Hall 9

сниста

Industrial Heat Pumps – Standards and Energy Efficiency

Alexander C. Pachai

Technical Committee Industrial Heat Pumps

eurammon lecture event at Chillventa, 12 October 2022

Some Initial Considerations

3

Definitions

- A refrigeration system and a heat pump are basically identical; BUT
- In a heat pump the warm side has a value
- $COPc = \frac{Qc}{W}$
- $COPh = \frac{Qh}{W}$
- $COPs = \frac{Qc+Qc}{W}$
- EN 14825:2018 define high temperature as everything over 65°C/149°F
- District heating systems often work at temperatures between 70°C/158°F and 130°C/266°F
- If heat is recovered from a system connected to a cooling tower the savings on water and chemicals can be relatively high; a heat pump reduces these values which are not included in the COP

Theoretical COP for various natural gases

COP@60°C temperature lift

Swept volume required for a 500kW heat pump

Swept volume@60°C temperature lift

Pressure – temperature relationship for selected refrigerants

Pressure - temperature relation ship

Where will the high temperature heat pumps be used?

- The industrial world is very diversified and so are the solutions used
- One barrier for a quick roll out of high temperature heat pumps is the fear of affecting taste, color, texture or flavor of the food or drink
- Other industries are less sensitive on the product but more on the reliability of new technologies
- All major manufacturers are ready to produce high temperature heat pumps but there is no market pull

euram

Branche	Beispiele für thermische Produktionsprozesse
	• Erwärmen (20-60°C),
Lebensmittel	 Pasteurisierung/Sterilisierung (70-120°C)
	 Kochen (100-240°C)
	 Destillieren (40-100°C)
	 Trocknen (40-250°C)
	 Eindampfen (40-170°C)
	 Waschen (30-60°C)
	 Aufkonzentrieren (60-70°C)
	 Backen (160-260°C)
	 Reinigung (30-70°C)
	 Raumheizung (20°C)
Metall	 Galvanik (20-100°C)
	 Waschen/Beizen (30-60°C)
	 Trocknen (60-90°C)
	Reinigung (30-70°C)
	 Raumheizung (20°C)
Papier	Erwärmen (40-80°C)
	 Kochen (160°C)
	 Trocknen (110-240°C)
	 Reinigung (30-70°C)
	 Raumheizung (20°C)
	 Färben (40-130°C)
Toytil	 Waschen/Putzen (40-100°C)
rextil	 Bleichen (60-100°C)
	 Reinigung (30-70°C)
	Raumheizung (20°C)
	 Erwärmen (~60°C)
	 Kochen (95-105°C)
Chemie	 Destillieren (110-300°C)
	 Thermoumformen (130-160°C)
	 Aufkonzentrierung, Eindicken (125-130°C)
	Reinigung (30-70°C)
	Raumheizung (20°C)
Holz	 Trocknen (50-80°C)
HUIZ	Verleimen (120-180°C)
	 Lackieren (50-80°C)

Industrial Heat Pumps – Standards and Energy Efficiency

Creating a overview and standard

- The aim was first to find a way to represent the published data that appears from announcement
- The data available very often does not make much sense alone
- Only by asking for more data you can build the case
- Finding new projects for case studies is more difficult than first anticipated.
- Industries are not that keen to show data about their success to competitors

Project sector	District heating		
Project Process	Ambient air collectors		
Temperature source:	-10		
Temporal course	Continiously		
Temperature sink:	67		
Maximum temperature	72		
Expected Condensing temp.	72		
Temperature lift	82		
Temporal course	Continiously		
system with thermal storage	No		
expected operating hours	6000		
mode of operation	parallel		
Drive power	Electricity		
Drivers	Wind generator		
Compressor type:	Reciprocating		
part load control:	Stepwise and stepless		
Refrigerant:	R717		
GWP:	0		
Annual production	8.000		
Heating capacity:	1.283		
Absorbed power	395,0		
Cooling capacity:	888,0		
Usefull cooling:	no		
Service lige	20		
CO2 reduction	1150		
equivaltent to	70		
COP (el.) :	3,25		

Standards for heat pumps

- TEWI is a way but ٠
- VDMA 24248 •

euramm

The standard includes a proposal for a ٠ standardised calculation of efficiencies

