

Madison Reservoir Dam Rehabilitation

Public Information Session

July 23, 2024

Presentation Agenda

- Welcome and Introductions
- History and Background
- Dam Overview
- Project Purpose and Need
- Rehabilitation Project
- Schedule
- Public Engagement
- Q/A

Why now?

New York State
Canal Corporation

State of Good Repair
Resilience
Risk Reduction

Public Safety
Public Benefit

Historic (Supplemental) \$50 Million Investment in NYS Canal System

Projects to be funded with the \$50 million may include, but are not limited to, the following:

•Rehabilitation of reservoir dams built in the 19th and early 20th century to supply water to the Enlarged Erie Canal (1836 – 1918) and other canals.

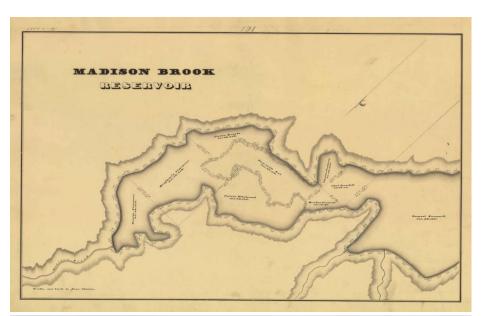
"Nearly 200 years ago Governor DeWitt Clinton opened the original Erie Canal connecting the Great Lakes with the Atlantic Ocean and now we are making a significant investment to ensure the current Erie Canal and the entire canal system remain safe and a vibrant part of our state's fabric," Governor Hochul said. "As a lifelong boater who has plied the canal waters, I know firsthand that the canalway means so much to our communities. This commitment of funding will allow our historic canals to be part of New York's story for generations to come."

https://www.governor.ny.gov/news/governor-hochul-announces-historic-50-million-investment-new-york-state-canal-system

Historic \$50 Million Investment in NYS Canal System Announced

Gov. Kathy Hochul today announced a historic \$50 million capital investment into the New York State Canal system as part of the FY 2025 Enacted Budget.

Today's announcement coincides with the 200th consecutive seasonal opening of navigation on the Erie, Champlain, Oswego, and Cayuga-Seneca Canals. Watch a video of today's first vessels below:


History and Background Madison Reservoir Dam

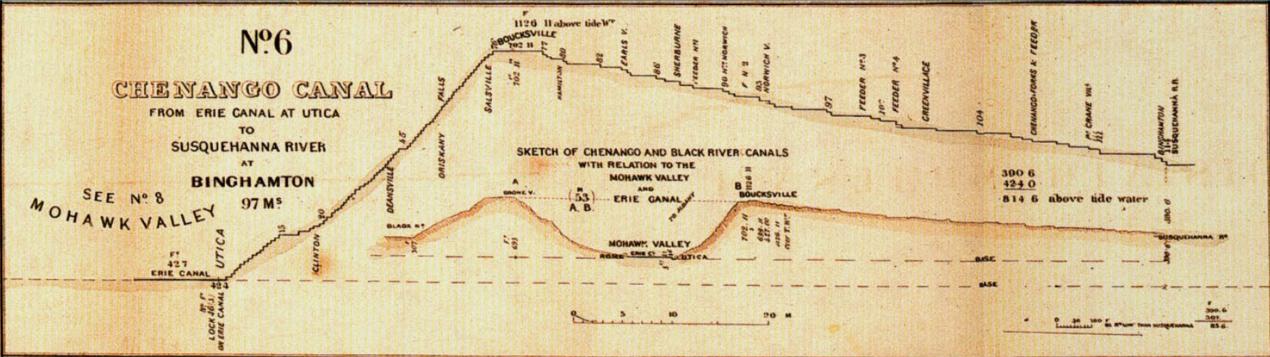
October 3, 2025

Dam History

- Dam constructed in 1836
- Impoundment of Madison (Payne) Brook
- Constructed as part of Chenango Canal

Chenango Canal

- Utica to Binghamton "Connecting the Erie Canal with the Susquehanna River"
- Madison Reservoir served as a Chenango Canal feeder until 1878
- One of seven feeder reservoirs at the summit section

