Hall 9

сниста

R-744 unit: The future of heat exchangers

Stefano Filippini Technical director, LU-VE Group 12-10-2022

R-744 unit: the future of heat exchangers

Agenda:

- Introduction on CO₂ units and advantages on the Environment
 - CO₂ : Advantages on the heat exchangers market
 - Technical aspects of CO₂ and advantages
 - Certification of CO2 units

Impact of overestimated performance of CO2 gas coolers on plant efficiency

Conclusion

- Certification by Eurovent Certita Certification
- How does it work?
- Certification Programmes (including Heat Exchangers programme)

CHILLVENTA

Introduction on CO2 units and advantages on the Environment

Why CO2 as fluid?

- Nowadays, the HFC refrigerants are phased down on the heat exchangers market because of their high Global Warming Potential (GWP)
- Carbon dioxide (CO₂) is a non-toxic and non-flammable natural refrigerant
- The use of CO₂ as working fluid is a well-established reality in the refrigeration industry and the number of new CO₂ plants is continuously increasing.
- CO₂ unit coolers and air-cooled CO₂ gas coolers have to ensure high and reliable performances
- The Eurovent program Heat Exchangers for refrigeration (HE) involves the major manufacturers of the market. The program, based on a voluntary approach, certifies the products performance through selection software validation and product testing in a third part laboratory.
- CO₂ unit coolers and gas coolers are included in the certification of heat exchangers. Due to the peculiar properties of CO₂, a dedicated performance evaluation process was established and in the third part laboratory was realized a new state of the art test ring.

JJJJ-MM-TT_hh-mmUhr	Dokumentenname	Kürzel (des Erstellers.Dateierweiterung	

Η	ΗΙLLVENTA				
	Refrigerant	GWP			
	R 404a	3922			
	R507	3985			
	R 404a	3922			
	R 422a	4143			
	R 422d	2729			
	R 407a	2107			
	R 407f	1825			
	R 407c	1774			
	R 410a	2088			
	R 452a	2141			
	R32	675			
	R 134a	1430			

1273

1397

600

631

124

148

145

3

0

6

4

R 448a

R 449a R 450a

R 513

R 152a

R 454c

R 455a

R 290 (propane)

R 717 (NH3)

R 744 (CO2) 1234ze

1234vf

CO₂ : Advantages on the heat exchangers market

NATURAL: no need to recover, reclaim or recycle as synthetic refrigerants

LOW MASS VOLUME: compact equipment

LOW COMPRESSION RATIO

LOW ENVIRONMENTAL IMPACT: ODP = 0; GWP = 1

AVAILABILITY IN NATURE

COMPATIBILITY WITH ALL MATERIALS: non-corrosive

HIGH REFRIGERATION CAPACITY: down to -54°C

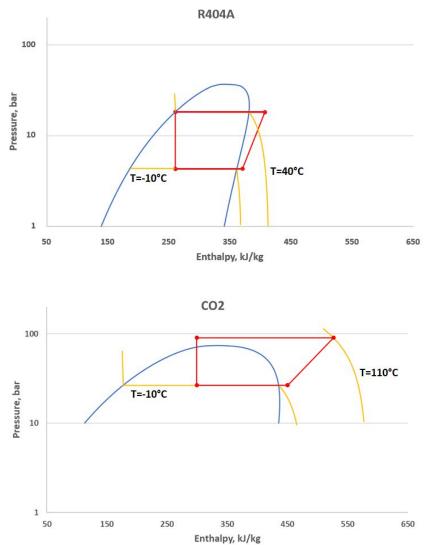
SAFETY: non-flammable; non-toxic

MISCIBILITY:- Compatible with oil compressors

CHILLVENTA

CO₂ : Advantages on the heat exchangers market

снициента


Comparison CO₂ – R404A

- As example, the theoretical performance of two refrigerants such as CO2 and R404A is compared.
- The working hypotheses are as follows:
 - the CO₂ cooling stage is in the "transcritical" zone (cooling above the critical point: 31°C, 73.6 bar);
 - the evaporation temperature is -10°C in both cases (classic application of positive cold);
 - the condensation temperature for R404A is 40°C
 - The gas cooling pressure for CO2 is 90 bar

→ The energy efficiency in refrigeration application is relatively good if the cooling phase (with " gas cooler") at the temperature level is well controlled.

