

STAND 5 - 230

снисита

Oscar De Vita Business development director **GVZ Components**

REFRIGERANTS LEAKAGE DETECTION: THE LAST TECHNOLOGY FOR MASS

PRODUCTION SENSOR

- 1. Refrigerant leakage detection: why?
- 2. Introduction to **MPS™** by NevadaNano, the latest technology for gas detection
- 3. Presentation of **MLD (Molecular Leakage Detector)** made by GVZ and designed to fulfill the requirements of HVAC-R manufacturers

STAND 5 - 230

1. Refrigerant leak detection WHY?

NürnbergMesse, Refrigerant Leakage Detection - The last technology for mass production sensor, Thursday, 10 October 2024

SAFETY COMPLIANCE AND SYSTEM EFFICENCY

ENVIRONMENT Reducing the emission of HFCs (<GWP) and environmental footprint

RULES

To respect the current regulations and latest updates (F-GAS, ASHRAE, EN378..)

SAFETY

The safety of people and property in relation to fixed and mobile refrigeration systems, applied to products with A2L and A3 category gas.

To maintain a system in **perfect conditions.**

CUSTOMER COSTS

By reducing refill, maintenance and repair costs.

IMPROVING LIFE SPAN

To offer a high level of product reliability

ENERGY SAVING

To maintain refrigerant charge full time to avoids energy waste

TO IMPROVE BUSINESS

Manufacturing **competitive, high quality and reliable** products

NevadaNano

2. Introduction of MPS[™] technology developed by:

MPS[™] technology by NevadaNano

NEXT-GENERATION MULTI-GAS SENSORS FOR A BETTER AND SAFER ENVIRONMENT

MPS[™] technology by NevadaNano

STAND 5 - 230

OPERATING PRINCIPLE

- Transducer is a micro-machined membrane with an embedded Joule heater and resistance thermometer.
- The MEMS transducer is mounted on a PCB within a rugged enclosure open to ambient air.
- Measurements of the thermodynamic properties of the air/gas mixture
- Sensor data are processed by patent-pending algorithms to report accurate concentration and classify the flammable gas

Software Enables MPS Versatility to Accurately Target Specific Applications

Molecular Property Spectrometer (MPS™)

A Micro-electromechanical systems (MEMS) transducer (inert membrane with embedded heater & resistance thermometer) measures changes in the thermal properties of air & gas. Multiple measurements, akin to a thermal 'spectrum' plus environmental data are processed to classify the refrigerant gas concentration.

Advantages

- Very Long Life 15+ years
- No field calibration for the life of the sensor
- Lower power ٠
- On board environmental sensor with compensation •
- Very wide environmental range -40 +75C, 100% RH •
- **Resistant to Poisoning & saturation** •
- Fail safe/diagnostics

Limitations

Higher initial cost •

STAND 5 - 230

NevadaNano

Which is the best technology for leakage detection

?

NürnbergMesse, Refrigerant Leakage Detection - The last technology for mass production sensor, Thursday, 10 October 2024

REFRIGERANT SENSOR DETECTION TECHNOLOGIES

Main features	MPS	Infrared	Semiconductor	Electrochemical	Catalytic
Lower detection level	3% LFL 💻	lppm 🕂	10ppm	lppm	0,1%LFL
Cost (sensor)	\$\$\$ 💻	\$\$\$	\$ 🕂	\$\$	\$ 🕂
Response Time	Fast (<20s) 🛛 🚍	Fast (<20s)	Very Fast (<5s)	Medium (<60s)	Very Fast (<5s)
Maintenance	None 🕂	Calibration	Calibration or Replacement	Calibration or Replacement	Calibration or Replacement
Lifespan	+15 years 🕂 🕂	5-10 years	3-7 years	2-3 years	3-5 years
Higher detection level	100% LFL 🛛 🖴	100% LFL	20.000ppm	5000ppm	100% LFL
Press/Temp/Humidity Effects	No effect Fully compensated 🕂 widest operational range	Small effect Dual=> fully compensated	Some effects	Some effects	Some effects
Resistance to Poisoning	Strong 🖴	Strong	Week	Week	Week
Selectivity	High Selectivity 🛛 🚍	High Selectivity	Low selectivity	Target gas	Low selectivity

New sensors/detectors are coming based on Thermal Conductivity and Speed of Sound