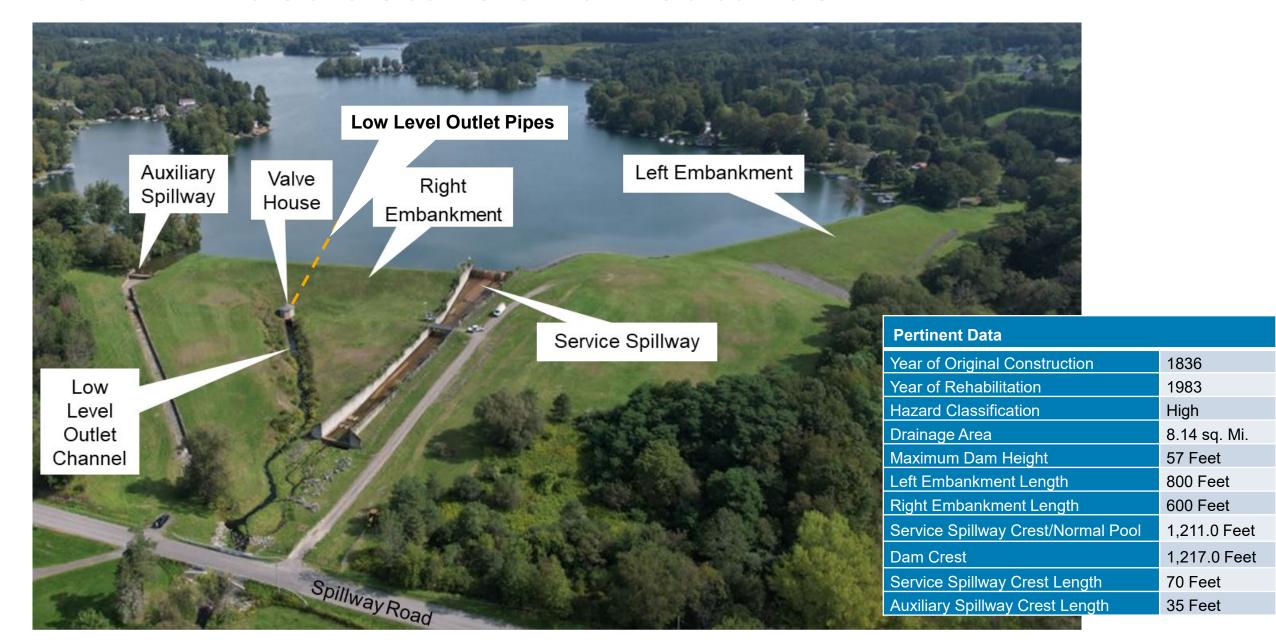


Modern Day Use and Context

- No longer used or needed for Canal operations
- Water flows out to Payne Brook, a tributary to the Chenango River
- Water levels are managed seasonally to support recreational uses. Levels are also managed to conduct dam inspections and maintenance.
- Highly developed with seasonal and year-round residences
- Businesses Lodging, dining, and related accommodations

Modern Day Use and Context

- Serves primarily as a recreational and ecological public asset
- Fishing, boating, swimming, and watersports recreation



Dam Overview Madison Reservoir Dam

October 3, 2025

Dam Infrastructure and Features

Dam Features

Earthen Embankments

- Approx. 1,400 ft long, total
- Right Embankment (western)
 - Approx. 600 feet long
- Left Embankment (eastern)
 - Approx. 800 feet long

Low Level Outlet Works

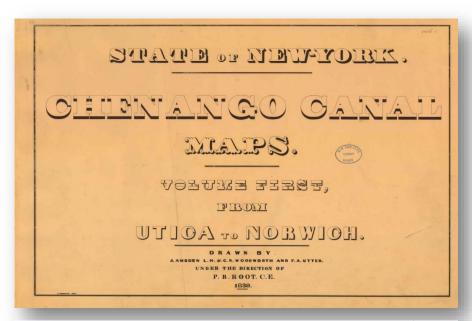
- Intake structure within reservoir
- Two, 16-inch pipes through reservoir
- Valve House, controlled at downstream end
- Stone masonry discharge channel
- Regulates water surface and flow
 - Minimum flow to Payne Brook
 - Seasonal/winter drawdown
 - Reservoir drawdown in case of emergency

