

Chillventa Specialist Forums 2024 CSG Forum

CONNECTING EXPERTS.

New Technology in light of F-Gas 3.0

CENTRO

GALILEC

STUDI

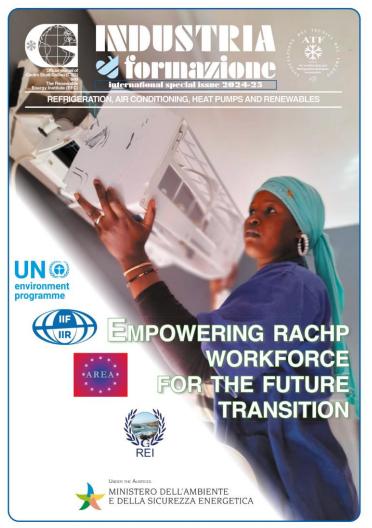
Forum Agenda

Arco Buoni, CSG – Technical Director | *Presentation of the International Special Issue 2024* and moderation of the event

Sustainable approach to the industry"

Gianluca Lillo, General Gas Kryon, R&D Project Engineer | "Internet Of Things for Commercial Refrigeration: the case study"

<u>Q&A time</u> at the end of the presentations



International Special Issue – ISI 2024 : Empowering RACHP Workforce for the Future Transition

- Joint pubblication UNEP, IIR, AREA, CSG under the auspices of Italian Ministry for Environment and Energy Safety
 - 10° edition: published since 2006
- Topic: strengthening the RACHP workforce for the future challenges of the sector
- Forewords by the Italian Minister of Env. , UNEP, IIR & CSG
- **24 sector-specific articles** about current exploitable and available technologies
 - Contributions from global associations, institutions, (AREA, AHRI, ASHRAE, ISHRAE, EPEE, FAIAR, U-3ARC, ...)
- Distributed at International Events (MOP, COP, Chillventa,

etc)

Topics

- New European, American and global regulation to phase down or out HFCs; EU's F-Gas regulation,
- Achieving energy efficiency through refrigerant and cooling transition; preparations for Kigali Implementation Plans (KIPs),
- Global Cooling Pledge, MEPS (Minimum Energy Performance Standards), National Cooling Plans,
- Start of HFCs phase down in Art. 5 Countries,
- Low-GWP RAC technologies for high ambient temperature regions,
- Low-GWP and energy efficient refrigeration and air conditioning technology,
- Refrigeration and air conditioning standards and codes,
- Illegal trade in ozone depleting and high global warming refrigerants,
- Heat pumps,
- Women in RAC.

The Latest Technologies in Refrigeration and Air Conditioning

The Cold Chain, Environment, Energy, raining, Certification, Legislation, Standards, Safe

Speakers and Presidents invited include Leading Global Experts from: United Nations Environment (UNEP) | UN Industrial Development Organisation (UNIDO) European Commission DG Clima | International Institute of Refrigeration (IR-IIF) European RAC Associations (AREA) | Association Française du Froid (AFF) AHRI - ASERCOM - ASHRAE - EPEE | Politechico of Milano, Torino Universities of Ancona, Genova, Padova | The George Washington University (USA) Heriot-Waitt University, Glasgow Caledonian University, imperial College of London, Edinburgh Napier University University of East London, The Universities of Palermo, Perugia, Roma, and all the AC&R European Associations

Chillventa Specialist Forums 2024 CSG Forum

CONNECTING EXPERTS. The Future of Refrigeration: the EPTA vision for an Innovative and Sustainable approach to the industry

