
MILLIMAN WHITE PAPER

Python as an actuarial modelling platform 1 April 2025

Using Python as an actuarial platform

A series of short papers on efficient

actuarial modeling with Python

Karol Maciejewski

Mehdi Echchelh

The use of Python is on the rise. While this is not news, in recent years this

programming language has steadily gained a foothold in various actuarial

applications, and the ripples that creates in the actuarial world seem to be widening.

In this short article, the first in a new series focusing on Python in actuarial

modeling, we will look into the question of whether Python can go a step further and

take its well-deserved place as an actuarial modeling platform.

Introduction
By most measures Python is currently the most-used general

programming language1, providing an implementation platform

for a variety of applications, from serving as the backend for

some of the most popular websites and advanced scientific

simulations to being the backbone of artificial intelligence (AI)

large language models (LLM). With its wide ecosystem of

libraries and packages, Python can be easily used for virtually

any purpose, and it is probably the most popular environment

for data science, machine learning, and AI applications. Its

accessibility and simplicity make it an attractive choice for

university curricula, so it should not come as a surprise that we

have been observing an increased interest in and popularity of

Python also in the actuarial world for some time.

Using Python in actuarial modeling is by no means new.

Python has been in the actuarial toolbox for several years,

mostly in non-life applications and as helper scripts. Many

articles about using Python in the actuarial domain can be

found online. Milliman has also produced briefing notes and

white papers on the topic, including a general introduction2 and

a more specialized application to life insurance,3 respectively.

Based on our recent experiences, it seems that in the

insurance and risk domains, Python is gaining increasingly

more traction. New generations of actuaries come equipped

with Python skills and are more open to using it as a platform

for a broadening spectrum of applications. The fact that Python

is the main language used nowadays for AI research and

applications certainly adds to its appeal and popularity. The

complexity and breadth of solutions considered in Python have

1. See rankings referenced in section titled “Ecosystem and community.”

2. McGinley D. (23 May 2021). The Rise of Python: Powerful, robust calculation

software. Milliman Briefing Note. Retrieved 24 March 2025, from

https://www.milliman.com/en/insight/The-Rise-of-Python-Powerful-robust-

calculation-software.

also been increasing, as have the expectations toward the

model quality. It is often no longer sufficient (nor reasonable) to

have a model in the form of a Python script or notebook. A

proper production-worthy software application is preferred.

Therefore, we would like to revisit the topic of Python in

actuarial applications, and over a series of short publications

address some of the important questions, decisions, and

issues that one might encounter when working with this

language. While the fundamentals of Python are easy to learn

and nowadays often taught at universities, being able to design

and develop sophisticated, production-grade, and highly

efficient models require significantly more expertise, especially

from actuaries who are rarely also software engineers.

In this first paper, we will look at some truths and myths about

using Python as a modeling platform for actuarial applications

and help the reader answer a fundamental question: Is Python

a good choice for an actuarial modeling platform?

Actuarial modeling platform
Many factors should be considered when deciding whether a

software platform or programming environment is a good basis

for a given purpose. For actuarial modeling, a reasonable

starting point might be:

 Model performance

 Training, documentation, and support

 Reliability

 Widespread use

 Multipurpose and interoperability

3. Maciejewski K., Echchelh M., Sznajder D. (13 March 2023). Building a high-

performance in-house life projection and ALM model: Architecture and

implementation considerations in Python. Milliman White Paper. Retrieved 24

March 2025, from https://www.milliman.com/en/insight/building-in-house-

projection-alm-model-python.

https://www.milliman.com/en/insight/The-Rise-of-Python-Powerful-robust-calculation-software
https://www.milliman.com/en/insight/The-Rise-of-Python-Powerful-robust-calculation-software
https://www.milliman.com/en/insight/building-in-house-projection-alm-model-python
https://www.milliman.com/en/insight/building-in-house-projection-alm-model-python

MILLIMAN WHITE PAPER

Python as an actuarial modelling platform 2 April 2025

Performance is an obvious point, as everybody wants their

models to run as fast as possible (or even faster). Although

many people underestimate the importance of choosing the

right algorithms, data structures, and code optimization, which

are all key ingredients of a fast runtime, the choice of

programming language or software platform also has a

significant effect on performance.

