

Natural Refrigerant Gases and their Effects on Lubricant Properties

Key Properties of a Refrigeration Lubricant

- Provides minimum viscosity for lubrication
- Good cold temperature properties
- Immiscibility/Miscibility with Refrigerant
- Seal compatibility
- Protects against corrosion
- Reduces heat

Miscibility vs Solubility

- Miscibility: The ability of a refrigerant to completely mix with a lubricant.
 Depending on the type of refrigerant and lubricant mixture there is often a maximum concentration of refrigerant that can be dissolved into a lubricant
- Solubility: The extent to which a refrigerant can dissolve in a lubricant. In refrigeration lubricant solubility is typically referenced when determining the effect that a refrigerant will have on the properties of a lubricant

Miscibility

- Miscibility is dependent on temperature.
- Within the miscible regions the lubricant/refrigerant will form a homogeneous mixture
- Outside the miscible regions the lubricant will separate from the refrigerant.

Miscibility graph of NEXT CO2 POE-85 with CO2 40 30 Immiscible 20 Temperature (°C) 10 Miscible 0 -10 -20 -30 -40 40% 80% 100% 0% 20% 60% Weight % oil in CO2

Non-Miscible Systems

- These systems avoid miscibility
- Lubricant that escapes into the refrigeration system reduces system efficiency
- Theses systems use separator-coalescer to separate the refrigerant from the lubricant
- Separator-coalescers cannot remove oil vapour
- Oil return system is often necessary
- Ammonia systems are typically non-miscible systems

Miscible Systems

- Required in DX systems
- This is necessary as there are no mechanical means of separating the lubricant from the refrigerant
- The refrigerant substantially reduces the viscosity of the oil, this improves flow at low temperatures
- If the refrigerant and oil are not miscible then the oil will collect at the cold points of the system and act as an insulator

What Controls Solubility

- Refrigerant lubricant solubility is influenced by
 - o Pressure
 - o Temperature
 - \circ $\,$ Polarity of gas and lubricant $\,$
 - Molecular weight of gas and (average) molecular weight of lubricant

Pressure and Temperature Relationship

- Refrigerant lubricant solubility increases with increasing pressure
- Refrigerant lubricant solubility decreases with increasing temperature

Effect of Solubilized Refrigerant - Viscosity

- Solubilized refrigerant can substantially reduce a lubricants viscosity
- To provide proper lubricity the lubricant viscosity must not decrease below minimum operating levels.
- If the diluted viscosity of the oil is too low a higher viscosity lubricant may be required or an alternatively a lubricant with a reduced refrigerant affinity should be selected

BOOTH 7-11'

Effect of Solubilized Refrigerant - Viscosity

• The temperature/solubility relationship can override the normal viscosity temperature relationship

Effect of Solubilized Refrigerant - Density

- Dissolved refrigerant will also decrease the density of a lubricant
- Changes in density can affect oil collection

Effect of Solubilized Refrigerant - Viscosity

- To provide proper lubricity the lubricant viscosity must not decrease below minimum operating levels (typically 10 cSt)
- If the diluted viscosity of the oil is too low a higher viscosity lubricant may be required or an alternatively a lubricant with a reduced refrigerant affinity should be selected

BOOTH 7-11'

Effect of Solubilized Refrigerant – Low Temp Viscosity

- Viscosity dilution can be beneficial as at low temperatures it can promote oil return.
- Even in immiscible systems ammonia can lower the viscosity.

Condition	Viscosity (cSt) at -35°C	
Ambient	41.160	
0,3 % Ammonia	37.452	
Condition	Pour Point ^e C	
Ambient	-42	
0,3 % Ammonia	-45	
		N T

Determining the Right Viscosity

- Pressure vs Temperature (PVT) charts are provided by manufactures and can be used to predict the amount of refrigerant that will dissolve into the oil and the resulting diluted viscosity
- Example: A pressure of 17 bar at 85 °C = >10% butane 11 cSt (from 38 cSt, 71% reduction in viscosity)

Determining the Right Viscosity

- Calculator tools can more accurately predict the quantity of dissolved refrigerant and resulting viscosity dilution
- It is also possible to more easily predict the resulting dilution over a wider temperature range

ance
nce O
nce O
0
50
2
90
12
70
6
10
-

Gas composition	Mol %
Methane	20,00%
Ethane	40,00%
Propane	20,00%
lsobutane	
n-Butane	10,00%
lsopentane	
n-Pentane	5,00%
Hexanes	
C7+	
Carbondioxide	5,00%
Hydrogensulfide	
Nitrogen	
Oxygen	
Helium	
Hydrogen	
Water Vapor	
TOTAL %	100,00%