> Joachim Dallinger Epta Deutschland, Country Marketing Manager

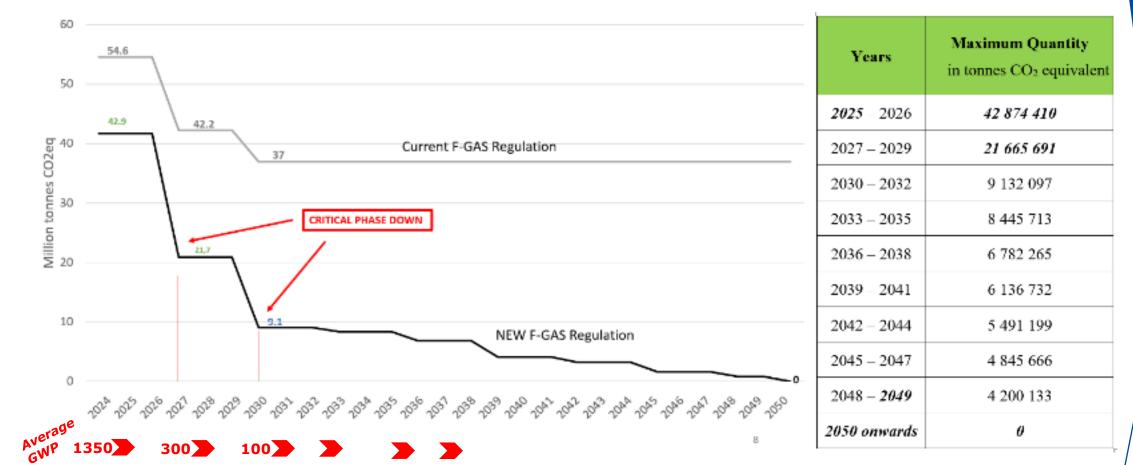
ta

REGULATION (EU) 2024/573

NEW F-GAS REGULATION ENTERS IN FORCE TODAY

Epta is the **Green Transition** Enabler for natural refrigeration

F-GAS REGULATION REVISION: INDUSTRY WANTS MORE AMBITION


Incentives and subsidies Accelerated HFC phase down HFCs vs NatRefs Compulsory natref training More bans by 2025 Servicing bans More ambitious climate targets

Updated standards

8

¢

The new F-Gas introduces for the first time the **complete elimination** of the consumption of hydrofluorocarbons (HFCs) by 2050

Domestic refrigeration : GWP<150 from 2015; Stop F-gas from 2025 **Refrigerators and freezers for commercial use (self-contained)** : GWP<150 from 2025

Multipack centralised refrigeration systems for commercial use with a rated capacity of 40 kW or more : GWP<150 from 2022

All stationary refrigeration equipment : GWP<150 from 2030

All the traditional HFCs (R448A, R449A, R134a, etc.) prohibited in 2030 Only NATURAL REFRIGERANTS and A2L (midly flammable) remain

10

Servicing or maintenance : The use of F-gases with

- GWP≥750 for stationary refrigeration equipment from 1 January 2032
- GWP≥2500 for air-conditioning equipment and heat pumps from 1 January 2026
- is prohibited, with an exemption for reclaimed or recycled.

		2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
equipment ref Equipment for intended usage below -50°C is exempted. Re ref	Virgin refrigerant	GWP <2500 No lower capacity limit compared to the previous regulation.						GWP <750 Stationary equipment excluding chillers.					
	Recycled/ reclaimed refrigerant	No service prohibition							GW	/P <2500)		

11

THE PFAS ISSUE

Per- and polyfluoroalkyl substances (PFAS) are a group of approx. 10.000 man-made chemicals that are used in a variety of industries due to their sealing, temperature and pressure resistance, low friction properties.

"Forever chemicals" are very persistent in the environment and in the human body – meaning they don't break down and they can accumulate over time.

