurred.) 

Numba exposes functionality to programmatically access both the LLVM instructions Numba prepares during 

lowering and the ultimate machine-level output (in assembly language format). It also supports use of several 

environment variables that can trigger the printing of Numba and LLVM IRs as the compiler operates on source code. 

These facilities open the door to skilled analysis of the intermediate and final code. However, such analysis requires 

extensive subject matter expertise in Numba internals, LLVM, and/or assembly language and, as such, is of limited 

value to most Python developers. And even with such expertise, the volume of information to analyze can be quite 

formidable even for a relatively small Python code base, and for some transformations (like LLVM optimization) full 

reverse-engineering is impracticable. Detailed reasoning about the relationship between Python code and  

Numba-compiled machine code can, even under the best of circumstances, be tedious, time-consuming,  

and limited to the purview of those with compiler and hardware-level expertise. 

Fortunately, the demands for this level of reasoning are likely limited to highly refined performance-tuning or simple 

curiosity; for the vast majority of Numba users, fire-and-forget application of JIT decorators is probably sufficient to 

achieve desirable outcomes. 

COMPILATION TIME 

JIT compilation, by its very nature, incurs the cost of compilation at the time an interpreted function is called. 

Accordingly, the time to translate source code into machine code, including multiple passes at IR transformation and 

aggressive optimization, is added to the execution time for the compiled function on the first call. This cost introduces 

a drag against the performance benefits of executing machine-level code instead of interpreting source code  

(or, more accurately, bytecode). However, for each distinct combination of data types for input arguments and return 

values, Numba pays the price only once; subsequent invocations of a jitted function after the first call bypass the 

expense of compilation and reuse already-generated machine code immediately. 

The primary objectives of inlining at 

the Numba IR and LLVM IR levels 

differ. The former is intended to 

facilitate type inference, where 

types inferred for variables in the 

calling function can be used to 

disambiguate types for inlined 

variables that would otherwise be 

unresolvable. The latter is intended 

to accelerate runtime performance 

by reducing the overhead of a true 

function call, which typically 

involves copying argument values 

for use in the called function, 

copying back return values from the 

called function to the caller, and 

allocating and releasing memory for 

variables local to the callee. 

However, there are cases when 

inlining Numba IR yields better 

performance than deferring the 

possible inlining of LLVM IR. 
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Note that reuse is predicated on matching already-compiled versions of a function to the data types inferred for the 

call, since different data types require execution of different machine code. When calling a jitted function from 

interpreted Python, this means Numba must still perform type inference (described earlier in Numba Processing 

Overview) in order to determine whether an already-compiled version is available or not. The time to perform type 

inference alone is necessarily faster than a full compilation but can still represent a sizeable proportion of that time. 

Accordingly, every call from interpreted Python to compiled Python incurs a performance penalty, as the prevailing 

data types must be resolved, even when the corresponding type-specific function has already been compiled.  

(Every call from compiled Python to compiled Python, conversely, incurs the cost of type inference for the callee  

only one time for each type-distinct caller.) 

Except in the most extreme edge cases, the performance benefit of running compiled code can be expected to 

significantly outweigh the costs associated with type inference and one-time compilation, particularly for jitted 

functions called in loops or from multiple sites. 

One additional factor that can influence the trade-off between the time to compile versus accelerated execution is 

inlining. (See Compiler Optimization for more on inlining.) When one jitted function is called from another jitted 

function, and Numba inlining is enabled, the code (in Numba IR form) of the called function is essentially inserted 

directly into that of the calling function. This has the effect of increasing the size and complexity of the calling  

function, which in turn can amplify the time and resources required to compile it. Inlining also precludes reuse of 

already-compiled functions, since Numba inlining operates at a higher level than machine code, so called functions 

are effectively recompiled for each instance of an inlined call. 

Numba inlining is intended8 to help with type inference more than runtime performance (whereas LLVM inlining is, 

conversely, intended to help exclusively with runtime performance). However, there are cases where aggressive 

Numba inlining does indeed yield better runtime performance. Pursuit of performance improvements by way of 

Numba inlining can then inflate compilation time because called functions are subject to recompilation for every 

instance in which they are inlined. For code bases with many levels of nested function calls, a single top-level 

function call will lead to recompilation of all the functions called directly or indirectly from that top-level call. 

The impact of compilation time is arguably most significant when it materially extends development time through 

longer coding and testing cycles; this slows development progress and incurs opportunity costs for skilled  

(and presumably limited) human resources. To strike a balance between accelerated development and accelerated 

runtime, it may be helpful to organize Python source code such that JIT functionality can be conveniently disabled 

while actively changing code. (This technique is also potentially useful in the context of debugging, as noted in 

Debugging.) Similarly, if compile times during development are acceptable with inlining disabled but excessive with 

inlining enabled, then JIT decorators can be modified to turn inlining on or off. For even more granular control,  

Python cost functions can be implemented to decide programmatically whether to inline; such functions can take into 

consideration some indicator as to whether compilation is running under a development context or not. Use of cost 

functions, however, requires significant knowledge about Numba internals, including how functions are represented 

using Numba IR. 