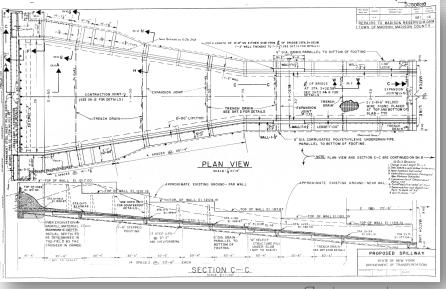
Spillways

- Service (primary) Spillway
 - 70-foot wide, concrete
- Auxiliary Spillway
 - 35-foot long, stone masonry
- Crests are approximately 7 feet lower than top of dam embankment
- Discharge to Payne Brook

Dam Features – Concrete Service Spillway

Dam Features - Masonry Auxiliary Spillway




Dam Features – Low Level Outlet Valve House

History of Improvements

- 1836 Original Construction
- 1870s Modifications to feed the Erie Canal
- 1962 New Low Level Outlet Valves
- 1983 Major Improvements
 - Concrete Service Spillway
 - Crest Raised and Widened
 - Stone Masonry Tunnel at Abandonment (left embankment)
- Recent Improvements (~2010s to present)
 - Valve House Stabilization and Roof Replacement
 - Enhanced Monitoring and Instrumentation
 - Reservoir and groundwater levels
 - Seepage monitoring
 - Spillway Repairs

Project Purpose and Need Madison Reservoir Dam

October 3, 2025

Project Purpose and Need

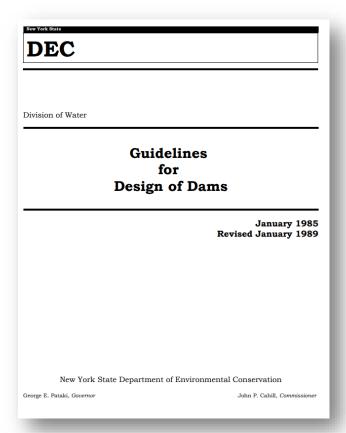
Public Safety

Longevity – Maintain Asset State of Good Repair for Public Benefit

Risk Reduction -Downstream Consequences

Resilience – Current Regulations and Standards

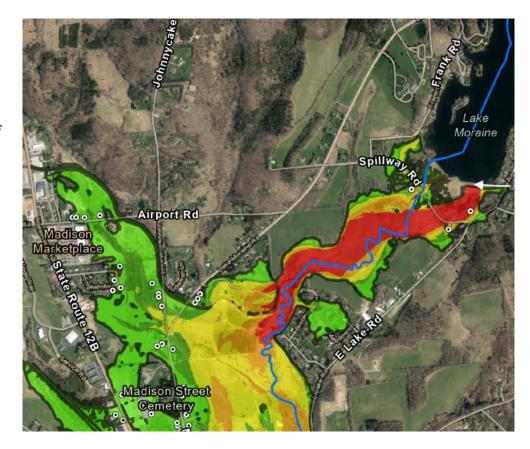
Current Conditions and Deficiencies


Evolution of Engineering and Dam Safety

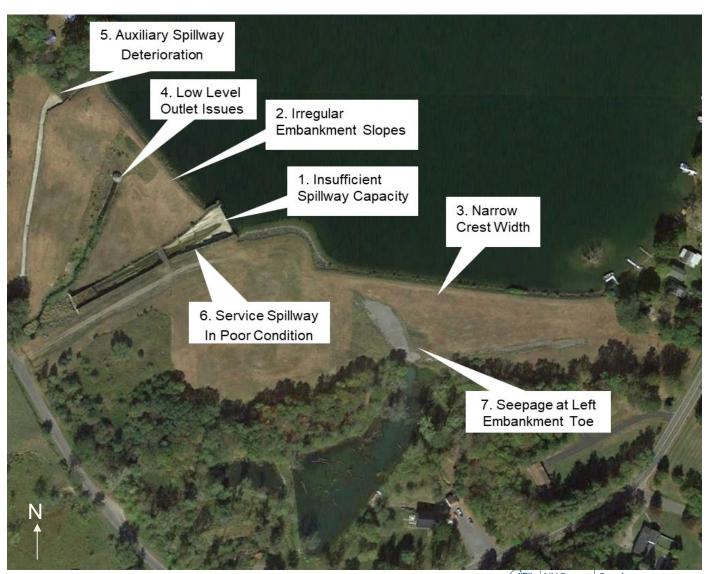
Specifications of the manner of building RESERVOIRS on the CHENANGO CANAL.