The majority of F-gases are or degrade in PFAS as well as their potential breakdown product called TFA (Trifluoracid) - few exceptions (R32, R152a, R23, R1132)

 مر

Epta

1. Investment cost

Life-cycle cost for the consumer (upfront and running costs)

2. Standards & Legislation

S&L includes bans, taxes and voluntary agreements

3. Complexity

Complexity of manufacturing and operating the product

4. Risk Awareness

Perceived and actual risk of using the product

5. Market Readiness

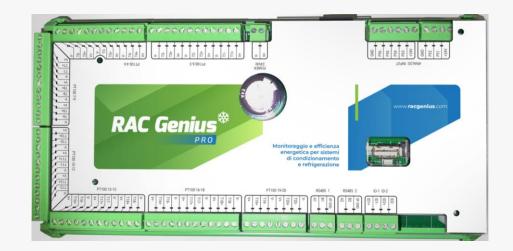
Market competence in safe adoption of the new technologies

NATURAL REFRIGERANTS

100% of Epta's solutions portfolio with natural refrigeration

Plug-in with natural refrigerant specifically designed for F&B segment Remote CO₂ cabinet with proprietary full glass door design

¢Ę,

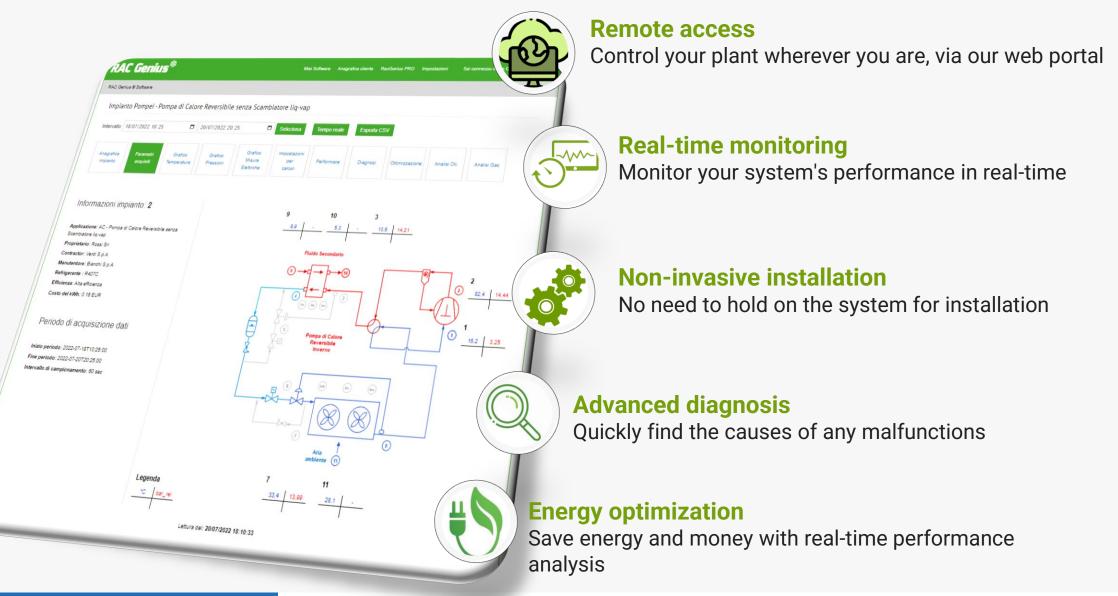

Description

Rac Genius Pro is a hardware and software system that measures and **enhances the performance** of HVAC-R system through the I.o.T. technology. It monitors operational parameters, evaluates efficiency, and provides recommendations for adjustments to improve performance, achieve **energy savings**, and **reduce environmental impact**.

How's made

- Switchboard with advanced electronic control board – internet connected
- Cloud web service for remote and realtime monitoring of the plant
- High-precision measuring transducers:
 Temperature Pressure Power meter

Key advantages


The Rac Genius Pro **plant monitoring** system offers real-time measurement and control of critical parameters such as temperatures, pressure levels, and energy consumption. It continuously evaluates system performance, tracks important parameters, **detects deviations**, suggests **energy optimization** strategies, **recommends maintenance** actions, and reduces operational costs while improving sustainability and system reliability.

17

Main features

✓ KRYON O B-BRAZE

R.G. Pro: Supermarket installation essentials

Temperature sensors

A 4-wire RTD temperature sensor compensates for wire resistance, providing **precise measurements** for **long cable runs**. Insulated with Magnesium Oxide, it ensures **reliability in harsh environments**.