If compile time is problematic more universally—that is, not just within development iterations—Numba currently 

offers an alternative to JIT, namely, ahead-of-time (AOT) compilation. AOT compilation is similar to how languages 

like C or C++ work, where translation from source code to machine code occurs before execution, and the outputs of 

compilation are saved to disk; these machine-level artifacts are then restored from disk at execution time, without any 

runtime performance penalty for compilation. Numba AOT applies the Numba compilation process to designated 

functions and then saves compiled versions as a Python extension module; this module can then be imported into 

future instances of the Python interpreter, potentially on different systems, to facilitate access to precompiled code. 

  

 

8. See https://numba.readthedocs.io/en/stable/developer/inlining.html. 

https://numba.readthedocs.io/en/stable/developer/inlining.html
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AOT compilation has the advantage that compile time is removed entirely from runtime, and it is possible for Python 

processes to benefit from Numba without requiring Numba to be installed on the runtime system. However, because 

type inference is not possible when code is compiled a priori, developers are obliged to decorate compiled functions 

with all required type information explicitly. Additionally, because compiled code may be run on a system different 

from that used to perform compilation, AOT compilation is compelled to generate more generic code than JIT, 

which—with knowledge that code will run where it is compiled—can optimize to specific hardware. This means that 

AOT-compiled Python code may not attain the same performance as JIT-compiled versions of the same code. 

As of Numba version 0.57.0 (June 2023), the implementation of AOT functionality described previously is scheduled 

for deprecation. It will not, however, be removed until such time as an alternative implementation is made available 

(and until both implementations have coexisted for at least two Numba releases). This means work may be required 

to maintain AOT functionality as the details change, but some AOT capability is certain to be available for any 

foreseeable release. 

Extending Numba 
As noted previously, use of Numba can introduce a number of challenges in exchange for accelerated performance, 

at least some of which can be mitigated in part or in whole by work-arounds. Such work-arounds might include 

forgoing some features of the Python language, accepting risks associated with experimental features, or disabling 

JIT compilation (or specific optimizations, like inlining) on a temporary basis. 

However, Numba offers another way to address challenges besides seeking work-arounds: customizing the way in 

which Numba itself works. This is accomplished by developing code that modifies Numba behavior by way of 

extension points. Implementing Numba extensions generally requires advanced knowledge of Numba internals, and 

not every challenge can be addressed via customization, so extensions are not a panacea. But, as demonstrated in 

the sections that follow, they can be a very useful resource in the developer toolbox. 

The sections that follow describe some of the mechanisms Numba exposes to facilitate customization and identify 

how those mechanisms might be leveraged. 

EVENTS 

Numba exposes an Event API that enables user-supplied Python code to receive notification as the compilation 

p    ss p  g  ss s. W  l   s   f    s A      s ’    p w    s               f     p l     —it is essentially a  

read-only mechanism—it can be useful for gaining insight into what steps are taken and, importantly, how long those 

steps take. 

Consider the case of Python code calling into jitted functions. As described previously, Numba will undertake 

compilation on the first call to a jitted function (for a particular arrangement of argument and return types), then 

bypass compilation on subsequent calls (for the same argument and return types). By wrapping each such call with a 

timer, Python code can potentially calculate how long the called function requires to be compiled; subtracting the 

elapsed time for any call after the first from the elapsed time of the first should represent the extra time allocated to 

compilation alone. 

There are, however, several deficiencies with this technique. First, it requires at least two calls into the function of 

interest, with distinct treatment for the first and subsequent calls. This means that the Python code base must be 

organized to isolate calls and that those calls be predictably ordered. Because this is not always trivial, a general 

approach is to insert an extra call early in the flow of control, specifically to isolate the first-call time. If the second  

call is not easily isolated, then this same approach may be applied again, inserting a second extra call to isolate the 

execution-only time. The result is a code base that incurs the expense of one or two function calls just to compute 

compilation time. 

Secondly, wrapping calls in timers, and potentially isolating those calls with otherwise-unnecessary invocations, does 

not scale well. If multiple top-level functions are of interest, individual treatment and isolation can be unwieldy.  
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Furthermore, any approach that presupposes function-call hierarchy, or assumes isolation calls are free of side 

effects, is inherently fragile. Developers who make changes in the jitted code base must remember to revisit 

compilation-timers to either verify that isolation calls are properly ordered and do not change program behavior or, 

conversely, update those calls to restore proper timing logic. 

Additional complexities with timer-wrapped calls 

include the possibility of type changes across 

calls (since first-time actually applies per function 

for specific input and return data types), variations 

in execution time between first and subsequent 

calls not attributable to compilation, and limits in 

granularity with respect to compilation steps 

(since only overall compilation time is inferred). 

A more robust technique than introducing timers 

and isolating top-level function calls is to 

capitalize on the Numba event architecture. 