All trees, saplings, bushes, stumps and roots, shall be cut and grubbed up; and together with logs, brush and wood of every description shall be burned up, or removed from the ground to be occupied for the foundation of the embankment for Reservoir head. The area of land to be occupied for the flowing of Reservoir shall have all its trees, saplings and bushes cut, and together with wood of every kind shall be burned up, or removed beyond the limits of the flow-line. And when required for the shallow parts of the Reservoir, the stumps shall not be left higher than one foot above the surface of the ground. All light, vegetable earth, to be removed from the foundation of embankment; and for the foundation of puddle wall, and for foundation of culvert and guage pipes, the earth to be excavated until it reaches a firm, water-tight and uniform material. All ditches that may be required to draw the water from the Reservoir or to give the water a proper discharge from the Reservoir head into the hanner below, are to be excavated as may be required. In the central part of the embankment for Reservoir head, a wall of puddled earth is to be carried up; The puddle wall to be composed of a suitable mixture of clay, loam, fine gravel, and sand well incorporated together and laid on in courses of twelve inches when loose, and thoroughly incorporated by wetting and working with the spade until each layer is rendered of the most solid and water-tight consistence it is practicable to obtain. The wall to have such width as may be directed by the Chief Engineer of said canal. In working the successive courses, the spade shall pass through into the last course, so as to thoroughly incorporate the mass; care shall be taken that the courses are properly set and kept from sun-cracking. No cattle or team shall be allowed to travel over or in any way to break the puddle. In forming the embankment, care shall be taken to keep the work level over the whole base, and to put all the coarse or porous materials in the lower side, and the finer, and more impervious quality of earth to be selected and put above the puddle ditch and for the ten adjoining feet below. The materials for the embankment to be taken from the side hill below it, (or down the stream) and at such other places as may be directed by the Chief Engineer of said canal. Where the bottom or sides of Reservoir require lining, the light vegetable and porous earth shall be excavated from the same, and a suitable lining of water-tight earth shall be laid on, in an even and workmanlike manner.

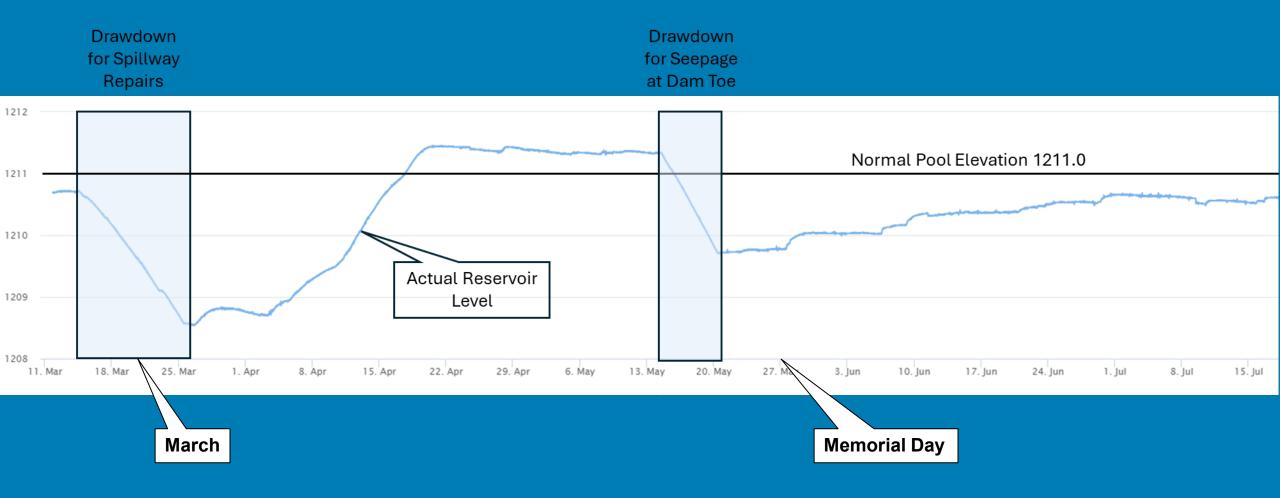
For a more full explanation of the manner of constructing the work, the said engineer will cause the same to be staked out, so as to give the proper width and slopes, and have proper level marks set to determine the depth and height as may be necessary to guide in the prosecution of the work; and from time to time, as the work progresses, give such further directions as may be necessary; all of which shall be complied with on the part of the contractors.