Thermal capacities			Standard	Actual				
Heating Power	Qw	kW	1970,4	1282,7				
Refrigerating Power	Q ₀	kW	1500	888,0				
Temperatures and temperature differences								
Heat transfer medium input of evaporator	t _K	°C	18	2,8				
Heat transfer medium input minus heat transfer	AT.	к	12	5				
medium output	- R-ein-aus	ĸ						
Heat transfer medium output of evaporator	t _{K-aus}	°C	6	-2,2				
Heat transfer medium output minus evaporation	Dt _{K-0}	к	2	3				
temperature	10 t At	**		F 2				
Evaporator temperature	$t U = t_{K-aus} - \Delta t_{k-0}$	-0	4	-5,2				
Hot water temperature (effective temperature)	t _w	°C	/0	68,1				
Hot water output minus hot water input	ΔT _w -aus-ein	K	30	31,8				
Hot water input on condenser	t _{w-ein}	°C	40	36,3				
Condensation temperature minus hot water output	Δt _{c-W}	к	2	5				
temperature	1- 1 1 At		70	72.4				
Condensing temperature	LC=LW+ΔLC-W	L	/2	/3,1				
Drive power of compressor and oil cooling (screw co		T	2.10	2.25				
		-	3,19	2,25				
Nechanical drive power, compressor		KVV	470	395				
Electrical drive power, compressor	P _{oc-el}	kW	480	407				
Oil input temperature on compressor	t _{öl-ein}	°C	70					
Oil output temperature on compressor	t _{öl-aus}	°C	100					
Oil cooler heat	Q _{öl}	kW	250					
Oil cooler heat utilisable or not	YES=0; NO=1	-	0	1				
Degree of efficiency of electric motor	η _{el_motor}	-	0,98	0,97				
Heat transfer medium transport, heat source (cold)	water)							
Specific heat capacity, water	C _{wasser}	kJ/kgK	4,19	4,19				
Cold water mass flow rate	m _{wasser}	kg/s	29,9	42,4				
Density, water	ρ _{wasser}	kg/m3	1000	1000				
Cold water volume flow rate	V _{wasser}	m3/s	0,030	0,042				
Pressure loss of cold water, evaporator	$\Delta P_{K_Verdamfer}$	bar	1,5	1,5				
Degree of efficiency of cold-water pump	η _{el_Wasserpumpe}	-	0,7	0,7				
Drive power of cold-water pump	P _{FT-K}	kW	6,3	8,9				
Heat transfer medium transport, heat sink (hot water)								
Condensing heat	Q _c	kW	1970,4	1282,7				
Specific heat capacity, hot water	C _{Heisswasser}	kJ/kgK	4,19	4,19				
Hot water mass flow rate	m _{Heisswasser}	kg/s	15,7	9,6				
Density, hot water	ρ _{Heisswasser}	kg/m3	1000	1000				
Hot water volume flow rate	V _{heisswasser}	m3/s	0,016	0,010				
Pressure loss of hot water, condenser	ΔP _{K_verflüssiger}	bar	1,5	1,5				
Degree of efficiency of hot water pump	$\eta_{el_heisswasser}$ pumpe	-	0,7	0,7				
Drive power of hot-water pump	P _{FT-W}	kW	3,3	2,0				
Drive power of hot-water pump, corrected	P _{FT-W-korr}	kW	3,3	0,0				
Total electric power requirements	P _{ges} =P _{oc-el} +ΣP _{FT} -K+ΣP _{FT-W}	kW	490	416				
Utilisable heating power	$Q_{WN}=Q_0+P_{oc}+\Sigma P_{FT-W}-Q_{TR}$	kW	1962	1299				
Individual efficiency coefficients								
Heat generation efficiency	$\eta_{KC-WP} = (Q_0 + P_{oc}) / P_{oc-el} / (T_c - T_0))$	-	0,81	0,71				
Heat transport efiiciency	$\eta_{WT-WP} = ((T_c/(T_c-T_0))/(T_W/(T_W-T_K)))$	-	0,77	0,85				
Fluid transport efficiency	$\eta_{FT} = P_{oc-el}/P_{ges}$	-	0,98	0,98				
Heat utilisation efficiency	$\eta_{WN}=(Q_W)/(Q_0+P_{0c})$	-	1,00	1,00				
Degree of heating efficiency	$\eta_{PPS-WD} = \eta_{KC-WP} * \eta_{WT-WP} * \eta_{FT} * \eta_{WN}$	-	0.61	0,59				
Transmission heat power dissipation	Q _{TR}	kW	28,02	4,44				

Standard formula and values

only chang

VDMA 24248

Industrial Heat Pumps - Standa

Calculations can be done in many dimensions

- Cordin Arpagaus shows in his book how you can build up a model
- Papers show the lowest acceptable COP but which and integrated how?
- Many engineers have their version of "the true pictures" in an Excel sheet
- New technologies such as digital twins will help giving us a closer understanding

Electricity price	61,2€/MWh
Gas price	26,2€/MWh
Max amortisation time	5years
η _{ref}	0,9 -
Operation hours	4500Hours
Inv _{heat pump}	2500k€
Inv _{ref}	1860k€
Realistic COP	3,5
Ratio (Eprice/Gprice)	2,34
Energy cost saving	33,3%
	2,11

Source: Marktpotenzial für Hochtemperatur-Wärmepumpen in Europa 16. Symposium Energieinnovation, 12.-14.02.2020, Graz/Austria

Industrial Heat Pumps – Standards and Energy Efficiency

Standards for heat pumps

- Standards limiting the charge of HC and NH₃ are mainly about systems in area with open access to the public
- In some countries there are special limiting rules for flammables especially NH₃
- Outdoor installation or installation in special machine room with limited access, competent persons only, is a totally different matter with less restrictions
- Will there be competent hands enough to meet the demand of new installations in the future if we are to meet the goals of decarbonising the heating systems before 2050?
- Standards are under revision, your participation will help driving the development in the right direction

Sources and sinks

- Sector coupling and integration of heat pumps
- It is all about energy for heating either space or process
- Heat can also be recovered and produce energy
- Heat pumps is one of the cornerstones in the future energy system

eurammon

Industrial Heat Pumps – Standards and Energy Efficiency

Organic Rankine Cycle (ORC)

- Basically a heat pump with the fluid operating in the opposite direction
- Different natural refrigerants have been proposed for this process including CO₂, NH₃ and different HC types

eurammon

Industrial Heat Pumps – Standards and Energy Efficiency

Conclusions

- The market for higher and high temperature heat pumps is in demand, but orders lagging behind
- The different published data does not always give the full picture of the benefits of the products and their benefits
- Tools and standards are in place but not very often used e.g. VDMA 24248
- Does the end-user really want to take the step in to the future
- Especially in Europe there is a push to get out of fossil fuels, but the biggest users of fossil fuels are foot-dragging with their decision
- A worry is the lack of sufficient manpower to do the transition, but waiting is not an option

eurammon e. V. is always available as a sparring partner for questions on refrigeration with natural refrigerants.

Contact:

Dr. Alexander Schmeink | Lyoner Straße 18 | 60528 Frankfurt | Germany

Phone: +49 (0)69 6603-1277 | E-Mail: alexander.schmeink@eurammon.com

Hall 9

сниста

