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Most climate scenarios project average 

temperatures over a given time horizon. 

However, key climatic factors such as extreme 

temperatures or air pollution have distinct effects 

on health and mortality, requiring the use of 

other, more precise climatic variables. To 

address this issue, this study develops an 

advanced methodology for deriving mortality 

scenarios from conventional climate projections. 

By integrating critical climate indicators and 

refining existing approaches, this framework 

enhances the accuracy of climate-related 

mortality projections, offering a more 

comprehensive assessment of future risks. 

Climate change is widely recognized as one of the most pressing 

global challenges, with deep impacts on ecosystems, human 

societies, and economic systems. Among its many 

consequences, heatwaves—and more broadly, extreme 

temperatures—play a particularly significant role. According to 

reports from the Intergovernmental Panel on Climate Change 

(IPCC)1, these events are increasing in both intensity and 

frequency, leading to direct health impacts, including a rise in 

mortality, particularly among vulnerable populations. 

An increasing number of research studies are addressing these 

critical issues, aiming to understand and quantify the impact of 

extreme temperatures on human mortality. While these studies 

have shed light on some underlying mechanisms and established 

correlations between climatic events and mortality variations, the 

subject remains only partially explored. Most of this research 

 

1. Groupe d’experts intergouvernemental sur l’évolution du climat 

[Intergovernmental Panel on Climate Change]. (March 20, 2023). Ce qu’il faut 

retenir du 6e rapport d’évaluation du GIEC. Retrieved January 22, 2025, from 

https://www.ecologie.gouv.fr/sites/default/files/documents/20250_4pages-

GIEC-2.pdf. 

2. Human Mortality Database. (2024). Netherlands total population. Retrieved 

January 21, 2025, from https://www.mortality.org/Country/Country?cntr=NLD.  

focuses primarily on developing explanatory models based on 

historical data, highlighting significant relationships between past 

temperatures and mortality. However, few studies have produced 

long-term projections, despite the crucial role of such projections 

in anticipating future consequences.  

Some actuarial studies have explored mortality projection by 

incorporating climatic variables, but they have often been limited 

to using average temperature as the sole explanatory factor or 

relying on preexisting projections from public databases whose 

scope remains constrained. While these approaches are 

valuable, they underscore the need to develop more specialized 

methodologies capable of fully leveraging available climate data 

to better capture local variations and broader impacts. 

In this study, we present the results of modeling the impact of 

heatwaves on mortality in the Netherlands. 

Data sources 
This study draws on multiple well-established public databases, 

enabling a robust analysis of the relationship between climate 

dynamics, demographic trends, and observed mortality: 

 Mortality data: Sourced from the Human Mortality Database 

(HMD),2 which provides detailed age- and sex-specific 

mortality rates. 

 Climate data: Derived from the Royal Netherlands 

Meteorological Institute (KNMI) observations and 

projections,3 incorporating key variables such as mean 

temperature, minimum temperature, and the number of 

tropical days. 

 Heat-attributable mortality rates: Extracted from the Global 

Burden of Disease (GBD) study,4 offering a comprehensive 

assessment of the link between temperature fluctuations and 

mortality patterns. 

  

3. Koninklijk Nederlands Meteorologisch Instituut [Royal Netherlands Meteorological 

Institute]. (2024). Daggegevens van het weer in Nederland. Retrieved  

January 21, 2025, from https://www.knmi.nl/nederland-

nu/klimatologie/daggegevens. 

4. Global Health Data Exchange. (2024). 2021 Global Burden of Disease (GBD) 

study: Results. Retrieved January 21, 2025, from 

https://vizhub.healthdata.org/gbd-results/. 

https://www.ecologie.gouv.fr/sites/default/files/documents/20250_4pages-GIEC-2.pdf
https://www.ecologie.gouv.fr/sites/default/files/documents/20250_4pages-GIEC-2.pdf
https://www.mortality.org/Country/Country?cntr=NLD
https://www.knmi.nl/nederland-nu/klimatologie/daggegevens
https://www.knmi.nl/nederland-nu/klimatologie/daggegevens
https://vizhub.healthdata.org/gbd-results/
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To ensure data integrity, we applied a truncation at age 94 

because of missing values for older age groups in certain 

periods. Additionally, COVID-19-related deaths from 2020 and 

2021 were excluded to prevent distortions in the analysis of long-

term climate-related mortality trends. 