1836 - Specifications of the Manner of Building Reservoirs on the Chenango Canal

Modern Day – DEC Guidelines and **Industry Standards**


Hazard Classification and Condition

- DEC has classified Madison Reservoir as a High Hazard Dam
- Class C or high hazard dam A dam failure may result in widespread or serious damage to home(s); damage to infrastructure, and/or important utilities; or substantial environmental damage; such that the loss of human life or widespread substantial economic loss is likely.
- "The hazard class of a dam is an indication of the estimated consequences if the dam were to fail. It is not an indication of the condition of the dam." – DOW 3.1.5 Guidance for Dam Hazard Classification, NYSDEC
- Madison Dam is formally inspected annually by Canals Dam Safety Consultants and NYPA Dam Safety Engineering Team. The dam is currently monitored frequently.
- November 2023 DEC Inspection: "Unsound Deficiencies Recognized"
 - Inadequate slope stability
 - Inadequate spillway and low-level outlet capacity
 - Low-level outlets are controlled at the downstream end
 - Seepage at valve house and service spillway
 - Rehabilitation needed to bring the dam into conformance with applicable dam safety criteria
- The dam is not at risk of imminent failure

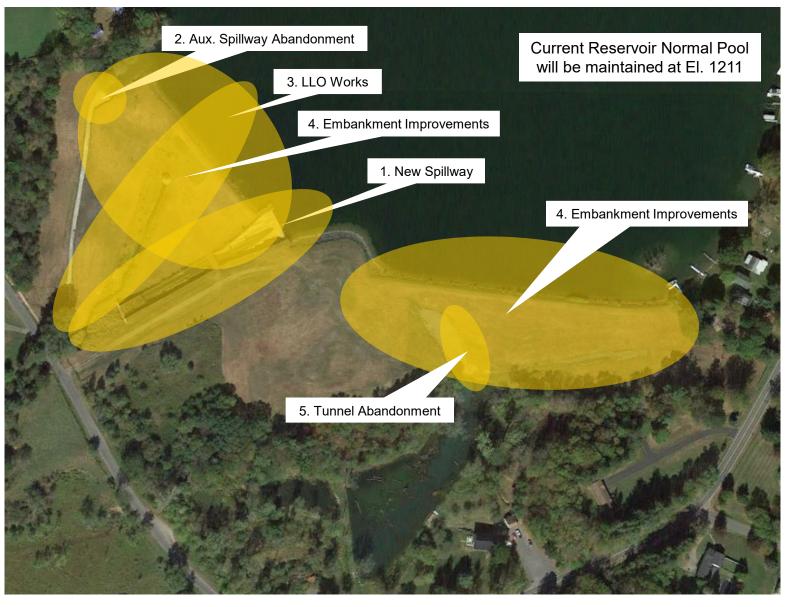


Overview of Primary Deficiencies

- 1. Insufficient Spillway Capacity
- 2. Steep and Irregular Embankments
- 3. Narrow Embankment Crest
- 4. Low Level Outlet Works Issues
 - Insufficient draw-down capacity
 - Lack of upstream controls
 - Original cast iron pipes
 - Seepage at Valve House
- 5. Auxiliary Spillway Deterioration
- 6. Service Spillway in Poor Condition
- 7. Seepage at Left Embankment Toe

Current State and Conditions

Rehabilitation Project Madison Reservoir Dam


October 3, 2025

Project Approach and Goals

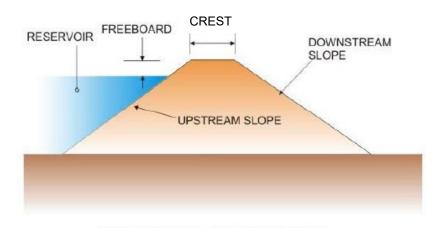
Comprehensive Rehabilitation

Major Project Components

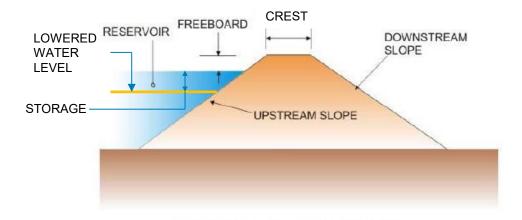
- New Spillway
 - Remove/replace existing
 - Sufficient capacity to pass SDF with appropriate freeboard
- 2. Auxiliary Spillway (existing) abandonment
- 3. Low-Level Outlet Works
 - Shallow Siphon System
 - Pipes, valves, and appurtenances
 - Intake structure
 - Outlet structure and channel repositioning existing valve house
- 4. Embankments
 - Crest widening
 - Inboard and Outboard slopes regrading and flattening
 - Seepage Control Filter blankets and toe drains
- 5. Tunnel Abandonment left embankment
- 6. Site Improvements
 - Vegetation management, tree clearing
 - Site security
 - Access ways
- 7. Enhanced Monitoring and Instrumentation

Please note that the project is in the design phase and is subject to change.