Temperature sensors are installed in crucial locations: suction line; discharge of each compressor; condenser outlet; outside ambient

Pressure sensors

Piezoresistive sensors, 4-20 mA output signal. Provides reliable pressure readings. Pressure sensors are installed on the low and high pressure sides.

Current transformers

A 333 mV secondary output CT measures AC by converting high primary current to a lower voltage signal. It has an accessible core for easy installation without circuit disconnection. Connected to an energy meter, it accurately measures energy consumption in residential, commercial, and industrial settings.

Rac Genis Pro & Solstice L40X in the Supermarket

Components List:

Temperature transducers: MT line

➤ n. 7 pt100 A class 4 wires (2 suction, 2 discharge, 1 receiver discharge, 1 condenser

discharge, 1 outside ambient)

Pressure transducers

> n. 2 rated 0 - 40 barg (low and high pressure side)

Current transformers:

> n. 3 for each compressor + n. 3 for whole power plant current \rightarrow a total of 9 CT

The MT & LT Arneg plant main features

✓ Condensers: Modine model EGK 912EL4B4, 54 kW capacity, rated @ 50 °C (mid

temp), PED group 1

 \checkmark LT rack: n. 1 Bitzer model 4DES-5Y, tot capacity 5 kW, rated @ -35 / + 50°C (mid

temp)

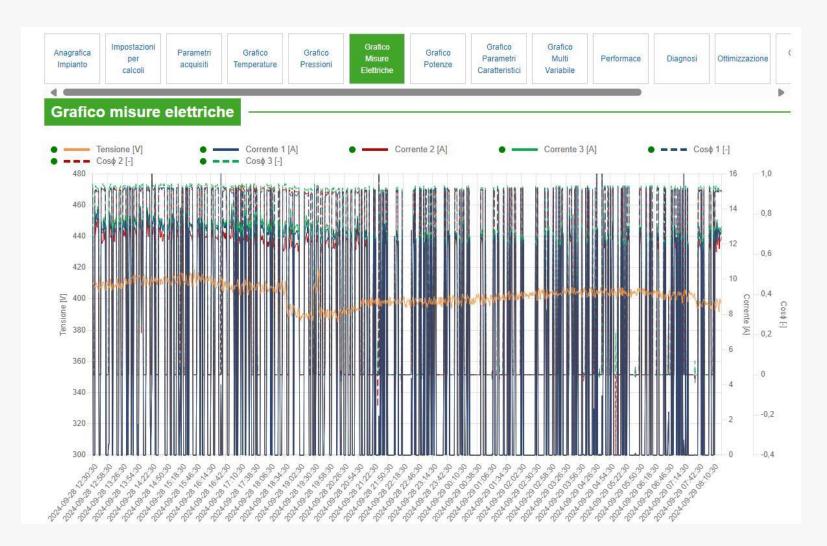
∢ KRYON **○** B-BRAZE

 \checkmark MT Rack: n. 2 Frascold model Q7-36.1Y, tot capacity 32 kW rated @ -10 / + 50°C

(mid temp)

 \checkmark Electronic control: Dixell

Stripcharts: Temperatures & Pressures


Continuously monitoring the pressures and temperatures on the key points of the system can build a base of datas that can be analyzed by the A.I. algorithm developed in the Cloud server. Stripcharts will be available for long time for further analysis

Stripcharts: Currents and Voltages

General**G**as

Measured quantities

- System supply voltage
- Current drawn by the individual phases
- Phase shift angle of the individual phases

Quick detection of the phase shift in the feed

Plant Analysis – Performance Summaries

4. Parametri di funzionamento

*This values are only exemplary, not referred to specific application

- > Analysis of on/off times
- Analysis of the operating time at steady state
- Summary of thermal/electrical energies in the analysis period
- Evaluation of the average thermal/electrical power in the analysis period
- COP Assessment