Calibration: A climate-adapted version 

of the Lee-Carter model 
The chosen model for explaining mortality while accounting for 

the impact of high temperatures builds upon an extended version 

of the Lee-Carter model, augmented with a climatic component.5 

This climate-adjusted Lee-Carter model is formulated as follows:  

ln(𝜇𝑥,𝑡) = 𝛼𝑥 + 𝛽𝑥𝜅𝑡 + 𝛿𝑥𝐶𝑡 + 𝜀𝑥,𝑡  , 

where 𝑥 represents age, 𝜇 denotes the mortality rate, and 𝛼𝑥, 𝛽𝑥, 

and 𝜅𝑡 are the parameters of the Lee-Carter model. The term 𝐶𝑡 

represents the climatic indicator for year 𝑡, capturing the impact 

of the studied climatic variables on mortality. 

In this study, we propose alternatives to the initial calibration 

method introduced in the original formulation of the modeling 

framework. The term 𝐶𝑡 is adjusted using a generalized additive 

model (GAM), which is defined as follows: 

𝑔(𝐸[𝑌]) = 𝛽0 + 𝑓1(𝑥1) + 𝑓2(𝑥2) +  … + 𝑓p(𝑥𝑝), 

where 𝑔 is the link function, 𝛽0 represents the intercept, and 

𝑓i(𝑥i) are nonparametric smoothing functions applied to the 

predictors 𝑥i. These functions enable a flexible modeling 

approach by capturing the relationship between each predictor 

and the dependent variable without imposing a predefined 

functional form. 

To achieve this, we used thin-plate splines with penalization. 

These splines operate by minimizing a measure of surface 

deformation that smooths the data while adapting to the structure 

of the observations. We introduced a penalization parameter to 

regulate model complexity and prevent overfitting. 

 

5. Boumezoued, A., Elfassihi, A., Germain, V. & Titon, E. (December 19, 2022). 

Modelling the impact of climate risks on mortality [White paper]. Milliman. 

Retrieved January 21, 2025, from https://www.milliman.com/-

/media/milliman/pdfs/2022-articles/12-16-22_modelling-the-impact-of-climate-

risks-on-mortality.ashx. 

The most significant climatic variables selected by the model (in 

the case of Dutch data) are: 

 The number of tropical days, defined as the number of days 

when the maximum temperature exceeds 30°C. 

 The annual average of daily mean temperatures. 

 The annual average of daily minimum temperatures. 

To model the interactions between these highly correlated 

variables, we used a smooth tensor product. This approach 

captures the joint and nonlinear effects of the three variables 

without assuming their independence. 

Temporal variables: Projection 

methodology and extreme value 

modeling 
In long-term modeling, forecasting climatic variables is crucial for 

anticipating the impacts of climate change. While official climate 

scenarios provide essential insights into global and regional 

trends in long-term average temperatures, they do not include 

projections of the specific climatic variables required for the 

model. To project the climatic indicator, derived from 

temperature-related variables, time series of mean and minimum 

temperatures were decomposed into three key components: 

trend, seasonality, and noise. Additionally, the projection of the 

number of tropical days was conducted using extreme value 

theory (EVT) to better capture rare but impactful temperature 

events. Moreover, the regular temporal parameter of the Lee-

Carter model (𝜿𝒕) and the residual component (𝜺𝒙,𝒕) were 

projected to estimate future mortality rates, ensuring a 

comprehensive approach to climate-related mortality forecasting.  

SELECTION OF THE DECOMPOSITION MODEL 

Three primary time series decomposition models are widely used 

in the literature:6 

 Additive decomposition: A simple approach suited for time 

series with a stable seasonal pattern that remains constant 

over time. 