➔ The temperatures at the inlet of the " gas cooler" or any exchanger can reach values over 100°C, which is interesting for conventional heating applications by heat pump.

 \rightarrow The energy efficiency in heat production can be very good insofar as the installation can hold significant pressures (around 90 bar).

JJJJ-MM-TT_hh-mmUhr_Dokumentenname_Kürzel des Erstellers.Dateierweiterung

Technical aspects of CO₂ and advantages

The impact on performances while using CO2 fluid

Impact on cooling capacity when replacing the HFC refrigerant by CO_2 .

- Evaporators using HFC vs CO₂:

Evaporators using HFC as fluid	Evaporators using CO2 as fluid	Impact of CO2 on cooling capacity
UN HFC DX1	UN CO ₂ DX1	11%
UN HFC DX2	UN CO ₂ DX2	9%
UN HFC DX3	UN CO ₂ DX3	13%
UN HFC DX4	$UNCO_2DX4$	16%
UN HFC DX5	$UN CO_2 DX5$	-10%
UN HFC DX6	UN CO ₂ DX6	12%
UN HFC DX7	$UNCO_2DX7$	17%
UN HFC DX8	$UN CO_2 DX8$	14%
UN HFC DX9	UN CO_2 DX9	-12%
UN HFC DX10	UN CO ₂ DX10	5%

By replacing the HFC by CO_2 as fluid, the average increase of more than 10% in cooling capacity !!!

Certification of CO2 units

снициента

CO₂ certification: performance declaration, standard conditions

– Certified performance items for CO_2 evaporators:

- Standard capacity [kW]
- Fan power input [W]
- Energy Ratio R [-]
- Energy class [-]
- Air volume flow [m3/h]

снициепта

CO₂ certification: performance declaration, standard conditions

For CO₂ Evaporators, the cooling capacity can be declared within four (4) standard conditions :

Standard Conditions for Refrigerants	Air Inlet Temperature (°C)	Evaporating Temperature (°C)
SC1	10	0
SC2	0	-8
SC3	-18	-25
SC4	-25	-31

The participant declares all working conditions !!!

– During the selection of units to be tested, the standard condition SC2 is privileged:

– The test is done according to EN 328:2014

Certification of CO2 units

сниста

Energy ratio and Energy class for CO₂ DX Air Coolers:

$$R_{CO_2}DX \text{ air coolers} = \frac{\text{Thermal capacity @ SC2 wet}}{\text{Fan power consumption}} \times \sqrt{\frac{\text{fin spacing}}{4.5}}$$

Energy class	Energy consumption	CO ₂ DX Air coolers
A+	Extremely low	R ≥ 73
Α	Very Low	47 ≤ R<73
В	Low	35 ≤ R< 47
С	Medium	25 ≤ R< 35
D	High	16 ≤ R< 25
E	Very high	R< 16

Certification of CO2 units

снициента

CO2 certification: performance declaration, standard conditions

- Certified performance items for CO₂ Gas coolers:
 - Standard capacity [kW]
 - Fan power input [W]
 - Energy Ratio R [-]
 - Energy class [-]
 - Air volume flow [m3/h]
 - Refrigerant side pressure drops [kPa]
 - A-weighted sound pressure level [dB(A)]
 - A-weighted sound power level [dB(A)]

снициепта

CO₂ certification: performance declaration, standard conditions

- For CO_2 Gas coolers, the cooling capacity is to be declared within two (2) standard conditions :

- Transcritical mode:

Standard condition	Air inlet	Gas cooler inlet	Gas cooler inlet	Gas cooler outlet
	temperature	pressure	temperature	temperature
	[± 1 K]	[± 1 bar]	[± 5 K]	[± 1 K]
SC20	30°C	90 bar	110°C	35°C

-Subcritical mode:

Standard condition	Air inlet temperature	Condensing temperature	Refrigerant inlet temperature	Subcooling
SC25	5°C	15°C	60°C	<3 K

 CO_2 gas coolers shall be tested under Eurovent Standard Conditions for CO_2 Gas Coolers (both transcritical and subcritical conditions)

JJJJ-MM-TT_hh-mmUhr_Dokumentenname_Kürzel des Erstellers.Dateierweiterung

EN 327:2014

сниста

Certified performances and correction factors according to the market condition

- For CO_2 Gas coolers, the correction factors are the following:

Condition in transcritical mode	Correction factor
A5 (SC20)	1.00
A3	0.82
A2	0.71
B5	1.08
B3	0.88
B2	0.76
C5	0.80
C3	0.62
C2	0.52

Conditions of the **market** that were defined within HE programme

EUROVENT makes sure that the factors are applied accordingly before certifying Gas cooler manufactures!!!

