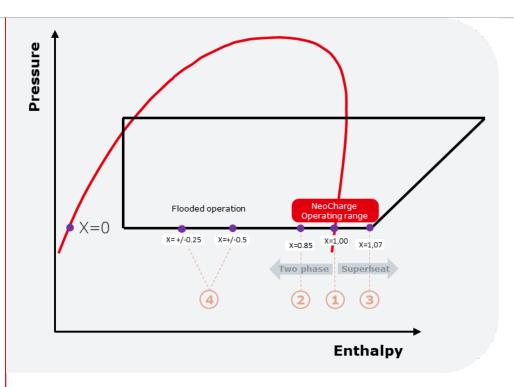






# Danfoss NeoCharge®




Simple and unique technology enabling NH<sub>3</sub> DX system running without superheat (WDX) and reducing the recirculation in traditional flooded system to the lowest possible rate keeping high performance (CCR)

The new game changer

# Danfoss NeoCharge

#### What does it do?



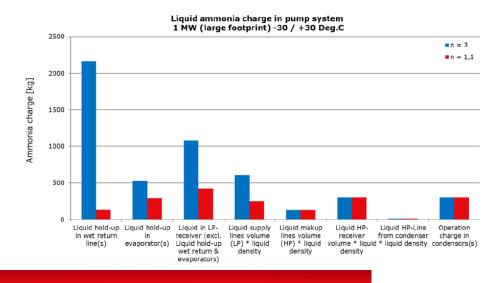


#### **Principle elements of NeoCharge solution**

- Traditional superheat measurement
- Danfoss Heated Sensor
- Danfoss NeoCharge controller
- Control valves (stepper motor or PWM)

#### NH<sub>3</sub> recirculated evaporators

# It controls the circulation rate in evaporators (air coolers)

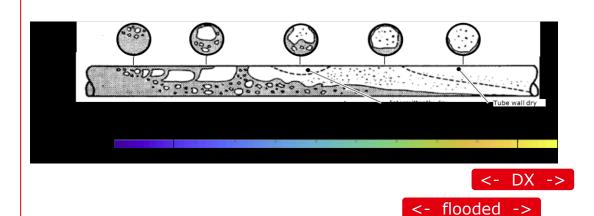

- The circulation rate will be reduced from high to almost no circulation rate, e.g. from point 4 to point 2
- NH<sub>3</sub> charge reduced by up to 45%
- Efficiency gain

#### NH<sub>3</sub> DX evaporators

# It generates ultra low superheat in evaporators (air coolers)

- Superheat will be reduced from standard to very low, e.g. from point 3 to point 1
- **■** Efficiency gain up to 15%

Danfoss NeoCharge feeds each evaporator with the right charge required



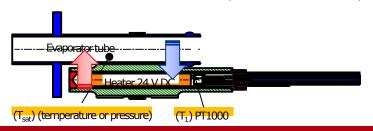



# Danfoss NeoCharge

### **Control principle**






#### How to measure the liquid amount in the evaporator outlet?

■ Capacitance Difference in dielectric permittivity of gas/liquid

■ Radar Difference in dielectric permittivity of gas/liquid

#### **Danfoss Heated Sensor**

- Measures the difference in heat transfer coefficient between liquid and gas
- The Danfoss Heated Sensor produces a "heat assisted superheat signal", which is a function of the liquid inside the evaporator tube.

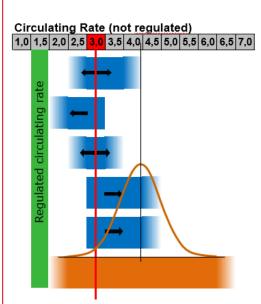






#### **During evaporator filling (initial startup)**

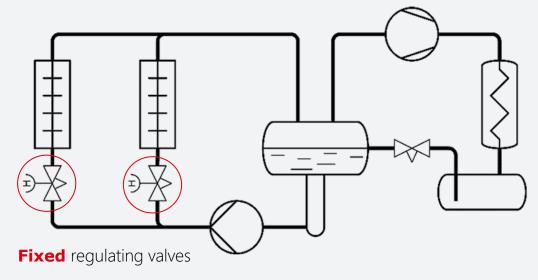
- Look at standard superheat signal (temperature sensor pressure transmitter)
- Find required power to heating element
- Calculate offset and setpoint
- Run slightly flooded...