NY Power | Canal | Corporation | Co

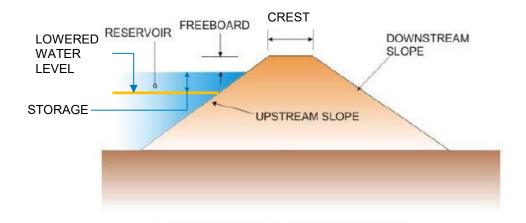

Project Scope and Magnitude

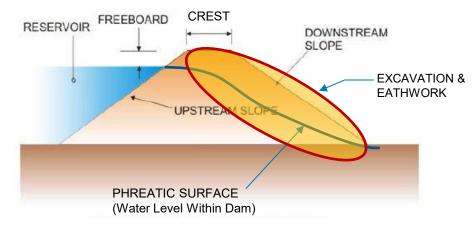
- Major Construction Project
 - Work across the entire site and within the reservoir at the dam.
 - Heavy Civil and Marine Construction Earthwork, Pipeline, Demolition, Concrete Work, Structures
 - Multi-year and multi-phase (2-years is anticipated for construction of major project components)
- Control of Water and Reservoir Drawdown
 - Combination of cofferdams, temporary pumping/siphons, and partial reservoir drawdown
 - Reservoir Drawdown will be required to maintain safe conditions and to facilitate efficient completion of the project.
 - Impacts Public Safety, Construction Risk, Community and Reservoir Users, and Environmental impacts



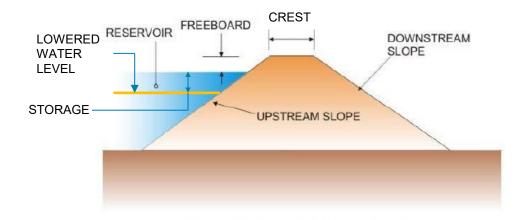
Construction Photo of the DeRuyter Reservoir Dam Rehabilitation Project

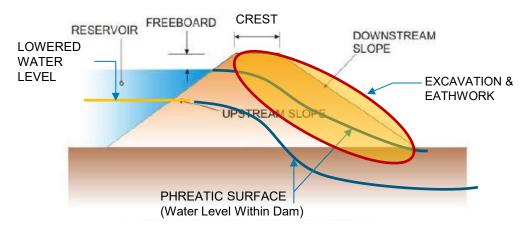
1. Existing Spillway Demolition, New Spillway Construction - There will be no means to pass storm inflows.




- 1. Existing Spillway Demolition, New Spillway Construction There will be no means to pass storm inflows.
 - Reservoir drawdown provides storage capacity.

- Existing Spillway Demolition, New Spillway Construction -There will be no means to pass storm inflows.
 - Reservoir drawdown provides storage capacity.


2. Embankment Improvements – Invasive excavations will be required to address seepage and complete earthwork. This work cannot be safely completed at normal pool and the corresponding embankment phreatic level.



- Existing Spillway Demolition, New Spillway Construction -There will be no means to pass storm inflows.
 - Reservoir drawdown provides storage capacity.