Condition in transcritical	Gas cooler inlet	Gas cooler inlet	Air Inlet temperature	Gas cooler outlet	DT (temperature
mode	pressure	temperature	•	temperature	`approach)
A5 (SC20)	90 bar	110 °C	30 °C	35 °C	5 K
A3	90 bar	110 °C	32 °C	35 °C	3 K
A2	90 bar	110 °C	33 °C	35 °C	2 K
B5	95 bar	120 °C	33 °C	38 °C	5 K
B3	95 bar	120 °C	35 °C	38 °C	3 K
B2	95 bar	120 °C	36 °C	38 °C	2 K
C5	80 bar	100 °C	27 °C	32 °C	5 K
C3	80 bar	100 °C	29 °C	32 °C	3 K
C2	80 bar	100 °C	30 °C	32 °C	2 K

снициепта

Test campaigns: TUV SUD lab, description of the test plant.

Description of CO2 test rig:

- The new state of the art test rig in the "Center of Competence for Refrigeration and Air-Conditioning" of TÜV SÜD Industrie Service realizes high precision measurements of capacities in standard conditions as well as outside the usual needed conditions.
- Thus, the test rig meets the requirements of :
 - DIN EN 327 (forced convection air cooled refrigerant condensers), which includes gas coolers in its scope
 - DIN EN 328 (forced convection unit air coolers for refrigeration).
- With the test rig it is possible to measure evaporators with capacities up to 40 kW and gas coolers up to 100 kW.
- Units of various sizes and capacities can be tested due to the use of four compressors with different performance levels.

снициепта

Test campaigns: TUV SUD lab, description of the test plant.

Description of CO2 test rig:

- Because of the high-pressure strength of the used refrigerant-bearing components, measurements are possible in trans-critical and sub-critical operation.
- The incorporated components include pipes, safety valves, connections, and flexible hoses to meet the requirements of a wide range of applications and test units.
- In addition, the test rig can withstand thermal stress in a temperature range down to -40°C in evaporating mode and up to 120°C in the gas cooling mode.
- Since carbon dioxide is odorless and displaces oxygen, the test chambers in TÜV SÜD laboratory are equipped with the appropriate sensors and warning systems to guarantee a safe operation.

сниста

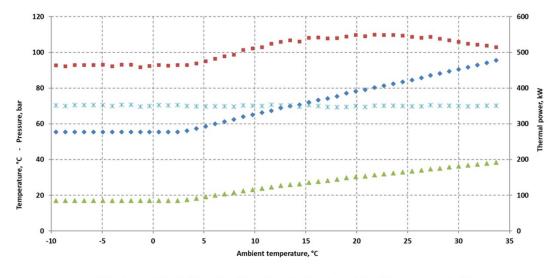
Certification of CO₂ units

Test campaigns: TUV SUD lab, description of the test plant.

снисита

Let's now try to investigate the impact of an overestimation of CO_2 gas cooler on the efficiency of a refrigeration plant, i.e. on the annual power consumption (and on its related cost) of the system.

A couple of simulations were performed to estimate the efficiency of the thermodynamic cycle, coupling some theoretical and empirical rules to the rated thermal capacity of the CO_2 gas cooler. Here below the main assumptions for the simulations:

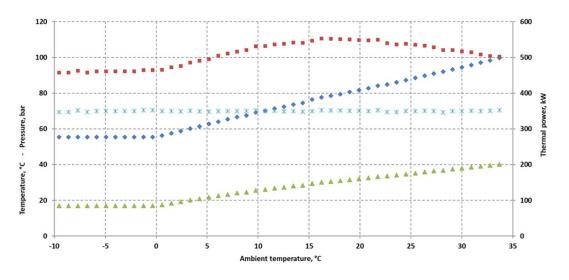

- Two temperature levels:
 - Medium temperature (MT): $T_{evap,MT} = -8$ °C; $Q_{evap,MT} = 250$ kW
 - Low temperature (LT): $T_{evap,LT} = -30$ °C; $Q_{evap,LT} = 100$ kW
- Design ambient temperature: 35°C
- Maximum operating pressure: 95 bar
- Design gas cooler capacity (SC20) = 490 kW
- Electricity specific cost: 0,25 €/kWh