# Recirculated evaporators

(Pump systems)


# **Uncontrolled** Recirculated evaporator feed



- Tolerance of adjusted circulating rate.
   Higher circulating rates are selected to ensure sufficient capacity
- 2 Effect of high load (e.g. hot goods entering the freezing room)
- 3 Effect of temperature variation within the temperature band (e.g. ± 1.5°C)
- 4 Effect of pressure variation due to parallel evaporators on the same pump are off / defrosted
- 5 Effect of capacity reduction due to ice formation on evaporator surface
- 6 Estimated accumolated circulation rate variation Note: VFD not included

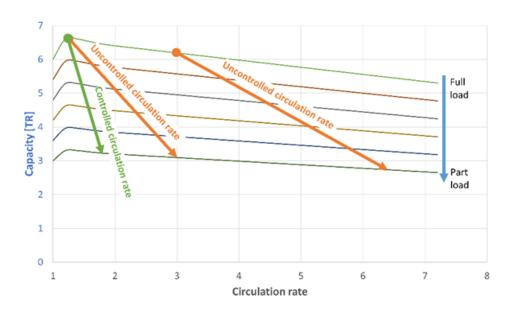
- Pump systems with uncontrolled circulation rate, tend to run with higher circulation rates as designed
- ightharpoonup This will negatively impact the NH<sub>3</sub> charge of the system
- This will negatively impact the efficiency of the system





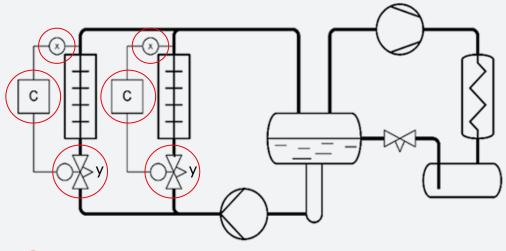
- Fixed regulating valves can't adjust system dynamics
- Over time, the circulation rates will increase up higher then the design operation

| NH <sub>3</sub> 100 kW -35°C | Design r=3 | Actual r=4,65 | Controlled r=1,5 | Saving |
|------------------------------|------------|---------------|------------------|--------|
| Evaporator V=100 I           | 23 kg      | 27 kg         | 16 kg            | 11 kg  |
| Wet suction pipe DN100 10 m  | 13 kg      | 17 kg         | 7 kg             | 10 kg  |
| Tot                          | 36 kg      | 44 kg         | 23 kg            | 21 kg  |


Calculation performed with Zivi void fraction equations



# **Controlled** recirculated evaporator feed With Danfoss NeoCharge




Bottom feed evaporator. Evaporating temperature = -22°F/-30°C



- Pump systems with **controlled circulation rate**, tend to run with **Lower** circulation rates
- This requires less NH<sub>3</sub> charge
- Power consumption **drops**

#### Principle **controlled** circulation rate



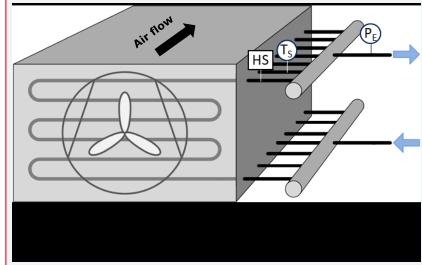
- Sensors
  - Standard superheat measurement (pressure transmitter + temp. sensor)
  - Danfoss Heated Sensor
- C Danfoss NeoCharge controllers
- **V** Danfoss Control valves



# Danfoss NeoCharge for **controlled** recirculated evaporators feed

#### **Main features**




#### NH3 charge reduction

- Less refrigerant in circulation
- Smaller system footprint required
- Smaller liquid separator and piping
- **Stable** and controlled recirculation rate **continuously** over the operation of the evaporator.
- Lower pump & compressor energy consumption
- Technology
  - Self adaptive
  - Safety mode
  - ▶ Plug & play
  - Easy to mount Danfoss Heated Sensor

(outside evaporator tube)

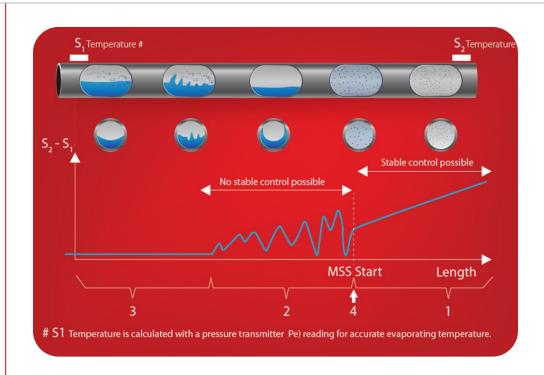
- Suitable for **New and Existing** plants
  - NH<sub>3</sub> charge reduction up to 45%
  - Existing installations can expand capacity with the same ammonia charge
- Liquid feed modulation is possible with
- Danfoss ICM and the New ICADB
- Danfoss PWM valves

