Hall 4A

Chillventa Specialist Forums 2024 **Chillventa Fachforen 2024** CTING S. CONNEC

Shift your perspective

Industrial Heat Pump solutions to decarbonize the F&B Industry **Focus: High temperatures**

Ivan Rangelov

Industrial Heat Pumps Manager

ENGINEERING TOMORROW

Decarbonizing industry Where to start?

Currently available heat pump technologies coverage

Available prototypes of heat pumps with **very high TRL**

		Heat Consumption (TWh/a)	EU-28	
		Space heating	297	16%
٦.		Hot water	25	1%
L		PH <60 °C	55	3%
		PH 60 to 80 °C	53	3%
	heat	PH 80 to 100 °C	89	5%
	SS	PH 100 to 150 °C	192	11%
		PH 150 to 200 °C	80	4%
		PH 200 to 500 °C	151	8%
		PH 500 to 1'000 °C	376	21%
		PH >1'000 °C	504	28%
		Total Heat Consumption (TWh/year)	1'821	100%
		Total Process Heat <60 °C to >1'000 °C (TWh/year)	1'499	
		Total Process Heat 90 °C to 160 °C (TWh/year)	237	16%

Process Heat Consumption (TWh/a)							
Industrial sector	PH 1	00 to 150 °C	PH 150 to	200 °C			
Iron and steel		19.8		7.3			
Chemical		19.3		15.4			
Non-ferrous metal		2.7		1.0			
Non-metallic minerals		36.5		0.0			
Food and tobacco		68.0		8.8			
Paper, pulp and print		10.0		39.4			
Machinery		<mark>6</mark> .9		2.9			
Wood and wood products		0.2		0.7			
Transport equipment		1.2		0.2			
Textile and leather		<mark>6</mark> .9		0.0			
Other		19.1		4.2			
Total		191		80			

 ڳ

In this presentation: outline **which** heat pump technologies are relevant for high temperatures (sinks > between 100°C and 150°C) as well as give some examples of combined cooling and heating for industrial applications

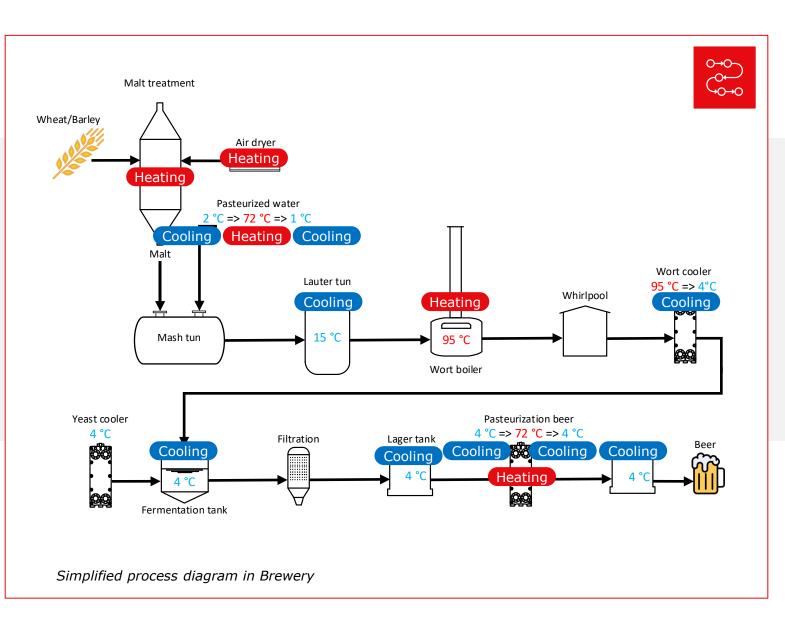
Summary process heat demands split by temperature and segments EU-28 (Arpagaus, High Temperature Heat Pumps Update 2024)

	•00	●● 0	•••
¥:	Mature and market	Very high technical	Food & beverage sector –
	available heat pump	readiness on prototypes	most heat processes are
	solutions for sinks < 100°C	for sinks 120-130°C	within reach!