Impact of overestimated performance of CO2 gas coolers on plant efficiency

CHILLVENTA

If we perform the simulation considering that design capacity is in line with the real performance of the CO₂ gas cooler (case 1), we obtain the following results:

 Economic simulation (case 1) considering Energy cost of 0.25 €/kWh


Plant electricity consumption, MWh/year	1.456
Gas cooler fans electricity cost, €/year	8.134
Compressor electricity cost, €/year	355.746
Total cost, €/year	363.880

Impact of overestimated performance of CO2 gas coolers on plant efficiency

снициента

Which can be the results if the real capacity of the gas cooler is lower than the declared value? To answer this question, let's now consider a second example (case 2) in which the manufacturer has applied, for instance, a 25% oversizing coefficient: this would result in a real thermal capacity lower than the declared one.

 Economic simulation (case 2) considering Energy cost of 0.25 €/kWh

Plant electricity consumption, MWh/year	1.518
Gas cooler fans electricity cost, €/year	8.633
Compressor electricity cost, €/year	370.824
Total cost, €/year	379.457

снисита

Of course, in this case, the compressor has to compensate the lack of capacity of the gas cooler to keep the useful effect at the evaporators as expected. In particular, the maximum pressure reached by the system in the design condition is over 99 bar, more than 4 bar higher than the design maximum pressure.

This difference may appear insignificant, but the impact on the annual consumption is absolutely non-negligible:

Plant electricity consumption, MWh/year	+4,2%	62
Gas cooler fans electricity cost, €/year	+6,1%	499
Compressor electricity cost, €/year	+4,2%	15.078
Total cost, €/year	+4,3%	15.577

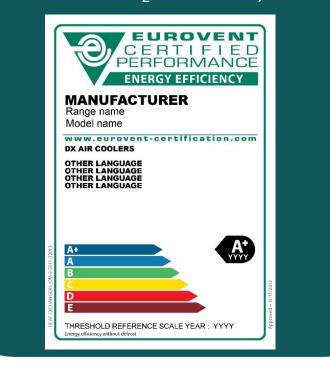
The annual increase of cost considering a gas cooler capacity 25% lower than expect is therefore about 15.600€, resulting in 156.000 € in a 10-years lifetime.

Of course, the higher is the gap between declared and real gas cooler capacity, the higher is the impact on the plant consumptions.

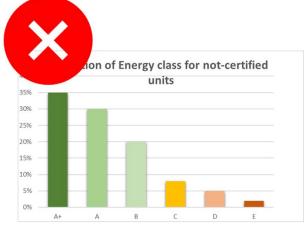
Conclusions

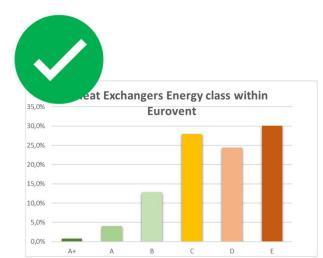
снистепта

- Carbon dioxide (CO₂) is a non-toxic and non-flammable natural refrigerant, with a **low environmental impact** (GWP=0). The use of CO₂ as working fluid is a well-established reality in the refrigeration industry and the number of new CO₂ plants is continuously increasing.
- The Eurovent program Heat Exchangers for refrigeration (HE) involves the major manufacturers of the market. The program, based on a voluntary approach, certifies the products performance through selection software validation and product testing in a third part laboratory.
- CO₂ unit coolers and gas coolers are included in the certification of heat exchangers. Due to the peculiar properties of CO₂, a dedicated performance evaluation process was established and in the third part laboratory was realized a new state of the art test ring.
- Anyway, to avoid that the installation of CO2 systems is intended only as a green-washing operation, it is necessary that all the components of the plant, including the heat exchangers, are designed and run efficiently.
- Eurovent mark is a warranty in this sense, certifying the reliability of the performance of the CO2 unit coolers and gas coolers, whose importance has been explained through some thermodynamic simulations shown in this presentation.