 Multiplicative decomposition: Appropriate for series where 

seasonal fluctuations scale proportionally with the trend. 

 STL decomposition (seasonal-trend decomposition using 

locally estimated scatterplot smoothing [LOESS]): A highly 

flexible method capable of capturing complex dynamics, 

though it requires more precise calibration. 

6. Hyndman, R. J., and Athanasopoulos, G. (2021). Forecasting: Principles and 

practice (3rd ed.). OTexts. Retrieved September 11, 2024, from 

https://otexts.com/fpp3/. 

https://www.milliman.com/-/media/milliman/pdfs/2022-articles/12-16-22_modelling-the-impact-of-climate-risks-on-mortality.ashx
https://www.milliman.com/-/media/milliman/pdfs/2022-articles/12-16-22_modelling-the-impact-of-climate-risks-on-mortality.ashx
https://www.milliman.com/-/media/milliman/pdfs/2022-articles/12-16-22_modelling-the-impact-of-climate-risks-on-mortality.ashx
https://otexts.com/fpp3/
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An analysis of the seasonal components of temperature time 

series revealed stable mean levels and consistent seasonal 

fluctuation patterns. This finding supports the selection of an 

additive approach,  

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑁𝑡, 

where 𝑌𝑡 represents the time series under study, 𝑇𝑡 denotes the 

long-term trend, 𝑆𝑡 corresponds to the seasonal component, and 

𝑁𝑡 represents the residual component. 

TREND COMPONENT 

The trend component is based on KNMI projections for average 

temperatures,7 with an adjustment applied to minimum 

temperatures to maintain a consistent mean difference of 4°C. 

These projections rely on the KNMI’23 scenarios, which 

downscale global climate trends identified by the IPCC to a 

regional level. They incorporate emission trajectories from the 

Shared Socioeconomic Pathways (SSPs), providing forecasts of 

climate variables through the end of the century. KNMI’23 defines 

two main climate scenarios: a low-emission scenario “L” (SSP1-

2.6) aligned with the Paris Agreement targets and a high-

emission scenario “H” (SSP5-8.5) reflecting a trajectory with no 

significant emission reductions. Each scenario is further divided 

into two variants: a wet scenario “n” characterized by wetter 

winters and slightly drier summers, and a dry scenario “d” 

marked by significantly drier summers.8 

For this study, only the Hd and Ld scenarios were selected due 

to their relevance in evaluating the impact of high temperatures 

on mortality. 

SEASONAL COMPONENT 

The seasonal component was analyzed using Fourier analysis, 

which revealed a stable annual cycle but with a gradual 

intensification of peak values over time. To capture this evolving 

dynamic, an adjustment was applied to values exceeding the 

90th percentile, ensuring that the increasing amplitude of 

extreme temperatures was reflected while preserving a stable 

reference seasonal cycle. For modeling purposes, we assumed 

the seasonal component was identical for both mean and 

minimum temperatures, given their strong statistical coherence. 

 

7. van Dorland, R., Beersma, J., Bessembinder, J., Bloemendaal, N., van den Brink, 

H., Brotons Blanes, M., Drijfhout, S., et al. (March 8, 2024). KNMI national climate 

scenarios 2023 for the Netherlands (Scientific report WR-23-02, version 2). Royal 

Netherlands Meteorological Institute. Retrieved January 22, 2025, from 

https://cdn.knmi.nl/system/data_center_publications/files/000/071/902/original/KN

MI23_climate_scenarios_scientific_report_WR23-02.pdf. 

This assumption is supported by high correlation coefficients and 

a well-synchronized pattern of seasonal variations between the 

two temperature variables. 

RESIDUAL COMPONENT 

In an ideal model, the residuals from additive decomposition 

should exhibit a purely random structure with no significant 

correlations, indicating that the trend and seasonal components 

fully capture the underlying data dynamics. However, statistical 

tests revealed signs of residual autocorrelation, 

heteroscedasticity, and nonnormality, suggesting that additional 

structure remained within the residuals. 