Learning ease is a very important factor for actuarial modeling

purposes. Most actuaries, even among the modeling ones, are

not software engineers or computer programmers. They

typically prefer something accessible, well documented, and

with a good level of training and support to help them out when

they encounter issues.

Another important aspect is reliability. This can mean several

different things. In the narrowest understanding, it provides a

stable computational environment with reproducible results. But

looking at it in a broader context, some other important

elements include the ability to follow modern development

operations (DevOps) techniques4 for model development,

testing, and deployment and high confidence that the platform

will be maintained and supported for a long time.

The following aspect might seem somewhat less important, but

widespread use of the programming language or software

means that there is a large pool of people who know it and can

be hired in case of employee turnover or team growth. This is

especially important in the case of actuarial modeling, where

resources are generally scarce in most markets. Locking

oneself into a niche software or programming language will

certainly become a problem in the longer term.

Last, but not least, it is helpful if the selected language or

software platform comes equipped with a plethora of libraries

that can be used in a wide variety of applications and domains.

This is typically linked with the openness of the system, broad

and active community of users, and the possibility of seamless

interfacing with other systems and processes.

Of course, these points are only a subjective selection of many

possible criteria. Each person and organization might have

their own additional preferences and priorities when choosing

the modeling platform, such as independence of third-party

vendors, consistency with the tooling already used in the

company or group, cost, and more.

4. DevOps refers to software development operations; widely accepted

guidelines; and standards of automated, collaborative, agile, reliable, and

secure iterative software improvements that quickly deliver a better product.

See more details in the following sections.

Python performance
One of the most-asked questions and biggest concerns when

considering Python as an actuarial modeling platform is if it is

fast enough. One common criticism of Python is that it is slow

and therefore might not be suitable for actuarial modeling.

There are also benchmarks circulating around5, showing that

Python fares poorly in comparison with majority of other

programming languages.

On the one hand, this is true. Python has not been designed

with speed of execution as a priority. It is an interpreted

language, meaning the source code is analyzed and

converted into an executable at the moment of invoking the

script, instead of preparing it in advance (as is done in

compiled languages). This obviously adds up to the waiting

time for the results of an execution.

However, when used the right way, employing high-

performance calculation libraries, Python enables users to

achieve very-fast runtimes. There are several things to

consider here.

While pure Python is not particularly fast, there are plenty of

publicly available Python libraries focused on performance.

They are written in fast languages like C or C++ and can be

used directly from within Python, combining the best of both

worlds. Using these libraries is common practice in the

scientific and data science communities, with millions of users

every day. Several libraries allow pre-compilation of the

critical, computationally intense Python code blocks into

efficient machine code, giving the user a combination of

simple Python syntax and performance on par with the fastest

languages available.

Secondly, many benchmarks comparing different

programming languages focus on purely algorithmic problems

that might not be representative of actuarial models’

computational complexity. Therefore, their results might be

misleading without understanding the full context and the

specificities of actuarial use cases. Actuarial models usually

focus on statistical computations, medium-sized data

processing, or a high number of repetitive calculations

(simulations or individual policy modeling) that can be

vectorized. As mentioned above, there are highly optimized

libraries for each of these purposes, which minimize the

negative performance impact of pure Python.

5. Pereira R. et al., (4 January 2021). Ranking programming languages by

energy efficiency. Retrieved 24 March 2025, from

https://haslab.github.io/SAFER/scp21.pdf

https://haslab.github.io/SAFER/scp21.pdf

MILLIMAN WHITE PAPER

Python as an actuarial modelling platform 3 April 2025

In practice, one wouldn’t use Python for actual actuarial use

cases the way it is used in these general benchmarks.

Benchmarks focused on actuarial applications show very

different results.6

Thirdly, some benchmarks compare execution of compiled

languages with a full execution of scripted languages. While for

extremely-fast benchmarks executing in milliseconds, this

indeed might create a significant difference, will these

additional few seconds at the start of the Python script matter

when running actuarial models that take minutes (or in extreme

cases, even hours)?