Under this paradigm, a Python listener object is 

registered with Numba early (before any jitted 

function calls), after which Numba calls methods 

on this object each time it initiates or finishes 

compilation (or a constituent compilation pass). 

By maintaining timer state inside the object, and 

by interrogating parameters passed by Numba to 

track compilation progress, compilation time can 

be calculated without isolation of calls, without a 

priori knowledge of call-order, without additional 

runtime allocated to extra calls, and without code 

maintenance obligations elsewhere (besides the 

class implementation and one-line registration). 

Additionally, because Numba events differentiate 

between different compilation steps, the event 

listener is empowered to attribute elapsed time in 

several different ways: it can track by individual 

function or by the program in totality, by individual 

compiler pass or compilation overall, or both. 

EXTENSION APIS 

Numba empowers developers to introduce functions and types not possible strictly through the JIT compilation of 

decorated Python functions. Python APIs to access these capabilities are exposed by a Numba extensions module. 

One example of extending Numba is support for overloading, where one of multiple implementations of a function is 

selected by the compiler based on the types of arguments passed to that function. This behavior is common to many 

programming languages, including C++, Java, and C#, but is not generally applicable in languages like Python, 

where argument types are resolved by the interpreter only when needed and not at function call boundaries. 

However, since jitted functions in Numba require inference of concrete types for every variable, argument, and return 

value, overloading of functions in this context becomes possible. 

A developer implements Numba function overloading by registering a custom Python function with Numba under the 

name of the function to be overloaded. During compilation, Numba then calls this registered function when it 

encounters a call to the overloaded function, passing information about the specific types used in that call. The 

developer-supplied function can inspect that type information to select a suitable implementation for the overloaded 

function or decline to select an implementation; in the latter case, Numba will continue to search for an 

implementation, possibly interrogating other registered functions for the same overload. 

Numba exposes yet another pathway to obtain compiler 

timing information. When a function is compiled, 

Numba internally measures the time allocated to each 

compiler pass and then saves those results as 

metadata attributes on the corresponding dispatch 

object. This approach obviates the developer from any 

code changes to activate timing (including even the 

one-line registration required for event listening) and, 

like the event-listening technique, avoids the overhead 

of isolation calls, eliminates risk of fragility, and 

operates at the granularity of individual functions and 

compiler passes. One differentiator, however, is 

retrieval of timing metrics. Using events, it is possible to 

accumulate information on the population of jitted 

functions as they are compiled and then report on those 

functions or derive aggregated timings in one place 

(i.e., the listener object). Use of function metadata, 

however, requires additional work to catalogue the 

functions actually compiled, such as using a hybrid 

approach (i.e., listening to events in order to inventory 

the population of jitted functions), maintaining an out-of-

band list of contributing functions manually, or wrapping 

or modifying function decorators to harvest a record of 

compiled functions on the fly. Only after such a 

catalogue is available can reporting code then 

interrogate per-function metadata to generate detailed 

or aggregate timings. 
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Numba overloading may also be used to implement methods, rather than just standalone functions, for types about 

which Numba already has knowledge. Similarly, developer-supplied functions may be registered with Numba to 

implement read-only attributes on such types. 

The extensions described previously can be implemented with minimal working knowledge of Numba internals, using 

only Python code to implement both the type-checking and implementation-selection logic called by Numba at 

compile time, as well as the body of the function to be compiled and called at runtime. However, with additional 

knowledge of LLVM, including the instruction set used to express LLVM IR, a developer can also implement functions 

at the virtual-machine level directly, rather than starting with Python source code and relying on the Numba compiler 

to obtain LLVM IR. Such functions, callable from high-level source code but implemented using machine-level 

instructions, are called intrinsic functions (or just intrinsics). The concept of intrinsic functions is also leveraged in 

many C and C++ compilers, including those maintained by Microsoft, Intel, and the GNU Project, as well as in the 

Java HotSpot JIT compiler. 

To implement an intrinsic function in Numba, a developer registers a custom function associated with the intrinsic 

function name. This function—as was the case for overloading, described previously—is responsible for supplying 

Numba with an implementation for each call encountered during compilation. However, unlike the overloading 

mechanism, the implementation is expressed as a sequence of LLVM instructions rather than a CPython function to 

be compiled. The registered function is implemented in Python, but its output is LLVM IR. 

The technique of implementing Python code to generate LLVM IR can also be leveraged to introduce entirely new 

object types accessible to jitted code. This is accomplished by extending both the typing system, of which type 

inference is a part, and the lowering process, in which LLVM IR is generated. Numba exposes APIs that enable 

developer code to influence typing by registering new types, associating those types with functions (including object 

initializers), and mapping those types to one or more Python datatypes for purposes of type inference. Functions and 

read-only attributes related to custom types can then be implemented via developer-registered lowering functions 

responsible for generating LLVM IR directly. 

Additional extension points accommodate custom 

type-casting (i.e., automatic conversion from one 

Numba datatype to another), boxing and unboxing 

(converting custom types to Python interpreter 

objects and vice versa), and assigning constant 

values to custom types. 