To address these patterns, we modeled the noise component 

using a hybrid ARIMA-APARCH approach, enabling the 

simultaneous capture of temporal dependence and conditional 

heteroscedasticity in the residuals. 

For projections, we used historical residuals as a reference, with 

iteratively adjusted conditional variance to maintain realistic 

fluctuations. To prevent unrealistic underestimation of future 

variability, we introduced a variance floor, set at the 70th 

percentile of historical variance. Additionally, a trend factor of 

0.0001 was applied to the variance projections to reflect a 

gradual increase in uncertainty over time. At each step, random 

noise scaled by the square root of the projected conditional 

variance was added, ensuring that future residual variations were 

dynamically and robustly integrated into the model. 

MODELING THE NUMBER OF TROPICAL DAYS 

Tropical days are rare events. An analysis of the distribution of 

daily summer maximum temperatures (June–August) shows 

that temperatures exceeding 30°C lie beyond the 95th 

percentile of historical data, set at 28.6°C. This confirms the 

extreme nature of these occurrences and justifies the 

application of EVT to model them. 

8. Ibid. 

 

 

https://cdn.knmi.nl/system/data_center_publications/files/000/071/902/original/KNMI23_climate_scenarios_scientific_report_WR23-02.pdf
https://cdn.knmi.nl/system/data_center_publications/files/000/071/902/original/KNMI23_climate_scenarios_scientific_report_WR23-02.pdf
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FIGURE 1: HISTOGRAM OF MAXIMUM TEMPERATURES 

 

We used a Poisson process to model tropical days, allowing for 

the projection of the number of days on which maximum 

temperatures exceed a critical threshold, set at the 95th 

percentile of historical summer maximum temperatures. This 

approach treats these extreme events as random occurrences, 

with an annual mean frequency calibrated using data from the 

past 10 years while incorporating future climate scenarios. 

To estimate the magnitude of exceedances beyond 30°C, we 

employed a generalized Pareto distribution (GPD). This method 

enables the simultaneous projection of both the frequency and 

severity of extreme temperature events, providing a robust 

framework for assessing future heat extremes. 

OTHER PARAMETERS 

The temporal parameter 𝜅𝑡, which represents long-term mortality 

trends, was projected using an ARIMA(0,1,0) model. While 

alternative models, such as exponential smoothing state space 

(ETS), demonstrated strong predictive performance, we selected 

ARIMA for its simplicity and effectiveness in capturing trends and 

the persistence of past mortality patterns. 

The residual component 𝜀𝑥,𝑡, which accounts for unexplained 

fluctuations, was projected separately for each age 𝑥. These 

residuals, defined as the difference between observed and 

predicted logarithmic mortality rates (ln(𝜇𝑥,𝑡) −  ln( �̂�𝑥,𝑡)), follow a 

normal distribution with a mean of zero and an age-specific 

standard deviation, calibrated using historical data. To 

incorporate future uncertainty, 1,000 stochastic simulations were 

performed, ensuring a robust and comprehensive assessment of 

variability in mortality projections. 

Results 
MODEL CALIBRATION AND CLIMATE VARIABLE 

PROJECTION  

Adjustment of the climatic indicator 

The climatic indicator 𝑪𝒕, representing mortality rates attributable 

to high temperatures, was adjusted using a GAM. The model 

exhibited strong explanatory power, achieving an explained 

deviance of 92.61%, which indicates an excellent fit to the 

observed data and robust predictive capability. 

FIGURE 2: ADJUSTMENT OF THE CLIMATIC INDICATOR 

 

Projection of climate variables 

Projections derived from KNMI scenarios indicate substantial 

changes by 2100. Under the Hd (high emissions and dry 

summer) scenario, summer temperatures are expected to rise 

significantly, reaching an average of nearly 22°C by the end of 

the century. Additionally, minimum temperatures are projected to 

increase, highlighting the need to assess their impact, given the 

cumulative effects of sustained nighttime heat on mortality. 