MPS[™] PROVEN BEST IN CLASS

Nevaualiana	

MPS[™] A2L – Only sensor that achieves

- IEC 60335-2-40 Edition 6 (Jan-2018)
- UL/CSA 60335-2-40 Edition 3 (Nov-2019)
- ASHRAE Standard 15-2019,
- ASHRAE proposed Standard 15.2P (Advisory Public Review)
- JRA Standard 4068T: 2016R

ARCHICE Air-Conditioning, Heating and Refrigeration Technology Institute Final Report

AHRTI Report No. 9014

- Refrigerant detector characteristics for Use in HVACR
- Equipment-Phase I Final Report March 2020

	Letter Code	Sensor Type	% of Requirements Passed	Ave. time delay, θ [sec]	Ave. time constant, τ [sec]	$T63.2 = \theta + \tau$ [sec]				
	А	MMM (MPS™)	100 %	4.5	0.25	4.75				
_	В	NDIR	96 %	1.6	15.8	17.4				
	С	TC	86 %	0.0	0.1	0.1				
	D	NDIR	79 %	0.1	13.7	13.8				
	E	MOS	75 %	(annot be determined.					
	F	MOS	64 %	(Cannot be determine	ed.				

No. Pri	sority nary	Requirement	C 60335-2-40 ED4	03 25 2 40 ED 8	16.2019	120	168											
	nary			UL/CEA	ASHRAF	ASHINE 1	IRA ADART: 20	*	•	¢	D	£	,	6	н		2	ĸ
	many	Sensing principle						MMMM ⁴	NOR ²	101	NDIE	MOS*	MOS	82	MOS	NDIR	MOS	NOIR
a. prov	restore	Capable of sensing presence of refrigerant (for A2L group)	٠	•	•	•	•	Ves	Yes:	Wes.	Ves	Yes	Yes	Ves	Yes:	Yes	NO	Yes
2 SIPCO		Capable to be installed "within the unit" when required	٠	•	•	•	•	Yes	Tes	Tes:	Yes	Yes	Yes	Ves	Yes	Yes.		Tes
l seco	ondary	Capable to be installed "remote from unit" when permitted	•	•	•		•	Yes	Tes	Yes.	TES	Yes	Yes	Yes	Yes	Yes		Yes
4 seco	ondary	Capable to be installed "indoor coil cased assembly" when required		•				Tes	Tes	-	Tm	Yes	Yes	Tes	Yes	THE		Tes
5 Seco	ondary	Capable to be installed "in air supply duct work" when permitted				•		Yes	Yes	Yes.	Yes	Yes	Yes	Yes	Yes	Yes		Yes
prim	mary	Comply with UL60335-2-40 Annex LL	٠	٠				Yes	Yes	Yes	NS ⁴			Yes	NO	NS		NS
7 seco	ondary	Sensor should work when the voltage applied is varied by ±10% rated voltage					•	Yes	Yes	Ves	Yes	NO	Yes	Ves	Yes	Ves	1	Ves
prin	nary	Capable of number of cycles of operation (300 for self-resetting, 30 for non-self-resetting)	•	•				Yes	Tes	Yes	Yes	Yes	NS	ves	Yes	Tes		Yes
prim	mary	Sensor should not be a multiport-type device			•			Yes	Yes	Yes	Yes	Yes	Ves	Ves	Ves	Ves		Yes
0 prim	mary	Capable of using a setpoint less than 25% of LFL ⁸	٠	•	•	•	٠	Yes	Yes	Yes.	Yes	Yes	Yes	Ves	Yes	Yes		Yes.
1. priv	nary	Sensor should have an output to indicate the presence of a refrigerant concentration exceeding the set point	•	•	•			No.	-		No.		-	Ver	-	Ver		
2 1000	ondary	For indicating type, setpoint should be preset (e.g. Factory set)						-	1005	wes.	March 1	-	wes.	Ves	wes.	NS		-
3 seco	ondary	Pre-set setpoint level should not be adjustable by user			\vdash			And I	Tere	Vez	100	Varia	Yes	Yes	Yes	NS		-
4 prim	mary	Complies with the requirements IEC 60079-29-1 for Group II equipment		•	Γ			Tes	Tes	Yes.	Tes	10	NS	NS	Yes	NS		NS
5 prim	nary	Sensor should still function after 100% refrigerant exposure for 480-490 min (used for long term stability Group II test)		•				Yes	785	Yes	Ves	NS		-				Tes
6 prim	nary	Sensor should not show false or nuisance trips or show signs of poisoning after being subjected to the gas and vapor types specified by Table LL-4A.1DV		•				Yes	Yes	Ves	Ves	Yes	NS	Yes	Yes	-963		
7 prim	mary	Capable of meeting response time requirement	•	•			•	Ves	Yes	Yes	Yes	Ves	Yes	Yes	Yes	Ves.		
8 prim	mary	Sensor should withstand condensation condition					•	Ves	Yes	Yes	Yes	Yes	80	Yes	40	NO.		
9 prim	nary	Shall comply with the requirements over the full range of operating temperature and humidity as specified by the HVACR essignment manufacturer		•			•	Yes	-	-			Yes	-	-			
0 prim	mary	Accuracy of setpoint meets requirements	•	•			•	Ves	Yes	Yes	Yes	NA ⁷	NA	.Yes	Yes	N5		· Ves
1 prim	mary	Includes output for signal or trigger of mitigation and ventilation	•				•	Yes	Tes /	Tes	Yes	Tes	Yes	Tes	Tes	Yes		Tes
2 prim	mary	Resistance to vibration, can pass required vibration test	•					Yes	NS	NS	NS.	Ves	NS	Yes	NS	NS		NS
1 prim	mary	Includes means for self-testing	•	•		•	•	Yes	Tes	Yes	Yes	Yes	Yes.	Yes	Tes	Yes.		Tes
4 prim	náry	Self-test at least every hour		•		•	1	Yes	Tes	Yes	Tes	Yes	Yes	Tes	Tes	Tes		Tes
5 prim	mary	Active trouble alarm if a failure is detected						Vas	Yes	Yes	Yes.	Ves	Yes	Yes	Yes	Yes		-
6 prim	many	Does refrigerant sensor have a defined life?		•		•		Ves	Tes	-	-	Ves	-	Yes	Yes.	-		-
7 prim	nary -	If there is a defined life, sensor should have end of life indication moeting the requirements	•			•		Yes	Tes	-	-	-	-	-	Tes	Tes		ves
8 5000	ondary	Sensor marking and identification meets requirements	•	•				Yes	Tes	Yes	Yes	Yes	Yes	Ves	Yes	Yes.		Tes