- Calculation of average
 evaporation/condensation
 temperatures
- Calculation of average DTs
- Subcooling calculation
- Calculation of overheating
- Compressor efficiency calculation

1. Durata periodo di analisi *This values are only exemplary, not referred to specific application

	Periodo di analisi				
	sec	ore	%		
Durata periodo di analisi:	71.520	19,87			
Durata compressore ON:	50.460	14,02	71%		
Durata compressore OFF:	21.060	5,85	29%		
Durata compressore a regime nel periodo ON:	26.040	7,23	52%		
Durata compressore a regime nel periodo di analisi:			36%		

A This values are only exemplary, not refe		becine ap	prication			
	Valori misurati			Valori limiti		
	Medio	MIN	MAX	MIN*	MAX*	
T evaporazione [°C]:	-13,5	-17,2	-4,7		-8,0	
T condensazione [°C]:	34,5	30,0	39,4			
T aria ambiente [°C]:	23,2	18,2	27,1			
ΔT condensatore [°C]:	11,3				10,0	
Sottoraffreddamento [°C]:	5,3	2,2	7,9	2,0	5,0	
Surriscaldamento passivo [°C]:	11,5	5,2	16,7		10,0	
Glide evaporatore [°C]:	7,6					
Glide condensatore [°C]:	10,5					
Portata totale massica media del compressore [kg/h]:	590	123	1.410			
Portata massica media del compressore 1 [kg/h]:	486	0	1.079			
Portata massica media del compressore 2 [kg/h]:	494	0	994			
Efficienza isoentropica compressione [%]:	66,2%	53,7%	87,6%			
Efficienza isoentropica compr 1 [%]:	69,8%	56,8%	159,2%			
Efficienza isoentropica compr 2 [%]:	70,4%	55,9%	117,4%			

Comparison with optimal values Out-of-range alerts

Plant Analysis – Diagnosis & Optimization

- Database with the main causes of malfunction:
 - Charge Level
 - Thermostatic valve condition
 - Suction insulation
 - Heat exchanger status
 - Undersized heat exchangers

	*This values are only exemplary, not referred to specific applicat							
Diagnosi								
Diagnosi								
Possibile malfunzionamento	ma	Durata alfunzionamento (h)	Durata malfunzionamento (% sul tempo a regime)		Azione suggerita			
Circuito Sottocaricato:		0,00	0%					
Circuito Sovracaricato:		3,90	54%	Possibile	Scaricare il circuito			
Coibentazione tubazione aspirazione non sufficiente	:	5,47	76%	Possibile	Aumentare la coibentazione della tubazione di aspirazione			
Efficienza volumetrica del compressore scarsa:		3,90	54%	Possibile	Sostituire il compressore (nel caso in cui il surriscaldamento utile sia maggiore del valore massimo accettabile)			
Presenza aria nel circuito:		3,90	54%	Possibile	Sostituire la carica di refrigerante con Refrigerante di buona qualità (nel caso in cui il surriscaldamento utile sia minore del valore minimo accettabile)			
Condensatore sporco:		7,12	98%	Possibile	Pulire il condensatore			
Condensatore sottodimensionato:		7,12	98%	Possibile	Sostituire il condensatore			

