Hall 4A

снициепта

снициента

More heat to cool: GEA heat pumps now and in the future

GEA - Engineering for a better world

The company at a glance:

снициента

The technology group GEA is one of the world's largest suppliers of systems and components to the food, beverage, pharmaceutical, and a whole range of further industries.

Founded in 1881, GEA's focus today are machinery and plants, as well as advanced process technology, components, and comprehensive services.

The "Heating & Refrigeration Technologies" division (formerly Refrigeration Technologies only) provides components and solutions for industrial cooling and heating based on reciprocating and screw compressor technologies from own development and production.

GEA Heating & Refrigeration Technologies Portfolio

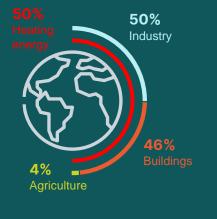
Reciprocating and screw Chillers and Heat Pumps

Valves, filters, and safety devices

Screw compressors and packages

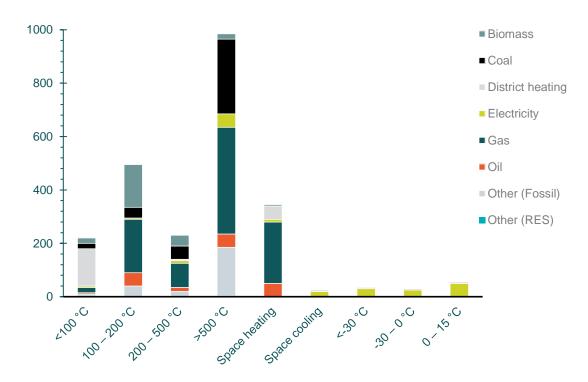
Control technologies and digital solutions

Service equipment and spare parts



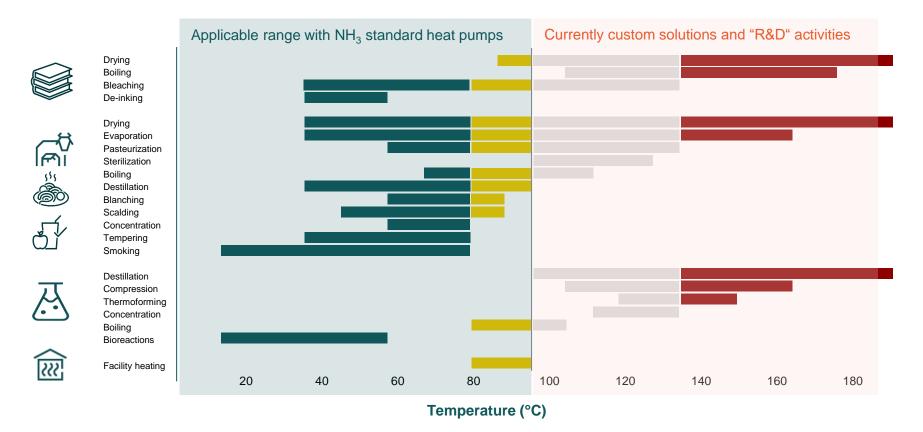
Heating today and in the future

Heating demands and decarbonization:


Accounting for approx. 50 % of the total global energy demand, heating takes the biggest share thereof. As most of the heating energy is still supplied with the help of fossil fuels (approx. 90 %), it is a key driver for CO_2 emissions with a contribution of approx. 40 % to the total global emissions.

Source: IEA World energy outlook 2000

снисита


EU THERMAL ENERGY DEMAND [TWH]

Heating applications

снициента

Industrial process examples and their temperature range:

Sustainable heating

Available technologies (key examples):