FIGURE 3: PROJECTION OF MEAN AND MINIMUM TEMPERATURES BY 2100 
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Furthermore, the number of tropical days - days when maximum 

temperatures exceed 30°C - is expected to rise dramatically. 

Under the Hd scenario, this figure could reach 50 days per year 

by 2100, compared with fewer than 10 today. This sharp increase 

significantly heightens the risk of prolonged exposure to extreme 

heat, with direct consequences for mortality and public health. 

FIGURE 4: PROJECTION OF THE NUMBER OF TROPICAL DAYS BY 2100 

 

These projections highlight the increasing exposure to extreme 

climatic conditions, which is expected to lead to an increase in 

heat-related mortality. 

MODEL PROJECTIONS 

Impact of high temperatures on life expectancy 

Results from the climate-adjusted Lee-Carter model, which 

incorporates the effects of high temperatures, indicate a 

continued increase in cohort life expectancy at age 65 across the 

two climate scenarios analyzed. These projections are evaluated 

against a classic scenario, based on the standard Lee-Carter 

model without climate-related adjustments, serving as a baseline 

for comparison. Despite the overall upward trend, elevated 

temperatures lead to a noticeable slowdown in longevity gains, 

with distinct long-term effects: 

 Hd scenario (high emissions, dry summers): Shows a 

significant long-term divergence, highlighting the cumulative 

impact of extreme temperatures on mortality. 

 Ld scenario (low emissions, dry summers): Remains closer 

to conventional projections but exhibits a slight decline due 

to moderate climate effects. 

This climate-driven effect results in a slower pace of longevity 

gains. Under the Hd scenario, life expectancy at age 65 is 

 

9. European Insurance and Occupational Pensions Authority. (February 28, 2018). 

EIOPA’s second set of advice to the European Commission on specific items in 

the Solvency II delegated regulation. Retrieved January 22, 2025, from 

https://www.eiopa.europa.eu/publications/eiopas-second-set-advice-european-

commission-specific-items-solvency-ii-delegated-regulation_en. 

projected to be 0.7 years lower than in the baseline scenario by 

2050, underscoring the detrimental impact of prolonged heat 

exposure on mortality trends. 

FIGURE 5: TRENDS IN LIFE EXPECTANCY AT AGE 65 

 

Calculation of mortality shocks 

Mortality shocks were estimated following the European 

Insurance and Occupational Pensions Authority (EIOPA) 

methodology9 for the three scenarios (baseline, Hd climate, Ld 

climate) at both a one-year horizon and the ultimate horizon. In 

this context, a mortality shock represents an adjustment to 

mortality rates to account for extreme deviations in life 

expectancy. The shock factor is determined by minimizing the 

difference between shock-adjusted life expectancy and the 

realization of the 0.5% percentile of simulated life expectancies 

without the shock. 

We used the empirical quantile method to derive confidence 

intervals. 

 One-year horizon: The mortality shock curves across the 

three scenarios are remarkably similar, indicating that short-

term mortality shocks exhibit low sensitivity to climate 

variations. Additionally, a notable increase in mortality 

shocks is observed at older ages. This effect arises from a 

structural bias linked to the dynamics of residual life 

expectancy: As age increases, remaining life expectancy 

shortens, and its distribution naturally contracts around lower 

values. As a result, the 0.5% quantile approaches its lower 

bound more gradually than baseline life expectancy, leading 

to reduced sensitivity to fluctuations in the shock factor. In 

other words, at advanced ages, further reductions in life 

expectancy require larger shock factor adjustments due to 

the already elevated baseline mortality rates. 