COMPILER CUSTOMIZATION 

The extension APIs described previously are useful 

for introducing new types and functions by providing 

pathways for developers to contribute machine code 

beyond decorating Python source code for 

compilation. These pathways, however, operate 

independently of the compilation steps undertaken 

by Numba when processing JIT-decorated 

functions. To facilitate customization of the latter, 

Numba also empowers developers to override or 

suppress default compiler behavior or inject entirely 

new compiler logic. 

Overall compiler behavior is defined by its pipeline, 

a prescribed sequence of passes that operate 

successively on Numba IR to effect a transformation 

from the initial source code translation to the virtual 

machine instruction set. Each pass in the pipeline is configured to either inspect Numba IR (for analysis), mutate 

Numba IR (to modify implementation of the compiled function), or lower Numba IR (to translate to LLVM IR). 

Numba offers developers a more streamlined 

approach to modify Numba IR than full-blown 

customization as described previously. Rather than 

subclassing the exposed compiler class, 

implementing a new compiler pass from scratch, 

inserting that pass into the pipeline for the alternate 

compiler, then explicitly selecting this alternate 

compiler at all JIT-decorator sites, a developer can 

instead hook code into a compiler pass already 

included in the default compiler pipeline. This rewrite 

pass is dedicated exclusively to interacting with 

developer code to analyze and potentially modify 

Numba IR. Specifically, a developer first derives from 

a Numba Rewrite class, implementing just two 

methods: match to examine Numba IR and decide if 

a modification is appropriate, and apply to actually 

effect that modification. Next, this class is registered 

with the Numba rewrite system; once registered, it 

will be consulted by the built-in rewrite pass during 

default pipeline execution. 
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Numba exposes a Python compiler class whose pipeline represents default Numba behavior. A developer may 

extend this base class to customize the pipeline it implements, thereby defining an alternate compiler. Such 

customization is typically achieved by adding, removing, or replacing passes expressed by the default pipeline. This 

allows a developer to borrow from the existing system and concentrate effort on just those behaviors that represent a 

departure from the default. 

With one or more alternate compiler implementations available, a developer can then select which of those 

implementations to apply on a function-by-function (or, in the case of experimental jitclasses, class-by-class) basis. 

Knowledge of both Numba internals and general compiler design is a prerequisite for customizing the Numba 

compiler. Knowledge of LLVM may be of value, too, particularly if implementing lowering compiler passes. 

Practical use cases for Numba extensions 
In the sections that follow, we describe several use cases for developing Numba extensions to mitigate some of the 

challenges identified previously (see Challenges in Numba Adoption). 

COMPILE-TIME PROFILING 

As noted in our exposition on Compilation Time, techniques to assess Numba compilation time include insertion of 

timer code around first-time and subsequent-time calls, use of the Numba Events API to track compiler progress, and 

interrogation of Numba-created metadata on individual compiled functions. The first approach is generally impractical, 

based on code maintenance requirements, accuracy issues, and assumption sensitivity; the third is seamless, 

accurate and robust, but—if a report on compile time across all functions is desired—insufficient. 

To implement an automatic report on compile time per function and in-aggregate, we pursued the second technique, 

namely, use of the Numba Event system. 

Integration with the Numba Event system begins with subclassing the Listener class exported from 

numba.core.event, shown in Figure 4. 

FIGURE 4: SUBCLASSING THE LISTENER CLASS EXPORTED FROM NUMBA.CORE.EVENT 

 
from numba.core.event import Listener 
 
class ProfilerListener(Listener): 
    def notify(self, event): 
        super().notify(event) 
 
    def on_start(self, event): 
        pass 
 
    def on_end(self, event): 
        pass 

The Listener subclass implements three related methods, all of which accept a single event argument in  

addition to self. 

notify 

This method is the primary entry point for Numba to propagate information about compilation events to 

developer-supplied code. The default implementation inspects the given event and passes it in turn to either 

on_start or on_end depending on which endpoint of the event lifetime is reported. 

on_start 

This abstract method is called by the base-class implementation of notify when the propagated event is at the 

start of its lifetime. 
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on_end 

This abstract method is called by the base-class implementation of notify when the propagated event is at the 

end of its lifetime. 

Each of these methods is also passed an argument with information about the function being compiled and, as 

appropriate, about the active compiler pass. We leveraged this interface to implement a Listener subclass that 

collaborates with helper classes to maintain state across all encountered functions and compiler passes, including 

snapshots of the high-resolution system clock at the start and end of each reported event. 

The Listener subclass is registered with Numba before any JIT functions are compiled, using 

numba.core.event.register. At the end of the program, the helper classes responsible for maintaining state are 

queried to obtain a DataFrame into which the accumulated compiler metrics are exported. This query normalizes 

some of the collected data and also makes some inferences required to more accurately reflect inlining. This is 

because not all compiler passes are applied by Numba when a called function is inlined, including the top-level 

compile event, so some per-function gaps in data require special treatment to derive a comprehensive picture. 

