#### Hall 4A

## снициепта





DIRECT EXPANSION (DX) OR FLOODED OPERATION OF R-717 AIR COOLER AND THEIR ENERGY EFFICIENCY ADVANTAGES

> Franz Sperl Product Management

Chillventa Specialist Forum 2022 12.10.2022





## AGENDA

- Introduction Motivation
- Test chamber
- Measurement campaigns (K1 K4)
- Results
- Conclusion





Motivation - Actual Industry Standard

- Established products
- Horizontal/vertical header; big core tubes
- Robust and great for high load fluctuations
- Low rr (< 2.0)
  - mostly lack in capacity
  - # of passes ↑: positive

Not every evaporator is applicable for low rr (pay attention with optimization by e.g. gasquality-control at existing systems)



4 12. October 2022



12. October 2022

5

Güntner

#### NH3: TRANSITION FROM SUPERHEATED TO FLOODED OPERATION

Introduction –Optimum rr





Test chamber

Test Chamber



Machinery room: NH<sub>3</sub>-rack



12. October 2022

7

#### NH3: TRANSITION FROM SUPERHEATED TO FLOODED OPERATION

**Measurement Campaigns** 

4 measurement campaigns: (based on SC2; DIN EN 328)

| Standard | t <sub>A1</sub> | t <sub>DP</sub> | t <sub>e</sub> | SHR  | t <sub>R1</sub> |
|----------|-----------------|-----------------|----------------|------|-----------------|
|          | [°C]            | [°C]            | [°C]           | [-]  | [°C]            |
| SC2      | 0               | <-10            | -8             | 0,65 | 30              |

SHR = Superheat ratio  
SHR = 
$$\frac{\Delta t_{sup}}{Dt_1} = \frac{t_{sup} - t_e}{t_{A1} - t_e}$$
5,2 K

- 1. K1 (DX) Variation of SHR
- 2. K2 (DX) Variation of  $t_{R1}$
- 3. K3 (DX) Variation of SHR at tR1  $\approx$  te
- $t_{A1}$  = air inlet temperature (dry bulb)
- $t_{\text{DP}}$  = air dew point temperature within the room
- t<sub>e</sub> = evaporating temperature
- $t_{R1}$  = refrigerant temp. at the inlet of the exp. valve
- Dt<sub>1</sub> = inlet temperature difference
- $t_{sup}$  = superheating temperature
- $\Delta t_{sup}$  = superheating



12. October 2022

### NH3: TRANSITION FROM SUPERHEATED TO FLOODED OPERATION

**Measurement Campaigns** 

4 measurement campaigns: (based on SC2; DIN EN 328)

| Standard | t <sub>A1</sub> | t <sub>DP</sub> | t <sub>e</sub> | rr  | t <sub>R1</sub> |
|----------|-----------------|-----------------|----------------|-----|-----------------|
|          | [°C]            | [°C]            | [°C]           | [-] | [°C]            |
| SC2      | 0               | <-10            | -8             | 2   | 30              |

rr = recirculation rate

$$\operatorname{rr} = \frac{\Delta h_0}{\Delta h_e} = \frac{1}{x}$$

- 1. K1 (DX) Variation of SHR
- 2. K2 (DX) Variation of t<sub>R1</sub>
- 3. K3 (DX) Variation of SHR at  $t_{\rm R1}\,{\color{red} \approx}\,t_{\rm e}$

4. K4 (Pump)

- rr ≈ 1 und SHR
- rr > 1

 $\Delta h_e$  = ref. spec. enthalpy change in the unit at  $p_e$  $\Delta h_0$  = specific vaporization enthalpy  $p_e$ 

x = vapor quality in  $kg_{vapor} / kg_{total}$ 



9 12. October 2022

#### NH3: TRANSITION FROM SUPERHEATED TO FLOODED OPERATION

Results K1 (Variation of SHR)





Results K2 (Variation of  $t_{R1}$ )

Güntnei





Results K2 (Variation of  $t_{R1}$ )

Güntnei





K3 (Variation of SHR at tR1 ≈ te)

Güntnei



13 12. October 2022

K3 (DX;  $t_{R1} \approx t_e$ ) VS. K4 (Pump; SHR)

Güntnei





K1 (DX) VS. K3 (DX;  $t_{R1} \approx t_e$ ) VS. K4 (Pump; SHR)



15 12. October 2022



K4 (Pump)





#### NH3: TRANSITION FROM SUPERHEATED TO FLOODED OPERATION

K4 (Pump) VS. K4 (Pump; SHR)



#### NH3: TRANSITION FROM SUPERHEATED TO FLOODED OPERATION

K4 (Pump) VS. K4 (Pump; SHR) VS. K1



00 1900 200



#### Conclusion

#### **Standard evaporator,** pump rr ~ 3:

- Established products in industrial standard
- Great for high load fluctuations
- Low rr (< 2.0)
  - $\rightarrow$  mostly lack in capacity





#### Conclusion

**Optimized evaporator**, small core tube, balanced  $\Delta p_{Coil}$ :

- Tube volume -60 %
- Reduced charge (NH<sub>3</sub>-volume)
- DX
  - Lowest charge (NH<sub>3</sub>-flow)
  - No big separator needed
  - Low pressure drop within rising suction pipes
- low rr
  - $\dot{Q}_{o,max}$  at rr ≈ 1.2
  - − Capacity +20 % (DX  $\rightarrow$  Pump)





#### Conclusion

**Optimized evaporator**, small core tube, balanced  $\Delta p_{Coil}$ :

- Tube volume -60 %
- Reduced charge (NH<sub>3</sub>-volume)
- DX
  - Lowest charge (NH<sub>3</sub>-flow)
  - No big separator needed
  - Low pressure drop within rising suction pipes
- low rr
  - $\dot{Q}_{o,max}$  at rr ≈ 1.2
  - Capacity +20 % (DX → Pump)
  - Very efficient and cost effective
  - Competitive to standard design





# THANK YOU

Franz Sperl | T +49 8141 242 – 132 franz.sperl@guntner.com

#### Hall 4A

## снициепта