Finally, Python comes with many libraries that allow

programmers to easily take advantage of parallel or distributed

computing. When using machines equipped with graphics

processing units (GPUs), several libraries enable the transfer

of compute-intensive tasks to GPUs or even write custom GPU

kernels to tackle specific problems. This offers unparalleled

performance for problems that parallelize well—and all this can

be done directly from Python, without knowledge of Compute

Unified Device Architecture (CUDA) C++, or OpenGL.

An additional thing to consider here is that when thinking about

a platform for actuarial models, actuaries will rarely consider

coding directly in the high-performance languages like C or

C++ (or nowadays Rust). Plus, any third-party vendor solution

written in any of these languages will also usually come with a

boilerplate that will make models in that platform perform

slower than the raw benchmarks in the relevant language. This

can also be seen in our simple projection model benchmark

presented in our 2023 white paper7.

When it comes to performance in Python, it is impossible to

overstate the importance of having an expert with an

understanding of code complexity and efficiency of algorithms

and data structures and at least fundamental knowledge of

software development involved in setting up the architecture

and development of the models. While Python will probably

never be the fastest of all possible options (if one considers

building their models in C, C++, or Rust), when designed by a

programming-savvy actuary, it can be made very fast, usually

substantially faster than the current solution. And whatever it

might lack on the performance side, it makes up for in the other

aspects of a good actuarial modeling platform.

6. See simple examples as cited in Maciejewski K, Echchelh M, &

Sznajder D., 2023.

7. See benchmarks in Maciejewski K, Echchelh M, & Sznajder D., 2023.

8. Jansen, P. (March 2025). TIOBE Index for March 2025. Retrieved 24 March

2025, from https://www.tiobe.com/tiobe-index/.

9. PYPL Index (March 2025). PYPL Popularity of Programming Language Index.

Retrieved 24 March 2025, from https://pypl.github.io/PYPL.html.

10. GitHub. (22 November 2024). Octoverse: AI leads Python to top language as

the number of global developers surges. Retrieved 24 March 2025, from

https://github.blog/news-insights/octoverse/octoverse-2024/#the-most-popular-

programming-languages.

And a final question for a thoughtful reader: If its performance

was truly so bad, would Python be the language of choice for

the cutting-edge tech companies dealing with extremely

compute-intensive generative AI?

Ecosystem and community
Three of the proposed characteristics of a good actuarial

modeling platform revolve around Python’s popularity,

extremely-big ecosystem, and community. The bigger the

community of users, the more resources are available with

respect to training and support. This is true for any software,

but even more so for active open-source projects. By definition,

a big community will also mean widespread adoption, a large

pool of potential resources skilled in it, and, most likely, a broad

spectrum of uses.

All this is true for Python. It is ranked by various groups as the

most popular programming language in the world. The TIOBE

language index places Python at an undisputed first place,8 as

does the Popularity of Programming Language (PYPL) index.9 A

2024 Octoverse report by GitHub, the biggest software code

repository with more than 500 million projects hosted, shows

continued growth of Python’s popularity and also places it in the

first place for the first time.10 A Stack Overflow11 survey places

Python at third place, but the first two places are taken by HTML

and JavaScript, which are the backbones of the World Wide

Web and not general programming languages. Stack Overflow,

probably the biggest community forum for programming

questions and problems with 22 million active questions and 36

million answers,12 has over 2.2 million questions (and answers)

about Python,13 the second-biggest group, again just after

JavaScript. No other programming language scores anywhere

close or anywhere so consistently across various sources. With

millions of active users and a contribution-oriented mindset, it’s

no surprise that the main Python package repository (Python

Package Index – PyPI) consists of over 600,000 projects and

almost 1 million people contributing to their development.14 Each

of those projects is a code package that anybody can download

and use in their models.

11. Stack Overflow. (May 2024). 2024 Developer Survey. Retrieved 24 March

2025, from https://survey.stackoverflow.co/2024/technology#most-popular-

technologies-language.