Both in combination with Danfoss ICF valve stations or Danfoss stand alone valves



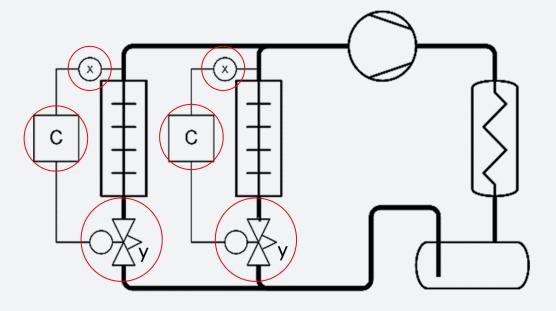
Recirculated (flooded) evaporators (bottom feed)

#### Recommended **position of sensors**


- Danfoss Heated Sensor (HS) on "most loaded pipe"
- Temperature sensor (TS) on "next" pipe





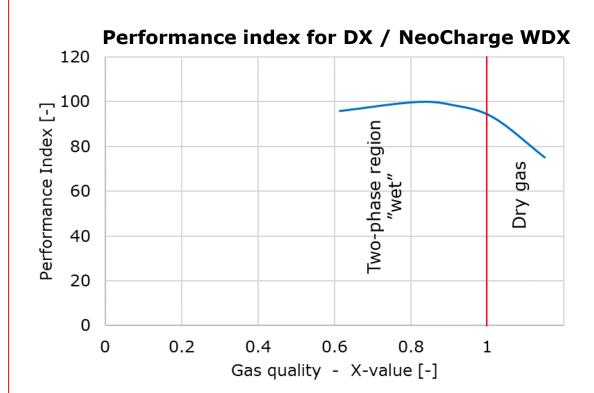

# Direct expansion (DX) evaporators

# Traditional Danfoss direct expansion evaporator feed



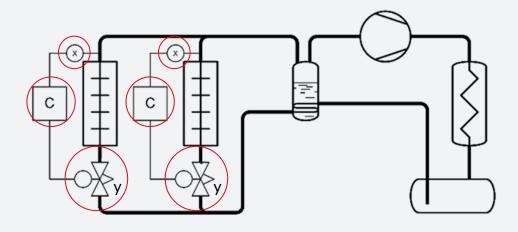
- The minimum stable superheat allows for the system to perform well.
- Superheat however, requires the evaporating temperature to be lower to compensate.
- It results in a ~ 5 to 15% higher energy consumption

#### Principle traditional direct expansion control




- Standard superheat measurement (pressure transmitter + temp. sensor)
- Standard superheat control
- (Electronic) Expansion valves