An example of the resulting DataFrame for a simple program with two jitted functions, foo and bar, is shown in 

Figure 5. 

FIGURE 5: EXAMPLE OF DATAFRAME FOR A SIMPLE PROGRAM WITH TWO JITTED FUNCTIONS 

 compile_count pipeline_count pass_time compile_time 

bar() 1 3 0.0357089 0.2223350 

foo() 1 1 0.0435650 0.0495138 

Total 2 4 0.0792739 0.2718490 

EXECUTION-TIME PROFILING 

Numba includes support for generating debug symbols compatible with the GNU Compiler Collection (GCC). These 

symbols can in turn be used with open-source project Profila,9 which, at the time of writing, is in active development. 

Profila is a sampling profiler, meaning that it relies on period examinations of where the Python program is running at 

that point in time, and it uses these observations to develop a view as to which lines of compiled source code are 

consuming the most time. This approach minimizes the performance drag on running code, but, because results are 

obtained by sampling, they can also be imprecise. Profila is currently limited to single-threaded Numba code and is 

directly useable only on Linux. 

An alternate approach to profiling is instrumentation. An instrumenting profiler modifies the program of interest at 

compile time, inserting code around each function body to record time spent there. (Because the overhead of code 

injection on a line-by-line basis would, in the general case, result in a significantly bloated output with more time 

invested in collecting timing data than actually executing original program logic, instrumentation is normally applied at 

the granularity of called functions.) This technique offers more accurate results than a sampling profiler but can 

introduce significant delays in execution time and runs a higher risk of unintentionally altering program behavior. 

We explored development of an instrumenting profiler for Numba, using a customized compiler (as described in 

Compiler Customization). The strategy behind this proof of concept was to modify Numba IR to seamlessly insert 

logic for managing timer state per function, activating a timer when flow of control enters the corresponding function, 

and deactivating that timer when flow of control either exits the corresponding function or enters another. While 

simple in concept, pursuit of this strategy highlighted a number of challenges in practice. 

First, identifying all cases for timer deactivation is non-trivial. This is in part because the compiler may generate 

multiple return instructions to exit a function based on the possibility of multiple pathways through the corresponding 

code, so all qualifying return instructions must be identified to catalog and modify all exit points.  

 

9. See https://pythonspeed.com/articles/numba-profiling/ 

https://pythonspeed.com/articles/numba-profiling/
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A related challenge is the case where the function to be instrumented issues a call to another function, the lifetime of 

which might represent time outside the function proper. The decision whether to attribute this time to the caller or the 

callee is likely a question of whether the called function belongs to the same code base or represents a built-in 

function or an external library. Accordingly, the profiler must resolve this question at compile time in order to 

temporarily deactivate and then reactivate the calling-function timer for the former case or to bypass timer state 

changes altogether for the latter. 

An alternative to temporarily suspending a function timer around a call to a function in the same code base is to 

instead suspend the timer of the caller inside the callee. This simplifies the need to discriminate sibling functions from 

built-in or external functions, since only sibling functions would include instrumentation code to suspend the timer of 

the caller. However, this also requires calling code to propagate information about its identity to the called function to 

enable that function to deactivate and reactivate the correct timer. Runtime propagation of this information proved to 

be more complex and potentially disruptive than a compile-time analysis of the call target. 

Secondly, Python code that is re-entrant, or that Numba can automatically parallelize across multiple threads, 

complexifies per-function timer state. Minimal timer state can be expressed as the time at which the timer was last 

activated and a running total of time accumulated to date. In the simplest of cases, this is sufficient to support timer 

activation and deactivation; for the former, last activation time is updated to current time, and for the latter, last 

activation time is subtracted from the current time and that difference is added to accumulated time. 

However, if a function can call itself, either directly or indirectly, then minimal state must be expanded to track last-

activation times for each level of nesting. Similarly, if a function can be called from multiple threads such that 

concurrent lifetimes overlap, then last-activation times must be tracked on a per-thread basis. Support for multiple 

threads also requires that updates to accumulated time be atomic—that is, incapable of overlapping—to ensure race 

conditions do not potentially corrupt the running total. 

The structures needed to maintain minimal timer state are dependent only on the total number of distinct functions 

and can be resolved at compile time. However, structures needed to track nesting and per-thread state must either 

be extensible at runtime, as the level of nesting and number of concurrent threads necessitate dynamic growth, or be 

defined at compile time with fixed capacity limits. The former can degrade performance by allocating memory on the 

fly, while the latter is potentially wasteful with respect to memory utilization. And both can fail at runtime: the former 

can experience a failure to allocate memory, while the latter may exceed fixed limits. 

A third impediment to instrumentation is the risk that compiler optimizations applied after code injection subvert the 

intended behavior of that inserted code. While in theory, downstream optimization should not invalidate the sequence 

of Numba IR instructions inserted by the customized compiler, our research suggested reordering of code during 

optimization was sufficient in some cases to break timer activation and deactivation. 

