Hall 7A

THERMOPLASTIC FLEXIBLE HOSES FOR R-744 APPLICATIONS

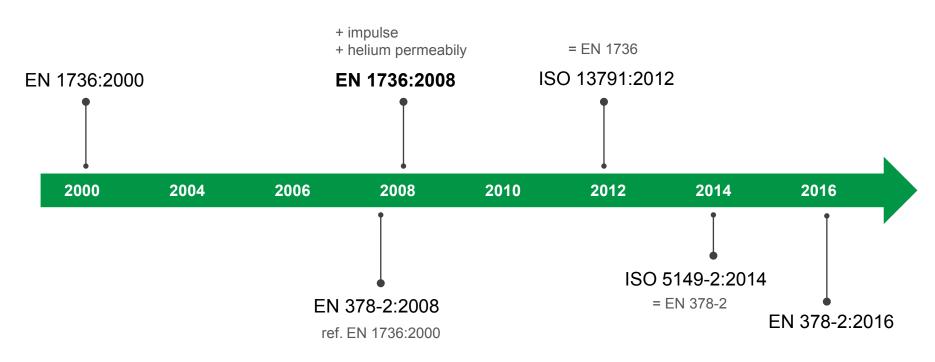
CURRENT STANDARD LIMITATIONS AND FURTHER REQUIREMENTS TO HANDLE R-744

снистента

12/10/2022

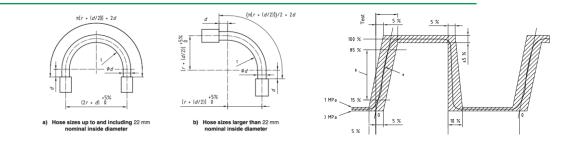
- FLEXIBLE THERMOPLASTIC HOSE CONSTRUCTIONS
- CURRENT STANDARD ON FLEXIBLE HOSES
 - HISTORICAL DEVELOPMENT
 - FLEXIBLE HOSE REQUIREMENTS
 - HELIUM TEST
- OVERTAKE THE CURRENT REGULATIONS
 - PERMEATION FOR NEW REFRIGERANTS
 - R-744 ENDURANCE TEST
- ZEC SOLUTION FOR R-744

FLEXIBLE HOSE CONSTRUCTION



STANDARDS

STANDARD HISTORY


Thermoplastic flexible hoses for R-744 applications

снициепта

CURRENT REGULATIONS - EN 1736

FLEXIBLE HOSE REQUIREMENTS

- **FATIGUE** (ISO 6605)
 - o 250.000 cycles
 - **1.1 x SP**
 - 1 x WT

• BURST

• 3 x SP (ISO 6605)

• VACUUM

o RESISTANCE -0.99 bar

Table 1 — Allowable permeabilities for non-metallic flexible tubes

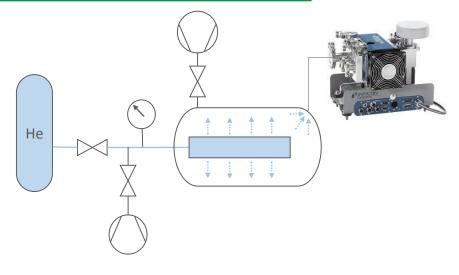
PERMEABILITY

- 32°C and saturated vapour pressure
- \circ $\,$ 100°C and max SP $\,$

LEAKAGE RATE CLASS	1) Permeability at 32 °C	Permeability at 100 °C
1	10 g/m ² per year	200 g/m ² per year
2	100 g/m ² per year	1 kg/m ² per year
3	1 kg/m ² per year	5 kg/m ² per year

снициепта

CURRENT REGULATIONS - EN 1736 ISO 13791


HELIUM INTEGRAL TEST

TEST PROCEDURE

- 1. PUT HOSE INSIDE CHAMBER
- 2. CARRY TEMPERATURE TO 32°C OR 100°C
- 3. DISCONNECT HEAT SOURCE
- 4. VACUUM IN THE HOSE AND IN THE CHAMBER
- 5. PUT HELIUM INSIDE THE HOSE
- 6. CHECK THE LEAK RATE FOR 1 HOUR
- 7. CONVERT TO REFRIGERANT LEAK ACCORDING TO TABLE

Table 2 — Conversion leak rate from helium into refrig	gerant through molecular flow
--	-------------------------------

Refrigerant leak	R12	R134A	R404A	R407C	R410A	R600A
g/yr	Helium leak rate equivalent mbar l/s					
1	3,5 10 ⁻⁵	3,8 10 ⁻⁵	3,9 10 ⁻⁵	4,2 10 ⁻⁵	4,5 10 ⁻⁵	5,1 10 ⁻⁵

CURRENT REGULATIONS - EN 1736 ISO 13791

HELIUM INTEGRAL TEST

ZEC helium test bench specifications:

- Max Pressure: 120 bar
- Max Temperature: 120 °C
- Sensibility: 1e-7 mbar*l/s
- **Temperature control**: nr. 4 IR lamps (irradiation) for temperature control during the test

What about New Refrigerants ?