 

 

https://www.eiopa.europa.eu/publications/eiopas-second-set-advice-european-commission-specific-items-solvency-ii-delegated-regulation_en
https://www.eiopa.europa.eu/publications/eiopas-second-set-advice-european-commission-specific-items-solvency-ii-delegated-regulation_en


MILLIMAN WHITE PAPER 

Climate-driven mortality projections under different scenarios 6 

Application: Forecasting the impact of high temperatures on mortality in the Netherlands May 2025 

FIGURE 6: MORTALITY SHOCKS BY AGE AT A ONE-YEAR HORIZON 

 

 At the ultimate horizon, the methodological biases 

previously discussed gradually diminish. For ages after 80,  

mortality shock curves converge toward more consistent 

values, aligning with expected projections, including those 

published by EIOPA.10 This convergence reflects the 

progressive adjustment of long-term mortality shocks, 

providing a more representative view of projected mortality 

trends. When comparing the three scenarios, the Hd 

climate scenario results in an average increase in mortality 

shocks of 0.23% compared with the baseline scenario, 

while the Ld climate scenario leads to a more moderate 

rise of approximately 0.08%. Although these differences 

remain small, they highlight the differentiated impact of 

climate conditions on mortality projections. The Hd 

scenario, based on more pessimistic climate assumptions, 

amplifies mortality shocks over time, whereas the Ld 

scenario, reflecting a more moderate climate evolution, 

results in a less pronounced impact. 

FIGURE 7: MORTALITY SHOCKS BY AGE AT THE ULTIMATE HORIZON 

 

Sensitivity analysis 

The sensitivity analysis evaluated the impact of methodological 

and parametric assumptions on life expectancy projections, 

revealing notable differences in model responsiveness under 

various climate scenarios: 

 The severe climate scenarios (Hd) are particularly sensitive 

to assumptions regarding heat-related mortality rates and 

the modeling approach for the temporal parameter 𝜿𝒕. For 

instance, variations in heat-attributable mortality can lead to 

a life expectancy reduction of up to 2.4 years by 2060. 

Likewise, the choice of model—ARIMA or ETS—for 𝜿𝒕 has a 

significant impact on projections. The ETS model, which 

places greater emphasis on recent trends, produces more 

pessimistic scenarios compared with ARIMA. 

 The moderate climate scenarios (Ld) exhibit greater stability, 

with life expectancy trajectories remaining relatively 

unaffected by variations in assumptions. 

These findings emphasize the critical influence of mortality rate 

assumptions and temporal dynamics in shaping projections, 

particularly under extreme climate conditions. 

Discussion 
This study evaluated the impact of high temperatures on mortality 

through a climate-adapted extension of the Lee-Carter model, 

incorporating key climatic variables to enhance the accuracy of 

mortality projections across different scenarios. The results 

underscore an increased sensitivity of mortality to extreme 

temperatures, particularly among vulnerable populations such as 

people over 65. By integrating specific climate indicators, 

including the number of tropical days, this approach addresses 

the limitations of conventional models, which often rely solely on 

average temperature analyses and fail to capture the full 

complexity of heat-related mortality risks. 

Projections based on KNMI’23 climate scenarios suggest a 

notable increase in mortality rates between 2050 and 2100, 

particularly in scenarios with more frequent and intense 

heatwaves. However, we must acknowledge several 

methodological constraints. These include the truncation of data 

at age 94, the simplified assumption of a constant difference 

between minimum and mean temperatures, and the implicit 

assumption of residual stationarity, which remains unverified in 

this framework. 

 

 

 

10 Ibid.  
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Looking ahead, several avenues for further research could 

refine and expand these findings. Investigating geographical 

disparities, particularly between urban and rural areas, would 

offer deeper insights into how infrastructure, exposure 

conditions, and adaptive behaviors influence mortality risks. 

Incorporating insurance portfolio characteristics could further 

enrich the analysis by accounting for adverse selection effects. 

Additionally, a gender-based differentiation could provide a 

more detailed understanding of how biological and behavioral 

factors influence vulnerability to extreme temperatures. Finally, 

broadening the model to account for other climate-related risks, 

such as air pollution or cold snaps, would offer a more 

comprehensive assessment of future health impacts in the 

context of climate change. 
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