Recognizing these challenges, we set out to implement a proof-of-concept instrumenting profiler, conceding the 

following limitations: 

▪ Re-entrant code is unsupported. 

▪ Multi-threaded code is unsupported. 

▪ Anomalies introduced by compiler optimization are tolerated. 

The high-level algorithm for implementation is as follows: 

1. A profiler activation function is called by Python source code early in process execution, before any JIT 

compilation happens. This activation can be accomplished simply by importing a dedicated profiler Python 

module whose init.py automatically calls the suitable function. 

2. The profiler activation function is responsible for initializing a profiler-owned registry of jitted functions and for 

inserting a new instrumenting compiler pass into the default compiler pipeline.10 

 

10. Because of an apparent bug in Numba at the time of writing, whereby the Numba default compiler pipeline is used for all inlined functions 

regardless of whether a custom pipeline was applied to the caller or to the callee, the instrumenting pass was forcibly injected into the default 

pipeline using the Python technique of monkey-patching. 
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3. Each time the instrumenting compiler pass is applied to a function, a check is made if the function is part of the 

Numba or profiler package, and if so, no further action is taken. This ensures Numba itself is not subject to 

profiling, thereby circumventing circularity issues with the profiler trying to profile itself. Otherwise, the registry is 

consulted (and, as needed, updated) to obtain a unique ID for the compiled function, as well as a dedicated data 

structure in which counters and timer state can be maintained. 

4. The start of the Numba IR for the compiled function is modified by the instrumentation pass to issue calls to 

profiler-implemented functions for incrementing the call-count and for activating both a global timer and a local 

timer. The global timer tracks time spent in the function, including calls to other functions; conversely, the local 

counter tracks time spent in the function, excluding calls to other functions. The profiler-implemented functions 

are called with the unique ID of the function as an argument. 

5. The Numba IR for the compiled function is next searched for all return instructions, each of which represents an 

exit point from the function. The instrumentation pass inserts code immediately before each return to deactivate 

both the global and local timers. This inserted code issues more calls to profiler-implemented functions, passing 

the unique function ID as an argument. 

6. The Numba IR for the compiled function is next searched for all call instructions, each of which represents a 

temporary change in flow of control. The instrumentation pass inserts code immediately before each call to 

deactivate the local timer and immediately after each call to reactivate it. Again, this inserted code issues more 

calls to profiler-implemented functions, passing the unique function ID as an argument. 

7. Profiler-implemented functions for updating counters and timers are registered using the Numba low-level 

extension API. This means developer-supplied Python code is invoked by Numba at compile time (specifically, 

during the lowering stage) to generate the LLVM IR for each call site. This Python code first examines the unique 

function ID generated as an argument by the instrumentation pass, then consults with the registry to recover the 

data structure allocated to track counter and timer state for that function. Next, the LLVM IR generated for the 

call is synthesized to directly update that structure at the appropriate memory location. Because the instructions 

are generated in-line within the calling function, and because those instructions are bound in advance to the 

correct (constant) memory address, the overhead of instrumentation is kept to a minimum. 

With the instrumentation mechanism realized as described previously, jitted functions are automatically compiled with 

the instructions needed to increment per-function counters and to activate and deactivate per-function timers. As the 

program executes, data structures allocated by the Python profiler code are updated by these compiled functions. 

Finally, after calls from Python code to jitted functions are complete, the registry and its data structures may be 

interrogated to report on performance metrics function by function. 

An example of execution profiler output is given in Figure 6. 

FIGURE 6: EXAMPLE OF EXECUTION PROFILER OUTPUT 

 call_count local_time total_time %time 

main.foo 10 1.42641 2.14886 75.8922 

main.loiter 59 0.224952 0.224952 11.9686 

main.call_target_3 29 0.113304 0.351926 6.02833 

main.call_target_1 20 0.053101 0.218058 2.82524 

main.bar 10 0.0447865 2.24661 2.38287 

main.call_target_2 10 0.0169675 0.063025 0.902757 

Note that techniques used to implement the proof-of-concept profiler draw on Numba capabilities covered in both 

Extension APIs and Compiler Customization. Additionally, techniques leveraging the ctypes Python module for 

accessing low-level C APIs to allocate and free memory, and to query high-resolution timers, were also employed. 

Numba intrinsic functions were developed to directly read and write memory managed via ctypes, enabling access to 

per-function state from both Python and instrumented code. 
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OOP PARADIGMS 

JitClasses 

We introduced the experimental jitclass feature in the section on OOP. This facility enables developers to organize 

code and data using class-like constructs similar to those in interpreted Python but with a number of restrictions, 

including the same language constraints imposed on jitted functions, no inheritance or polymorphism capabilities, and 

demands for strict typing of instance variables. (Jitclass support for CUDA is also unavailable at present time.) 