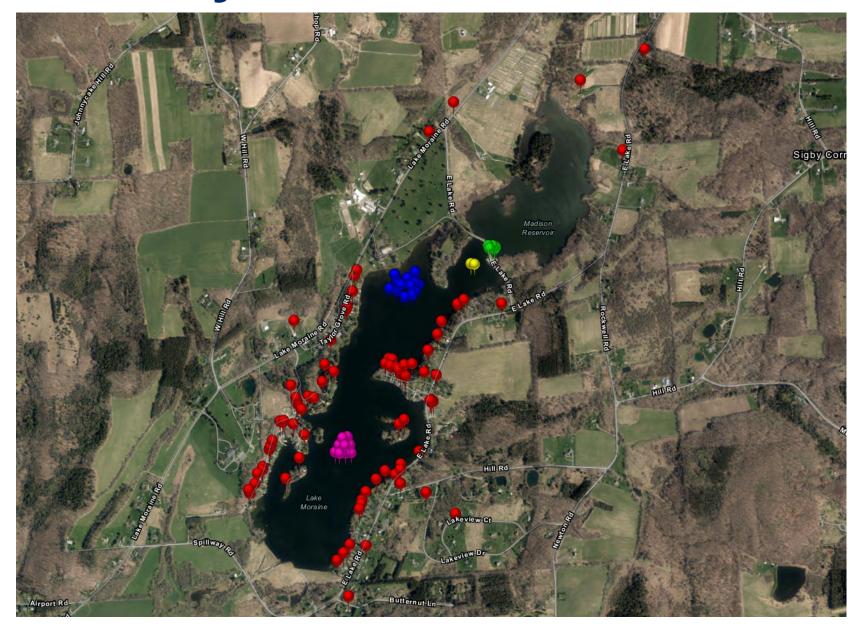
- Embankment Improvements Invasive excavations will be required to address seepage and complete earthwork. This work cannot be safely completed at normal pool and the corresponding embankment phreatic level.
 - Reservoir drawdown reduces the phreatic level within the embankment so this work can be completed <u>safely</u>.

Drawdown Impacts

Community and Reservoir User Impacts

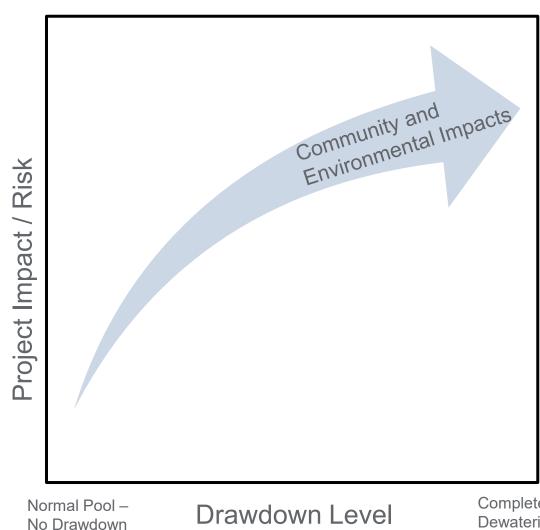
- Residential properties and businesses shoreline and islands
- Recreation
 - Boating and Watersports
 - Swimming
 - Fishing and Ice Fishing
 - Dock and Boat Launch Access
- Water Use Potential impacts to domestic water supplies (wells and direct withdrawals)

Environmental Impacts

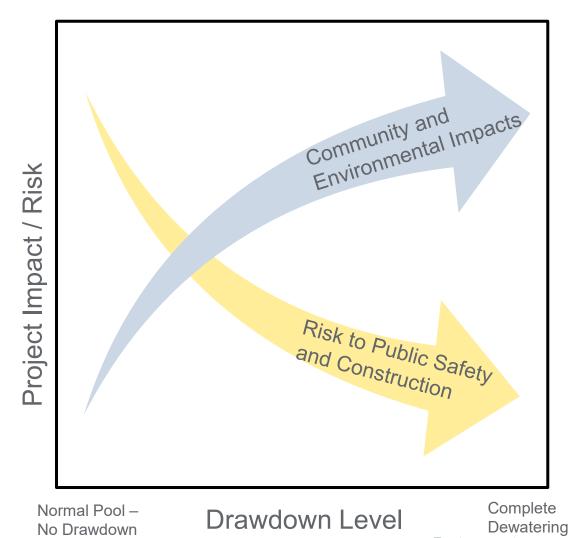

- Reservoir Level Potential impacts to fish, aquatic life and vegetation
- Reservoir Outflow Downstream flow in Payne Brook will be maintained throughout construction
- Wetlands Altered conditions during the drawdown

Public Safety and Construction Risk

- Safety Worker and Public, at site and downstream
- Schedule
- Complexity
- Cost