12. StackExchange (15 March 2025). StackExchange Data Explorer. Retrieved

24 March 2025, from https://data.stackexchange.com/.

13. StackExchange (n.d.). Tags. Retrieved 24 March 2025, from

https://stackoverflow.com/tags.

14. Python Package Index (PyPI). (2025). PyPI.org. Retrieved 24 March 2025,

from https://pypi.org/.

https://www.tiobe.com/tiobe-index/
https://pypl.github.io/PYPL.html
https://github.blog/news-insights/octoverse/octoverse-2024/#the-most-popular-programming-languages
https://github.blog/news-insights/octoverse/octoverse-2024/#the-most-popular-programming-languages
https://survey.stackoverflow.co/2024/technology#most-popular-technologies-language
https://survey.stackoverflow.co/2024/technology#most-popular-technologies-language
https://data.stackexchange.com/
https://stackoverflow.com/tags
https://pypi.org/

MILLIMAN WHITE PAPER

Python as an actuarial modelling platform 4 April 2025

Besides these publicly available and free resources, there are

countless courses and tutorials, both free and paid. Most

serious Python libraries come with very-high-quality

documentation as well, which is an invaluable source of

information. If one encounters issues with any of the libraries,

there is usually a direct way to communicate with the

developers themselves. This is a starkly different experience

from many vendor solutions, where one often needs days to go

through several iterations with customer service before getting

to someone who can answer the question.

The final point, related to the popularity of Python, is that in

recent years it has achieved at least the same status as R

used to have in terms of academic curricula. It is now being

taught in most programs that produce future actuaries—

mathematics, physics, econometrics, or data science. Most of

the graduates coming to work in actuarial and risk teams will

likely have at least a basic knowledge of Python. One must

keep in mind, of course, as indicated earlier, that being able

to write a Python script to pass an assessment of a university

course does not mean that person can develop a production-

grade, high-performance model, but it is a good starting point

for further education.

Reliability and interoperability
That leaves us with two points on the proposed actuarial

modeling platform “wish list”—reliability and interoperability—

and unsurprisingly Python also checks these boxes.

As shown in the previous section, Python has a massive

community, hundreds of thousands of contributors to the

popular library projects and millions of users, including

institutional and corporate. This is a pretty good assurance for

reliability of this platform. Neither Python nor these popular

libraries will disappear in any time frame that would not allow

their users to work out an alternative plan (at least comparable

with a time frame a vendor might stop its support for its

software). Additionally, most of these packages are open

source, meaning anyone, even an insurance company, could

take the source over and maintain it for the time needed to

migrate to another solution. And finally, when we see some

libraries fade away, it is usually because there is a new

replacement that provides better functionalities or better

performance, as the Python ecosystem is constantly evolving

and improving.

15. Goyal, A. (25 July 2022). Best Websites Written on Python. Retrieved 24

March 2025, from https://www.octalsoftware.com/blog/best-websites-written-

on-python.

Besides these conceptual arguments for the reliability of

Python and its libraries, there is more practical proof. A large

part of the connected world as we know it is built using Python

in its tech stack. Applications of companies such as Netflix,

Spotify, Uber, YouTube, Google, Instagram and many others

are mainly, or in a significant part, coded in Python.15 In fact,

developers from such companies are also part of the

contributor community making Python’s ecosystem so active

and evolving. This distributed development and maintenance

model, incorporating a large degree of diversification, is exactly

what assures longevity and robustness of Python and its

ecosystem and makes the risk of software discontinuation

much more pronounced for any single vendor. In the case of

some of these applications, besides the usual machine

learning and orchestration uses, Python is also handling the

operational workload—millions of client requests per second.

This is a testament to another dimension of reliability of the

Python platform.16

One other aspect of platform reliability mentioned earlier was

the ability to use modern DevOps techniques during model

development and later maintenance. Python can be fully

integrated with all key DevOps elements, like source code

versioning, automated testing during developments, continuous

integration and automated test pipelines when committing and

releasing the code, automatic building of simple test cases

from code documentation, automatic checking tools for code

correctness and style, and many others. Many actuarial models

are built on platforms which do not support the use of these

techniques, and they can truly improve code quality and

reliability, as well as shorten the development and testing time

required for new model releases.