StructRefs 

As an alternative to jitclasses, Numba offers another experimental feature for aggregating data and methods: 

structrefs. A structref is a data structure to which methods can be attached, making it very similar in functionality to a 

Python class or Numba jitclass. The key difference between structrefs and other Numba datatypes, including 

jitclasses, is that a structref is passed as an argument to functions by reference rather than by value. 

When a compiler generates code to pass by reference, the generated machine code uses a reference—typically, a 

memory address—as a proxy for the actual data. Accordingly, instructions to modify the associated data, whether in 

the caller or the callee, access those data through the same reference, meaning any changes applied by callee are 

reflected to the caller. Conversely, when a compiler generates code to pass by value, the generated machine code 

makes a copy of the data for the callee to access directly. Under this scenario, changes made by the callee are 

localized to the copy of data visible only to that function and do not modify the original argument accessible to 

the caller. 

In addition to the capacity to mutate data across function calls, passing by reference also leads to faster machine 

code. This is because the single memory address used as a proxy for actual data translates to the absolute minimum 

number of instructions needed to implement argument-passing at machine level. The number of instructions required 

to pass by value, conversely, scales with the size of the associated data. 

Applying these concepts to jitclasses and structrefs suggests the latter should consistently outperform the former, and 

indeed, empirical evidence confirms that expectation. It should be noted that, while jitclasses are passed by value, 

the compiler generates the necessary code for changes to jitclass data in a called function to be propagated back to 

the caller. This code ensures jitclasses behave as if they are passed by reference, but the generated machine code 

still includes instructions to perform by-value copies. The efficacy of the LLVM optimizer can potentially offset some of 

the computational expense of by-value copies when callee instructions are inlined to the caller, but in virtually all 

cases, use of a single memory address as a proxy for structref data will still outperform even highly optimized code 

for passing jitclass data. 

While structrefs provide a generally faster alternative to jitclasses as a mechanism for realizing some object-oriented 

features in Numba, both facilities are currently experimental. (It also appears the shift in focus toward the newer and 

preferred structref mechanism has slowed investment in further development of jitclass support.) Additionally, the 

current state of structref support requires tedious implementation of boilerplate code on a field-by-field basis, leading 

to bloated source files and an elevated risk of human error. 

Milliman proof of concept (MPOC) 

As part of our investigations into Numba extensibility, we endeavored to build our own proof-of-concept object-

oriented support in Numba, free of dependencies on Numba experimental features.11 This exercise was pursued with 

the intent to compromise some conveniences of jitclasses and structrefs—such as access to objects in both 

interpreted and jitted code, support for datetime and string data types, and seamless integration with libraries like 

Numpy—in an effort to further increase performance and to minimize boilerplate code. 

 

11. While bypassing direct use of experimental jitclasses and structrefs was straightforward, and most of the Numba extensions leveraged were 

described by official Numba documentation, a fraction of our work was derived from facilities exported from Numba modules but not documented 

outside of the Numba source tree. It is unclear whether these facilities are stable and production-ready but highlight the incompleteness of 

documentation by the Numba team or whether these facilities are intended to be opaque and are subject to change without notice. 
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A simplified overview of the MPOC follows: 

1. Implement an MPOC type decorator for introducing a class name and for defining the names and types of the 

associated fields. The decorator itself is parameterized to accept the class name, and the function it decorates is 

expected to return a list of tuples matching field names to field types for that class. 

2. The type decorator then registers a custom type with Numba based on the class name parameter and calls its 

decorated function to obtain field definitions associated with that type. 

3. The type decorator next analyzes the field definitions to construct a map of how those field values are to be 

organized in a block of contiguous memory and to calculate the size in bytes required to maintain such a block. 

4. For each field, the type decorator registers an attribute setter and getter (associated with the registered custom 

type), using the name of the field as the attribute name. The decorator also registers implementations for the 

setter and getter, each of which generates LLVM code directly, given a base pointer as the self argument, and an 

implicit offset from that pointer determined by the field map, and knowledge of the field type. 

5. The type decorator also registers a parameterless constructor function, using the same name as the custom 

type. The constructor implementation allocates a memory block whose size is based on the field analysis, zero-

fills the block, and returns the address of that block. This return value is the self parameter for all associated 

attributes and methods. 

6. Implement an MPOC method decorator for attaching a jitted Python function to the type introduced via the type 

decorator. This decorator accepts the type name as a parameter and registers the function to which it applies 

with the Numba extension system. 

With the type and method decorators described previously, it is possible to define a class useable from jitted code by 

using the type decorator to define the class name and fields and by using the method decorator to define one or more 

methods. A jitted function can then instantiate the class by calling its parameterless constructor. (Note that no 

provision is made to initialize fields at instantiation time; instead, all fields take on default values consistent with  

zero-filled memory. However, because all fields are backed by settable attributes on the associated type, a separate 

initialization function can be implemented to override some or all default field values, potentially using arguments 

passed to that function.) 