□ Surriscaldamento passivo 🛛 🖾 ΔT Evaporator

AT

26.3

42,1

15,8

11.1

6,1

5,0

4.3

2,9

-0,3

70.82

Ottimizzazione chiller

26.3

42,1

15.8

11.1

2,0

91

3.0

2.9

-0,3

70,82

Sottoraffred

Surr. utile

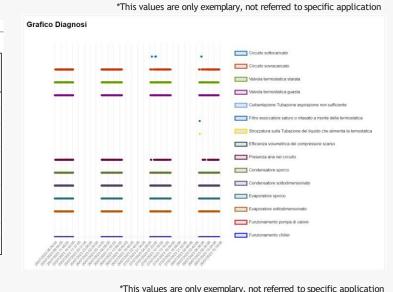
26.3

42,1

15,8

11,1

2,0


9.1

4.3

5,5

-0.3

70,82

*This values are only exemplary, not referred to specific application

Surr. passiv

26.3

42,1

15,8

11,1

2,0

9,1

4.3

2,9

4.0

70.82

AT Condensatore

26.3

42,1

15,8

11.1

2.0

9.1

4.3

2.9

-0,3

75.00

Rendimento compressore

Ciclo Teorico

26.3

34,3

8,0

11.1

6,1

5,0

3,0

5.0

0,0

100.00

Ottimizzazi

26,3

34,3

8,0

11.1

6.1

5,0

4.3

2,9

-0,3

70,82

Utente

COP_rafr:	3,79	5,80	4,84	4,35	3,74	3,79	3,70	4.02	5,68	7.91
Energia elettrica assorbita dal compressore [kWh]:	390,27	255,30	305.64	340,25	395,24	390,49	400,23	368,53	260,47	187,11
Potenza elettrica assorbita dal compressore [kW]:	12,39	8,10	9.70	10,80	12,55	12.40	12,71	11,70	8,27	5,94
Costo energia elettrica assorbita dal compressore [€]	62,44€	40,85€	48.90 €	54,44€	63,24€	62,48 €	64.04€	58,96 €	41,68€	29,94
Risparmio economico nel periodo di analisi [€]	¢	21,59€	13,54€	8,00 €	-0,79 €	-0,03€	-1,59 €	3,48 €	20,77 €	0,00€
Risparmio economico orario (€/ora)	¢	0,69€	0,43€	0.25 €	-0.03€	-0.00€	-0.05€	0,11€	0.66€	1,03 €
Risparmio economico annuo (€)	¢	6.005.30€	3.765,50 €	2 225,77 €	-220.96 €	-9,62 €	-443,19€	967,53€	5.775,27 €	9.039
Indice di Ottimizzazione Energetica [%]	47,1 %	100,0 %	80,3 %	66,7 %	45,2 %	47,1 %	43,2 %	55,7 %	98,0 %	126,7
Potenza di Riscaldamento generata al Condensatore [KW]:	56.09	65,88	58,69	64,18	55,49	56.18	56.24	55,40	67,05	63,29
Potenza di Raffreddamento generata all'Evaporatore [KW]:	46,98	58.07	51,28	55,29	46,39	47,00	45.89	46,98	60,15	59,35
Variazione % della durata del funzionamento delli	119,1 %	100,0 %	111,7 %	104.8 %	120,1 %	119,1 %	121,0 %	119,1 %	96,4 %	97,8 9

Real-time diagnosis of possible malfunctions

Maintenance Intervention Suggestion

Energy Optimization Index

Scelta parametri da ottimizzar

unzioname

o attuale

26.3

42.1

15.8

2.0

91

-0.3

70.82

Surriscaldamento utile

ttimizzazio

Globale

26.3

34,3

8,0

11.1

6.1

5,0

3,0

5.5

ΔΤ

ondensato

26.3

34,3

8,0

11.1

2.0

91

4,3

29

-0.3 70.82

C Sottoraffreddamento

Parametri da

ottimizzare

Temperatura media

ondensazione [°C]

Temperatura media 11,1

Sottoraffreddamento 4.3

Surrisc Utile I°C1 2.9

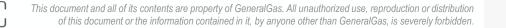
ΔT condensatore

secondario [°C]

Temperatura di

AT evaporatore

Surrisc. Passivo


Rendimento

compressore [%]:

vaporazione [°C]

dell'aria ambiente [°C]: Temperatura di

24

Grazie per l'attenzione!

GeneralGas srl

Via Aosta, 5 - Cernusco S/N Milano (ITALIA)

Tel.: +39 02 92141835 Email: info@generalgas.it

www.generalgas.it

www.facebook.com/generalgaspage/

www.linkedin.com/company/general-gas-s.r.l./

www.instagram.com/generalgaskryon/

