

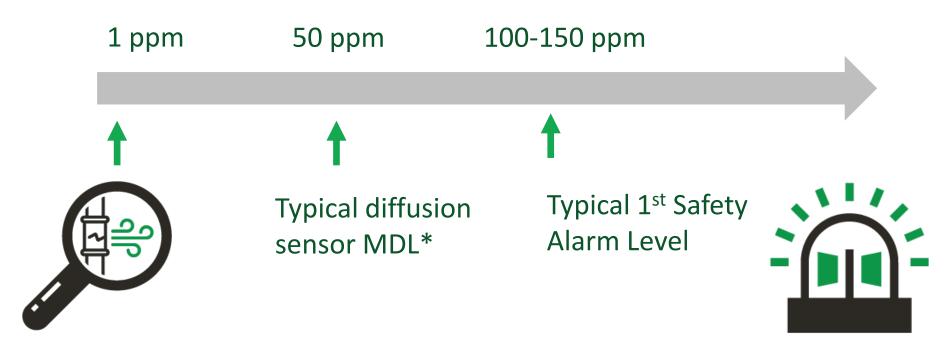
1

Refrigerant Gas Detection Vs. Refrigerant Leak Detection

Safety Compliance and Emissions Reduction

Gas Detection vs. Leak Detection

Gas Detection


• Sensors designed for EN 378 safety compliance to detect the presence of gas at unsafe concentrations, typically alarming at 10-~100-1000+ ppm

Leak Detection

 High-performance sensor (1ppm MDL) that detects low-level leaks for environmental regulatory & economic needs (and can also support EN 378 safety compliance)

General Detection Ranges

Low-level leak detection (1 - 10 ppm)

* Minimum Detection Level

Primary Drivers for Refrigerant Detection

Safety

- Regulatory requirements (EN 378)
- Corporate safety policy

Gas Detection

Environmental

- Regulatory requirements (F-Gas)
 - Corporate goals



Economic

- Operating cost reduction (reduce refrigerant loss/refill)
- Mitigate refrigerant supply risk

Leak Detection

Methods of Refrigerant Detection

Passive Diffusion

 Gas has to reach the sensor by diffusing in the air

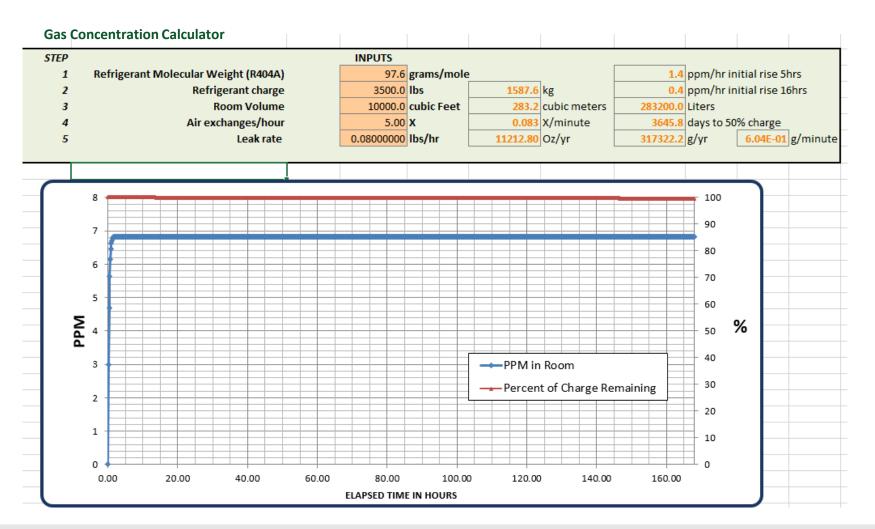
Active Sampling

 Gas is actively drawn to a sensor with a pump

What is Refrigerant Detection?

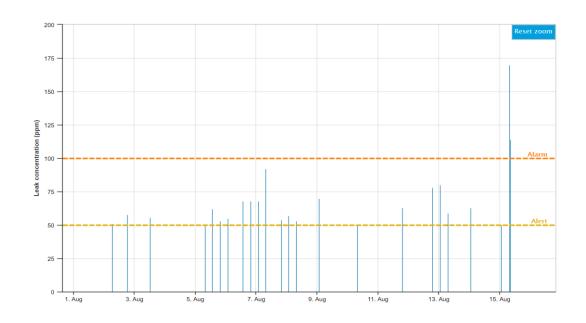
- Permanent 'fixed' installation
- Designed to activate alarm & instigate mitigation
- Continuous detection of refrigerant
- Differing sensor technologies to support various refrigerants/applications
- Typical Solutions:
 - Aspirated/pumped
 - Point detector
 - Others

Diffusion vs. Aspirated Sensors


Item	Diffusion	Aspirated
Sampling Type	Passive	Active
Sensing Channels	1-2 per device	Up to 16 per device
Sensor Technology	EC, SC, CT, IR	IR
Minimum Detection Level	+50 PPM (typical)	1 PPM
Accuracy	Standard	High
Calibration	Annual (typical) – 5+ years	Never *
General Selection Guideline	Lowest cost to meet EN 378 safety	Small leak detection, optimize energy usage, reduce emissions

^{*} Subject to regulatory requirements

Importance of Minimum Detection Level (MDL)



Air Exchanges/Hour: 5
Room Volume: 283 m³
Leak Rate: ~0.6 g/min
Max Concentration: 7ppm

Diffusion sensors will NEVER alarm for this leak.

Leak Detection for Refrigerant Emissions Reduction

1200 Reset zoom

1000 Critical

400 Alarm

Alarm

Alert

0 30. Oct 1. Nov 3. Nov 5. Nov 7. Nov 9. Nov 11. Nov 13. Nov 15. Nov

Defrost-Cycle Leak Pattern

(not always active when the technician inspects)
Refrigerated Case Example #1

Preventable Catastrophic Leak

(data revealed significant leak) Refrigerated Case Example #2

Primary Drivers for Refrigerant Detection

Monitoring Locations

- Chillers
- Cold rooms
- Cylinder storage areas
 - Vent lines

Sensor Placement

- Within 6m of each chiller
- Locate sensors in areas the specific gas is likely to accumulate
 - low, middle (breathing zone), high
 - Locate sensors in the air flow path created by mechanical ventilation

Sensor Quantity

- At least one sensor for each gas to be detected
 - At least one sensor per chiller
 - At least one sensor per enclosed, occupied space (e.g. cold room)
- Near the exhaust ventilation intake

Controller & Alarms

- AV alarm required both inside and outside the machinery room
- Locate the controller outside the machinery room
- Beacons/sounders at each additional entrance (with optional remote alarm silence button)

Safeguarding PEOPLE, PLACES, & #PLANET