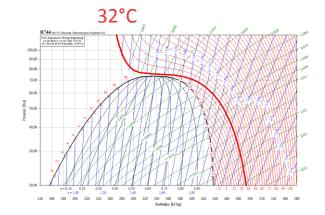

 EN 1736 do not provide conversion table from He to new refrigerants

Table 2 — Conversion leak rate from helium into refrigerant through molecular flow

Refrigerant leak	R12	R134A	R404A	R407C	R410A	R600A
g/yr	Helium leak rate equivalent mbar l/s					
1	3,5 10 ⁻⁵	3,8 10 ⁻⁵	3,9 10 ⁻⁵	4,2 10 ⁻⁵	4,5 10 ⁻⁵	5,1 10 ⁻⁵

What about R-744?

No saturated pressure at 32°C

PERMEABILITY FOR NEW REFRIGERANTS

Permeability approximated as a Molecular flow

Graham's law

$$q_A = q_B \cdot \frac{\sqrt{M_B}}{\sqrt{M_A}} \implies \text{smaller is } M_A \text{ greater is } q_A$$

Permeability in g per unit time

$$q(g/yr) = q(mbar \ l/s) \frac{31557600 \cdot M}{R \cdot T \cdot 10}$$
$$q_A^g = q_B^g \cdot \frac{\sqrt{M_A}}{\sqrt{M_B}} \implies \text{greater is } M_A \text{ greater is } q_A$$

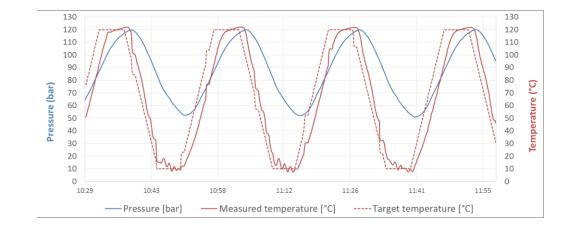
- T: temperature (°K)
- M_A: molar mass gas A
- R: ideal gas constant
- q_A : flow of gas A (expressed in mol)
- q_A^g : flow of gas A (expressed in grams)

R744 M= 44 g/mol

R1234yf

ol M = 114 g/mol

сницуепта

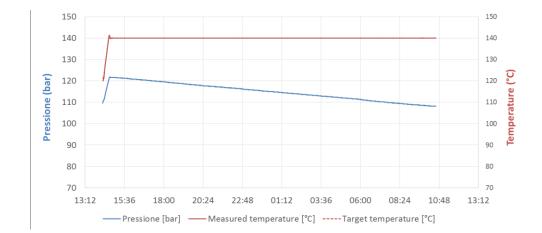

 CO_2

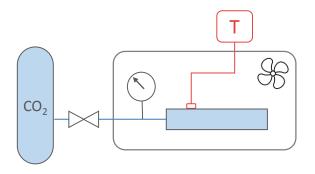
OVERTAKE THE CURRENT REGULATIONS

ENDURANCE TEST

Cyclic variations of temperature and pressure to simulate real market conditions:

- Pressure: from 50 to 120 bar
- **Temperature**: from 10°C to 120°C




OVERHEATING TEST

After cycles test same sample exposed to:

- Pressure: 120 bar
- **Temperature**: 140°C

Thermoplastic flexible hoses for R-744 applications

How to guarantee reliability in real applications?

EN 1736 requirements	ZEC R-744 requirements
• Impulse test	Impulse test + nitrogen test at 2 x SP
• Burst pressure 3 x SP	Burst pressure 5 x SP
Permeability:	Permeability:
 32°C saturation pressure 	○ 32°C 120 bar
○ 100°C SP	○ 100°C 120 bar
No temperature control during helium test	Temperature control during all the test
	Endurance 2000 cycles + Overheating

12/10/2022

сниста

International Exhibition Refrigeration | AC & Ventilation | Heat Pumps

Nuremberg 11-13.10.2022

You will find us at Hall 7 / Booth Number 7-149

Find us at Hall 7 / Booth Number 149

Thermoplastic flexible hoses for R-744 applications

Hall 7A