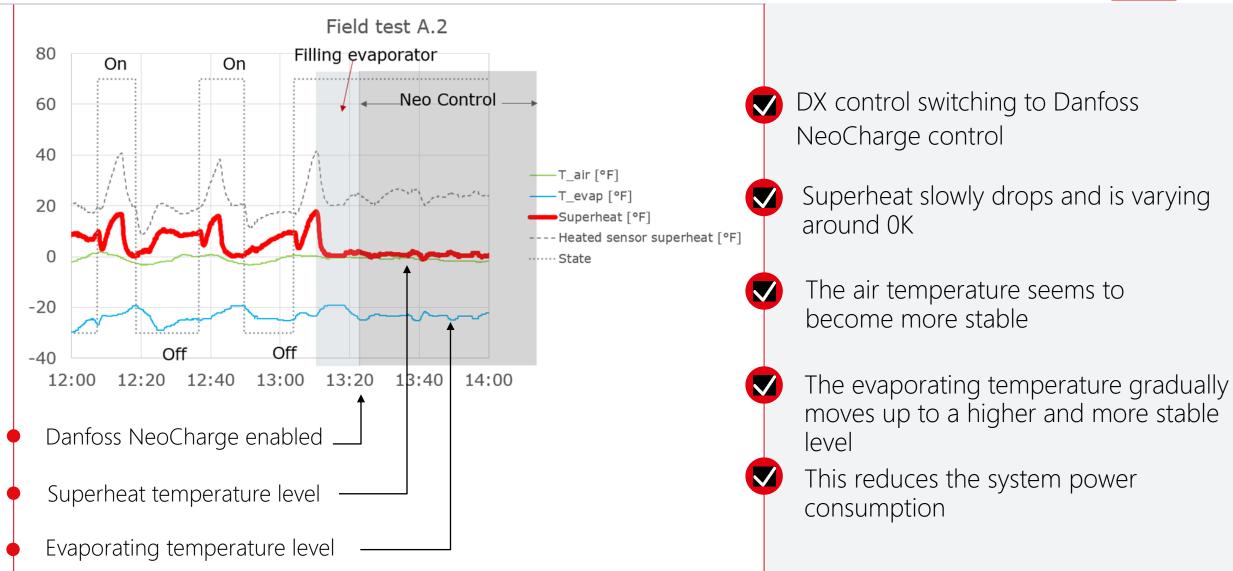

# From DX to Danfoss NeoCharge





- Danfoss Neocharge reduces gas quality around 1
- Danfoss Neocharge lowers power consumption

#### Principle direct expansion with **Danfoss NeoCharge**




- Sensors
  - Standard superheat measurement (pressure transmitter + temp. sensor)
  - Danfoss Heated Sensor
- Danfoss NeoCharge controller
- Danfoss new NeoCharge Control valve



## From DX to Danfoss NeoCharge



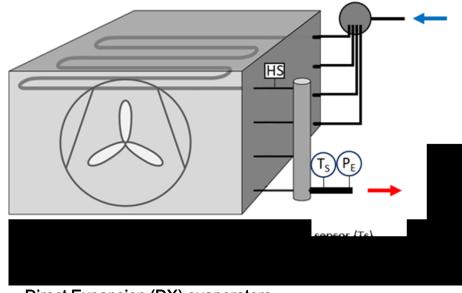


# From DX to Danfoss NeoCharge Main features



#### Stable and controlled superheat

- Lower superheat
- Higher evaporating temperature
- Better evaporator performance


**Direct** expansion systems **can reduce system charge up to 50%** compared to recirculated (pumped) systems.

Liquid feed control with the **New Danfoss NeoCharge direct expansion valve** in ICF valve stations

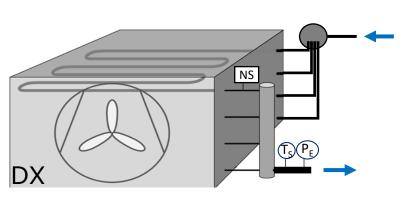
5 to 15% lower energy consumption compared to standard DX.

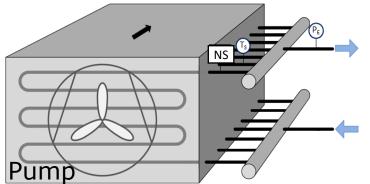
#### Technology

- Self adaptive
- Safety mode
- Plug & play
- **Easy to mount** Danfoss **Heated Sensor**



Direct Expansion (DX) evaporators


#### Recommended **position of sensors**


- Heated Sensor (HS) on "least loaded pipe"
- Temperature sensor (TS) on common outlet



# **NeoCharge Solution**







Simple and unique technology enabling NH<sub>3</sub> DX system running without superheat (WDX) and reducing the **recirculation** in traditional flooded system to the **lowest possible rate keeping high performance** (CCR)

- > Plug & play solution
- All kind of air coolers: DX Pump
   All refrigerants: NH3 CO2 R....
   All conditions: active control

Ideal for retrofit









evaporators)

Temperature Sensor

Pressure Sensor (can be shared with multiple



# **NeoCharge test reference**



#### Lab test 2020-22

DK NH<sub>3</sub> DTI Laboratory test

#### Field test on single evaporators 2023-24

DE NH<sub>3</sub> WDX retrofit 1 evaporator 02-2023 IT NH<sub>3</sub> CCR retrofit 1 evaporator 150 kW 09-2023 IT NH<sub>3</sub> CCR retrofit 1 evaporator 28 kW 02-2024 IT NH<sub>3</sub> CCR retrofit 2 evaporators 30 kW 03-2024