Because the custom Numba type associated with the class is configured to carry just a single value, namely, the 

memory address of the block used to maintain object state, the expense of passing that object to jitted functions is 

minimal, as described in the pass-by-reference treatment previous. Additionally, because attribute setters and getters 

resolve to inlined machine instructions that write or read memory relative to this memory address directly, the 

overhead to access class data is likewise minimal. 

One limitation of the MPOC implementation is that—in addition to memory addresses representing instances of other 

MPOC class types—only integer, floating-point, and boolean field types are supported. This leads to highly efficient 

LLVM code for setter and getter implementations but complicates use of more complex types supported elsewhere in 

Numba, most notably, Numpy arrays. 

To facilitate access to Numpy arrays, a specialized custom type capable of conveying the structure and address of a 

Numpy array was developed, using the type and method decorators described previously. This class operates as a 

wrapper around Numpy arrays and exposes methods to assign or retrieve the underlying Numpy array.  

An unfortunate side effect of this approach is that functions and methods using this MPOC wrapper must make 

explicit calls to work natively with Numpy objects and methods. 

To partially offset the inconvenience of the Numpy wrapper class, Numba methods were introduced on that wrapper 

to support basic indexing operations. Implementation of these methods bypass use of Numpy altogether, using the 

structure and address information maintained by the wrapper to read or write the appropriate memory address with 

minimal overhead. While more complex Numpy operations—like array slices or calls to methods that operate on 

multiple elements (e.g., sum)—still require explicit calls to retrieve the wrapped Numpy object, this shortcut for direct 

indexing of individual array elements leads to highly economical and performant code where applicable. 
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PERFORMANCE ANALYSIS 

To assess relative performance of the various OOP techniques described here, we first developed a reasonably small 

but computationally heavy reference model in Python and then applied each technique to arrive at four different 

implementations: an interpreted Python model, a jitclass model, a structref model, and an MPOC model. 

The reference model calculates the Solvency II (SII) best estimate liability (BEL) for unit-linked contract. This type of 

calculation involves projecting contract cashflows over multiple market scenarios and discounting the cashflows back 

to a given valuation date. In the reference model, 100,000 contracts were run with a monthly timestep for 50 years.  

Performance metrics for the four models are given in Figure 7. 

FIGURE 7: PERFORMANCE METRICS FOR THE FOUR MODELS – REFERENCE MODEL TIMING METRICS 

 

One obvious takeaway from the results in Figure 7 is that all Numba-based implementations significantly outperform 

the interpreted Python model. This is of course not a surprising result, but it does underscore the performance 

benefits achievable through JIT compilation. 

Another observation is that compile times for the Numba-based implementations vary, with jitclasses consuming 1.6 

to 1.7 times the compile time of structrefs and MPOC, respectively. However, setting aside compile time, the jitclass 

implementation outperformed the structref solution by a factor of approximately 1.5. This highlights the possibility that 

the advantage of one over the other, strictly in terms of overall runtime, depends on how much reuse of compiled 

code applies during the execution phase. For example, the metrics in Figure 7 were based on running 100,000 

model-point inputs. However, if that count is reduced by a factor of 10, the impact of jitclass compilation time relative 

to execution time is sufficient for the structref solution to exhibit an overall runtime faster than the jitclass counterpart. 

We note that MPOC outperformed the experimental jitclass and structref implementations by a healthy measure (by 

more than a factor of two). Although both approaches pursue a similar strategy, namely, use of common data 

accessed from jitted code by a pointer (memory address) reference, it is difficult to pinpoint all of the differences that 

account for the performance disparity. Certainly, the MPOC solution imposed more concessions on model code than 

the structref implementation, including restrictions on data types, workarounds for Numpy arrays, and asymmetry in 

object representation between interpreted and jitted Python. Some of these adaptations are unique to the MPOC 

implementation and may themselves contribute to faster runtimes. There are also likely opaque differences in how 

this particular model was optimized by the LLVM compiler—after structref and MPOC implementations synthesized 

method calls and attribute accessors—which might further explain differences in performance. 
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Conclusions 
Numba offers considerable promise as a mechanism for significantly accelerating Python code. In some cases, 

existing Python code may need to be heavily modified to comply with some of the language restrictions imposed by 

Numba. While such modification may be minimal or may be substantial, the knowledge and skills required are 

consistent with general knowledge of Python and basic familiarity with Numba. 

To pursue more aggressive performance improvements and to leverage the benefits of OOP principles, more 

knowledge of Numba is required to take advantage of its experimental jitclass or structref features and, potentially,  

to entertain introduction of other potential accelerators, such as intrinsic functions. Knowledge of lower-level LLVM 

constructs can also be helpful in trying to decipher compiled code to better understand performance implications. 

Pursuit of maximally efficient Numba code, as might be desirable when running computationally massive workloads 

on metered resources in the cloud, demands an elevated knowledge of Numba, LLVM, and machine-level code. 

As evidenced in this paper, such knowledge can be practically employed to minimize Numba compile times, analyze 

performance of compiled code at a useful level of granularity, and generate highly efficient machine code from  

higher-level sources organized in accordance with robust object-oriented design. 
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