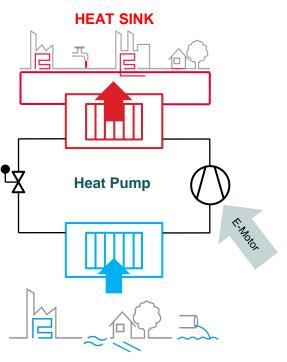
снициента

Clean combustion

"Clean" combustion, e.g. with hydrogen

Electric heating

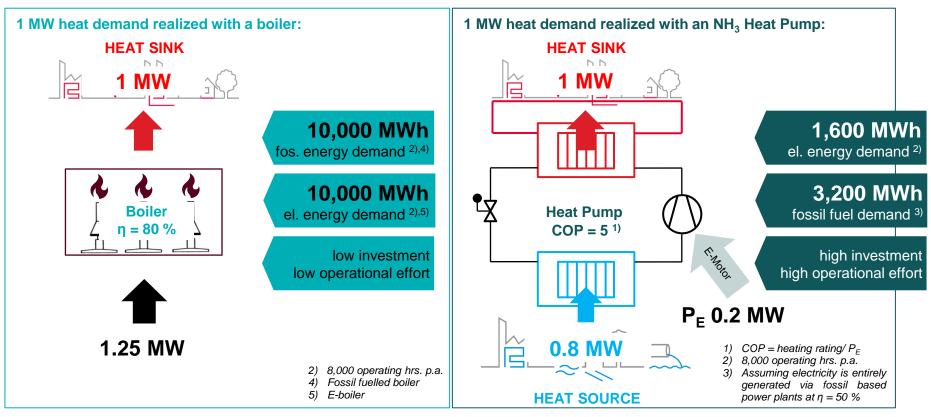
Direct electrical heating, e.g. e-boiler



Solar heating

Heat generating with solar panel technology

Biomass Heating energy from biomass



HEAT SOURCE

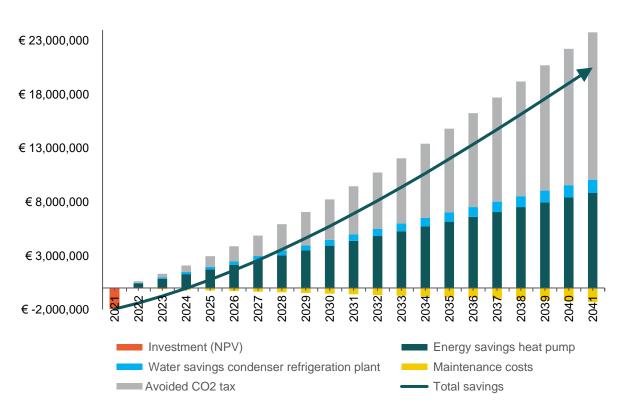
Efficiency advantage of NH₃ compression heat pumps

снициента

Even with non-regenerative electricity an efficient heat pump is more sustainable:

Total cost of ownership advantage of efficient heat pumps

сниста


Economic sustainability heat pumps:

Real case example beverage production:

- 400 million bottles p.a.
- Approx. 8 MW cooling and refrigeration load
- Approx. 5 MW thermal load rejected at ambient temperature
- Approx. 7 MW heating load (hot water)
- 600 kg/h steam (covered yet by e-boiler)

Financials:

- Gas price EUR 0.207/Nm³
- Electricity price EUR 0.052/kWh
- Maintenance costs increase 2 % p.a.
- CO2 emission tax EUR 30/kg p.a. with polynominal increase

Providing higher temperatures and steam sustainably

снициента

High-temperature heat pump technologies:

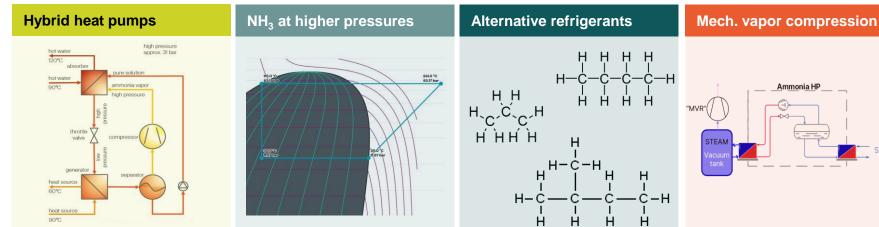


Image: AGO Calora heat pump

- Using a sorption cycle parallel to the mechanical compression
- Temperatures up to approx.
 +160 °C
- Higher CAPEX but very efficient (low OPEX)

- R-717 at +115 °C relates to 83 bar → design PS100 bar
- Very high discharge temps.
- Limited availablity of suitable R-717 components
- Cost factor (CAPEX) increase est. 1.5 ... 2.0

- Use of butane, pentane, isobutane for example
- Less volumetric efficiency than natural refrigerants (R-717 1.75 kW/[m³/h] vs. R-600a 0.59 kW/[m³/h])
- High CAPEX (ATEX design)
- (NH₃) Heat Pump at the basis providing +85 ... +95 °C, steam generated with a vacuum tank
- High CAPEX, medium efficiency

GEA compressor development

High-pressure equipment milestones:

снициента

63 bar screw series L XHP

3x types, various refrigerants

1990 - 2748 m³/h (2940 rpm)

PS 63 bar

≥ 2024

<mark>- 202</mark>1

63 bar piston series V XHP

4x types, R-717 376 – 941 m³/h (1500 rpm) PS 63 bar

Continuous development activities

Compressor & heat pump testing with alternative refrigerants, multi-stage systems

Hall 4A

снициепта