#### Pilot test on complete system 2024

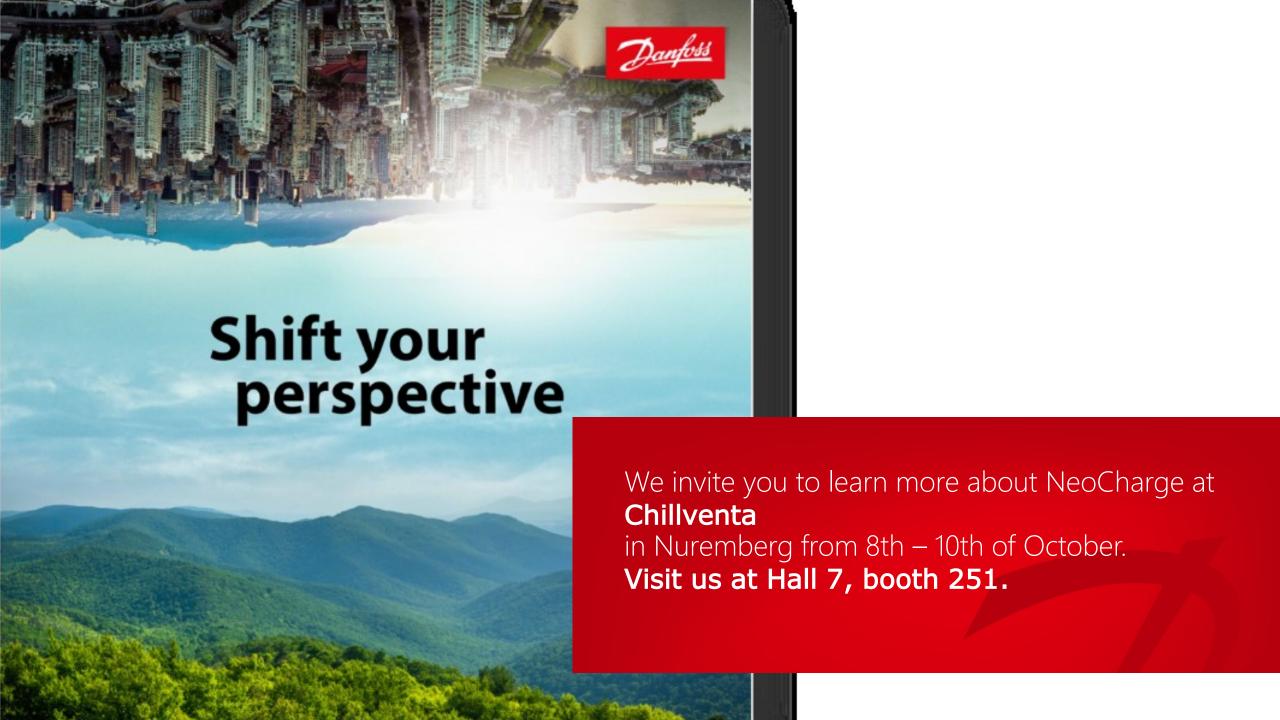
DE NH<sub>3</sub> CCR new system LT 4 evap. 50 kW March
DK CO<sub>2</sub> WDX DTI air/water HP 465kW 4 evap. May
CN NH<sub>3</sub> CCR new LT 64 evap. 65/80/100 kW September
FR NH<sub>3</sub> CCR retrofit LT 9 evap. 35/77/101 kW October
FR NH<sub>3</sub> CCR retrofit LT 3+2 evap. 90/175kW December
ES NH<sub>3</sub> CCR freezing tunnel retrofit 3 110kW evap. October
CA NH<sub>3</sub> WDX retrofit 2 evap. 290 kW September + 11 evap.
US NH<sub>3</sub> WDX retrofit 2 evap. 90 kW October + 23 evap.
NL R600a WDX Air to water HP copper pipe 2 evap. October
RS NH<sub>3</sub> CCR 2 new spiral freezing tunnels December

#### Project 2025

DE NH<sub>3</sub> WDX new LT log. platform 13 evap. 153 kW Jan. 25

#### **Achievements**

Technology release for horizontal pipe 10-22 mm WDX 0 K superheat - CCR 1,5


Stable OK superheat in any load condition Stable CR no lack of performance Same capacity with reduced CR 27 mm pipe galvanize steel top feeded OK

Same capacity with fixed CR
Stable 0K superheat any load condition
Reducing charge to 8 t
Expand capacity with the same charge
Expand capacity with the same charge
Increase evaporating pressure reducing dp
0 K superheat increase efficiency & stability
0 K superheat increase efficiency & stability
Reduce charge

0 K superheat increase efficiency & stability