STAND 5 - 230

Presentation of the MLD (Molecular Leakage Detector)

The choice of GVZ for the new leakage detector

MPS™ technology inside by NevadaNano

MLD MAIN FEATURES

TARGET GAS

(A1) R404A, R407C, R-410a (A2L) R32, R454A, R454B, R454C, R455A, R1234ze/yf, (A3) R290, R600, R600a, R170, R1270 **ACTIVE COMPENSATION** Readings are compensated in pressure, temperature and humidity ACCURACY Comply with IEC/UL 60335-2-40

RESPONSE TIME 1st detection < 12 s T90 < 20 s

LIFETIME More than 15year Without maintenance

> Working temperatures -40°C +70°C

> > IP Grade IP65

4 OUTPUT SIGNALS Modbus RTU Analog 4-20mA, Analog 0,4-2V Relays (2x)

OUTPUT ALARMS Relay 1 – Low concentration Leaks Relay 2 – High concentration Leaks & Malfunctions **Fail Safe SW** Built-in diagnostic and watch dog **CROSS SENSITIVITY** High gas selectivity

No false positive from fouling gases

POISONING IMMUNE

CERTIFICATIONS CE, EMC, RoHS IEC60335-2-40 EN60079-0, EN60079-11 ATEX SIL1/SIL2

CERTIFICATIONS

GVZ commitment for Low Environmental Impact Products

GVZ collaborated with Meliconi Engineering and *Politecnico di Torino* (Engineering University of Turin) in order to calculate the overall impact on *CO2 emissions* due to the production of MLD DETECTOR

The calculation of the energy impact started focusing on all components with the analysis of all sources by tracing the entire raw material supply chain, from the mine to the entire transformation process, especially considering the nation where the process took place (i.e. one gram of copper extracted in India has a different impact on CO2 than the same gram of copper coming from EU). All the transports in between have been considered.

=> The result is that, for every detector, nearly 1.6kg of CO2 has been produced

Carbon Footprint:

The CO2 equivalent emissions in the production of a single MLD device is 1,588 kg. The carbon footprint of the MLDs is calculated by using the cradle-to-gate LCA (Life Cycle Assessment) method. This means that the system boundary include all greenhouse gas emissions that occur from the input of raw materials (cradle) to the end of the product's production (gate).

INSTALLATION EXAMPLES

Complete Gas

Thanks for your attention!

You are welcome at our booth: hall 5 – stand 230

NürnbergMesse, Refrigerant Leakage Detection – The last technology for mass production sensor, Thursday, 10 October 2024