Types of PAGs

- Water Insoluble PAG (WI PAG)
 - Composed of solely propylene oxide
 - Most typical PAG base oil for hydrocarbon refrigeration systems
 - Good miscibility with hydrocarbon refrigerants and suitable for DX-systems

• Water Soluble PAG (WS PAG)

- \circ Composed of a mixture of propylene and ethylene oxide (typically 50/50)
- o Higher density
- Recommended for gas compression for heavier hydrocarbons
- Lower dilution with hydrocarbon gasses than WI PAGs
- Poly Ethylene Glycol (PEG)
 - o Composed of solely ethylene oxide
 - Negligible viscosity dilution with hydrocarbon gases
 - o Ideal for non-miscible hydrocarbon refrigeration systems

Recommended Lubricant

- The choice of lubricant is dependent on whether or not miscibility is required
- A compromise is necessary between miscibility and viscosity dilution

	Immiscible Systems	Miscible Systems
R-717 (ammonia)	Mineral or PAO	DEC PAG (WI-PAG)
R-744 (CO ₂)	Mineral or PAO	POE or DEC PAG (WI-PAG)
R-290 (propane)	WS PAG or PEG	PAO, POE or WI PAG
R-600 (butanes)	WS PAG or PEG	PAO, POE or WI PAG
R-601 (pentanes)	WS PAG or PEG	WI PAG

Solubility with Ammonia

- Mineral oils are highly immiscible with ammonia. Viscosity dilution is minimal at normal operating pressures
- PAG base oils are highly miscible with ammonia. This is a critical function for DX systems as they help promote oil return

Compatibility with Refrigerants

- The compatibility between the lubricant and the refrigerant needs to be confirmed
- Esters (e.g. POE) should never be used in an ammonia refrigeration systems!
- Esters react with ammonia to form amides and fully degrade the lubricant
- These amides can be solids and are extremly difficult to remove from a refrigeration system

Effect of Lubricant on Efficiency

• The lubricant can act an insulator which will reduce thermal transfer efficiency

BOOTH 7-111

Thomas T.S. Wan, ""Oil and Lubricants", 3 September, 2008

- Solubilized refrigerant can decrease lubricant viscosity and density
- Lubricant/Refrigerant solubility is affected by pressure, temperature and refrigerant/lubricant affinity

Condition		Solubilty
Pressure	t	1
Temperature	t	Ļ

. .

• Lubricants want to solubilize in refrigerants with similar polarity

Mineral/ PAU Uli		
Refrigerant	Solubility Potential	
R-717 (ammonia)	Very low	
R-744 (CO ₂)	Low	
R-50 (Methane)	High	
R-290 (Propane)	Very High	
R-600 (Butane)	Very high	

Higher Polarity H₂O (Water) PEG R-717 (Ammonia) WS PAG **WI PAG** R-744 (CO₂) POE HFC R-50 (Methane) **Mineral Oil** R-290 (Propane) PAO R-600 (Butane)

Lower Polarity

• Lubricants want to solubilize in refrigerants with similar polarity

POE		
Refrigerant	Solubility Potential	
R-717 (ammonia)	DO NOT USE	
R-744 (CO ₂)	High	
R-50 (Methane)	High	ſ
R-290 (Propane)	High	
R-600 (Butane)	Very high	

Higher Polarity H₂O (Water) PEG R-717 (Ammonia) WS PAG **WI PAG** R-744 (CO₂) POE HFC R-50 (Methane) R-290 (Propane) Mineral Oil PAO R-600 (Butane) Lower Polarity

• Lubricants want to solubilize in refrigerants with similar polarity

VVI-PAG	
Refrigerant	Solubility Potential
R-717 (ammonia)	Very high
R-744 (CO ₂)	High to moderate
R-50 (Methane)	Low
R-290 (Propane)	Moderate
R-600 (Butane)	Moderate

Higher Polarity H₂O (Water) PEG R-717 (Ammonia) WS PAG **WI PAG** R-744 (CO₂) POE HFC R-50 (Methane) Mineral Oil R-290 (Propane) PAO R-600 (Butane) Lower Polarity

• Lubricants want to solubilize in refrigerants with similar polarity

VVS-PAG	
Refrigerant	Solubility Potential
R-717 (ammonia)	Very high
R-744 (CO ₂)	Low
R-50 (Methane)	Very low
R-290 (Propane)	Low
R-600 (Butane)	Low

Higher Polarity H₂O (Water) PEG WS PAG **WI PAG** R-744 (CO₂) POE HFC R-50 (Methane) R-290 (Propane) Mineral Oil PAO R-600 (Butane)

Lower Polarity

Questions?

Please visit us at booth 7-111