Because of its widespread use and broad set of libraries,

Python also comes with countless libraries allowing interfacing

and connection with a plethora of other systems. It can run on

most operating systems; it can communicate over many kinds

of networking and communication protocols; it can read, write,

and manipulate data using common consumer file formats

(e.g., CSV, Excel), high-performance data stores (Parquet,

Feather, HDFS), and many types of databases (SQL, NoSQL);

it can consume and serve application programming interfaces

(APIs), allowing easy client-server communication across web

interfaces; it can serve interactive web-based dashboards and

many, many others. With a few lines of code (using readily

available libraries), one can integrate data flow and processing

steps in different applications on different machines into a

single automated pipeline.

16. Woodruff, B. (15 August 2019). Static Analysis at Scale: An Instagram Story.

Retrieved 24 March 2025, from https://instagram-engineering.com/static-

analysis-at-scale-an-instagram-story-8f498ab71a0c.

https://www.octalsoftware.com/blog/best-websites-written-on-python
https://www.octalsoftware.com/blog/best-websites-written-on-python
https://instagram-engineering.com/static-analysis-at-scale-an-instagram-story-8f498ab71a0c
https://instagram-engineering.com/static-analysis-at-scale-an-instagram-story-8f498ab71a0c

MILLIMAN WHITE PAPER

Python as an actuarial modelling platform 5 April 2025

Actuarial models and processes
Having reviewed the proposed key characteristics of what

makes a good actuarial modeling platform and how Python

performs in each of those categories, one might wonder about

the scope of potential use of Python in the actuarial world.

We are accustomed to having different dedicated tools for

different actuarial purposes: one tool for extracting data from

an admin system and cleaning, processing, and storing it in a

data lake or warehouse; another tool for life cashflow

projections and asset-liability management (ALM); another for

non-life pricing; another for non-life reserving; another for

Solvency II reporting; yet another one for generating IFRS 17

figures; and so on.

Python could be used as an efficient substitute for pretty much

all of them. It would allow unification of actuarial modeling

skills, facilitate automation of processes and elimination of

many manual steps, and make it possible to reuse calculation

modules between (now) different models instead of maintaining

them several times in different platforms and struggling to

reconcile the numbers in different processes every time. At the

end of each process, there could be a modern, clean

visualization dashboard allowing interactive exploration of the

results. All of that could be developed using a single platform.

Of course, there is a long road before this could happen, and it

would involve significant investments, change management,

and recalibration of the skill set of actuarial modeling teams.

But because of Python’s versatility, popularity, simplicity, and

performance, Python has the potential to be a fully-fledged

actuarial modeling platform, to the extent like no other platform

so far. And the first step is to try using Python in your next

model or process automation.

Solutions for a world at risk™

Milliman leverages deep expertise, actuarial rigor, and advanced

technology to develop solutions for a world at risk. We help clients in

the public and private sectors navigate urgent, complex challenges—

from extreme weather and market volatility to financial insecurity and

rising health costs—so they can meet their business, financial, and

social objectives. Our solutions encompass insurance, financial

services, healthcare, life sciences, and employee benefits. Founded

in 1947, Milliman is an independent firm with offices in major cities

around the globe.

milliman.com

CONTACT

Karol Maciejewski

karol.maciejewski@milliman.com

Mehdi Echchelh

mehdi.echchelh@milliman.com

© 2025 Milliman, Inc. All Rights Reserved. The materials in this document represent the opinion of the authors and are not representative of the views of Milliman, Inc. Milliman does not certify the

information, nor does it guarantee the accuracy and completeness of such information. Use of such information is voluntary and should not be relied upon unless an independent review of its

accuracy and completeness has been performed. Materials may not be reproduced without the express consent of Milliman.

http://www.milliman.com/
mailto:karol.maciejewski@milliman.com
mailto:mehdi.echchelh@milliman.com