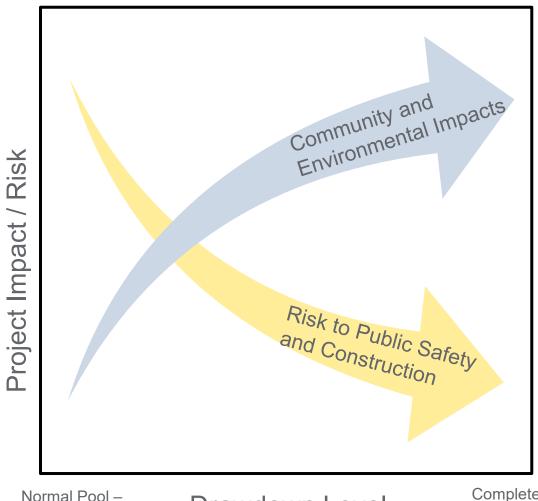
Public Survey


Drawdown – Balancing Impacts with Public Safety

and Construction Risk

Drawdown – Balancing Impacts with Public Safety

and Construction Risk



Drawdown – Balancing Impacts with Public Safety

and Construction Risk

10-ft Drawdown will be required for the 2-year duration of major construction

Public Safety is Paramount

Drawdown Level

Reservoir at 10-foot Drawdown Target Level, Elevation 1201 BCD

- Site Preparations
- Valve House Relocation
- Valve House Seepage Filter
- Cofferdam for Siphon LLO
- Siphon LLO Construction
- Abandon LLO Pipes
- Left Embankment Improvements
- Cofferdam for Spillway
- Spillway Construction
- Right Embankment Improvements
- Upstream Slope Buttressing
- Auxiliary Spillway Cutoff
- Final Site Restoration

- Site Preparations (2 months)
- Valve House Relocation (2 months)
- Valve House Seepage Filter (2 months)
- Cofferdam for Siphon LLO (2 months)
- Siphon LLO Construction (6 months)
- Abandon LLO Pipes (2 months)
- Left Embankment Improvements (6 months)
- Cofferdam for Spillway (2 months)
- Spillway Construction (12 months)
- Right Embankment Improvements (6 months)
- Upstream Slope Buttressing (6 months)
- Auxiliary Spillway Cutoff (2 months)
- Final Site Restoration (4 months)

- Site Preparations (2 months)
- Valve House Relocation (2 months)
- Valve House Seepage Filter (2 months)
- Cofferdam for Siphon LLO (2 months)
- Siphon LLO Construction (6 months)
- Abandon LLO Pipes (2 months)
- Left Embankment Improvements (6 months)
- Cofferdam for Spillway (2 months)
- Spillway Construction (12 months)
- Right Embankment Improvements (6 months)
- Upstream Slope Buttressing (6 months)
- Auxiliary Spillway Cutoff (2 months)
- Final Site Restoration (4 months)

- Site Preparations (2 months)
- Valve House Relocation (2 months)
- Valve House Seepage Filter (2 months)
- Cofferdam for Siphon LLO (2 months)
- Siphon LLO Construction (6 months)
- Abandon LLO Pipes (2 months)
- Left Embankment Improvements (6 months)
- Cofferdam for Spillway (2 months)
- Spillway Construction (12 months)
- Right Embankment Improvements (6 months)
- Upstream Slope Buttressing (6 months)
- Auxiliary Spillway Cutoff (2 months)
- Final Site Restoration (4 months)

Drawdown – What to Expect and Suggested Ways to Prepare

Drawdown

- Level 10 feet below normal pool (spillway crest) Target drawdown elevation is 1201
- Duration 2 years, 2026 through 2027

Prepare

- Domestic water investigate reliability of your source and prepare accordingly
- Shoreline and access boats and docks

Opportunity

- Shoreline improvements
- Madison County is planning two culvert replacements

Preliminary Project Schedule – Where are we now, and what's ahead?

2024 - Design

2025 - Permitting, Regulatory Review and Approvals, Bidding for Construction

2026 through 2027 – Construction (Major Project Components),
Reservoir Drawn Down (all of 2026 and all of 2027)

2028 – Construction (Final Completion), Reservoir Returned to Normal Pool

When will you hear from us again and how?

- Additional public information sessions are planned to be held through design before the start of construction
- Project updates will be shared to a dedicated website:
 - https://www.canals.ny.gov/Operations-and-Public-Projects/Project-Work/Madison-Reservoir-Dam-Rehab
- If you have further questions, comments or concerns, please feel free to contact:

Jackie Schillinger

Manager, Government and Community Relations

New York State Canal Corporation

(c) 518-281-5510 | Jacqueline.Schillinger@canals.ny.gov

Thank You