снициента


ECC Voluntary labelling for CO₂ units


How and by who is labelling prepared?

Based on European testing standards (EN 327:2014 for CO₂ Gas coolers and EN 328:2014 for CO₂ air coolers)

JJJJ-MM-TT_hh-mmUhr_Dokumentenname_Kürzel des Erstellers.Dateierweiterung

Meaningful ratings and balanced distribution of classes are the key points

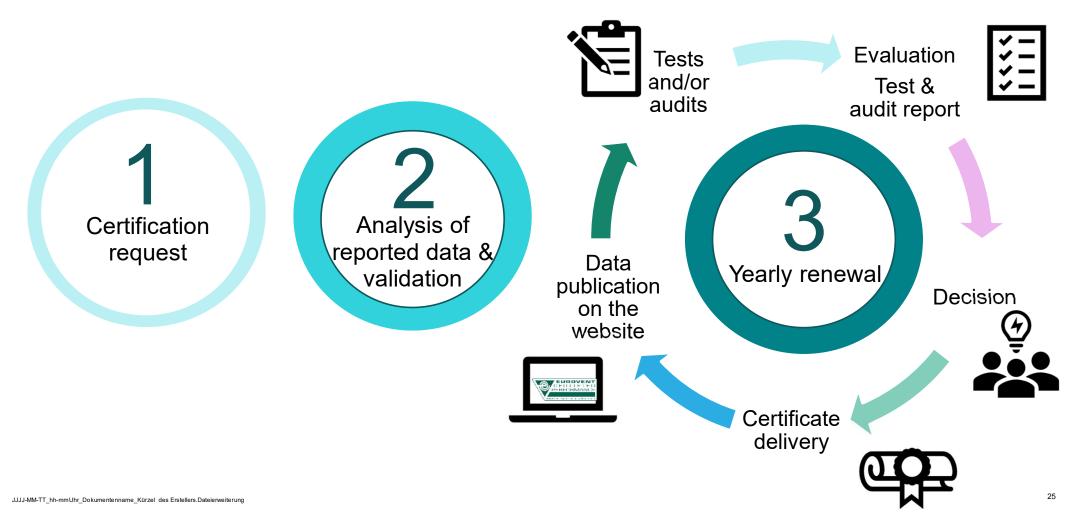
Acc. to Certification Manual Ed. 19 art. 318: A+ < 1 %, A < 5 %, B < 15 %, C < 30 %, D and E > 50 %

снициента

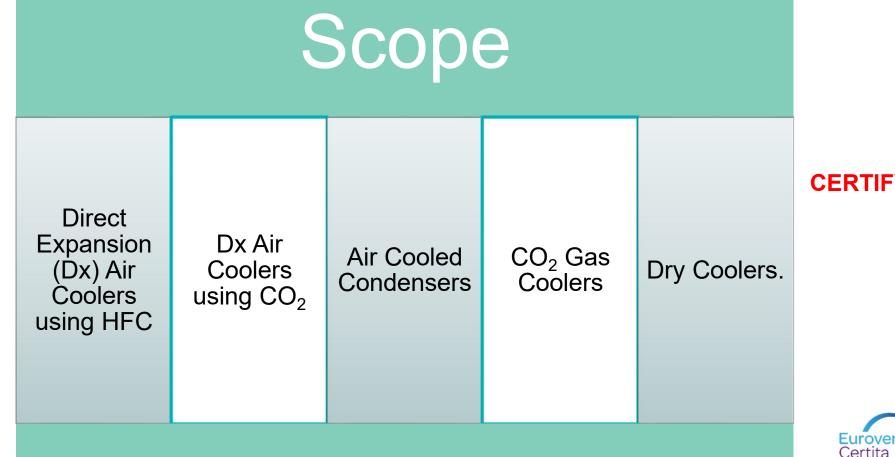
Eurovent Certita Certification in numbers

сниста

Certification Programmes


44 certification programmes

For buildings and homes


сниста

How does it work?

Certification: Programme of Heat Exchangers for Refrigeration

Zoom on the programme

CERTIFY-ALL PRINCIPLE

снициента

Thank you for your attention !

Any question?