Example Food & Beverage site Brewery process diagram

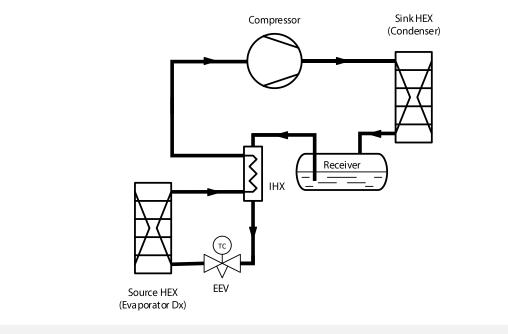
⊿ E∛

•00

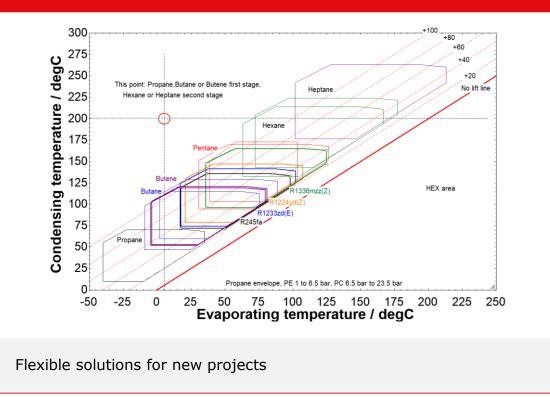

Multiple consecutive cooling and heating processes

 $\bullet \bullet \circ$

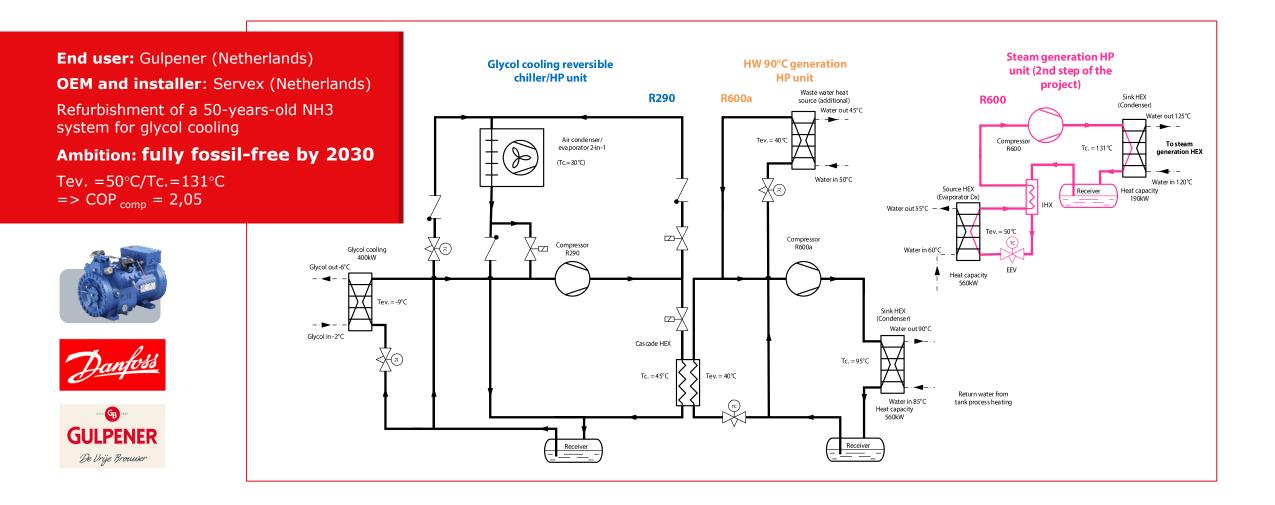
Traditionally: cooling & process heating disconnected. Fossils are burned for process heat


•••

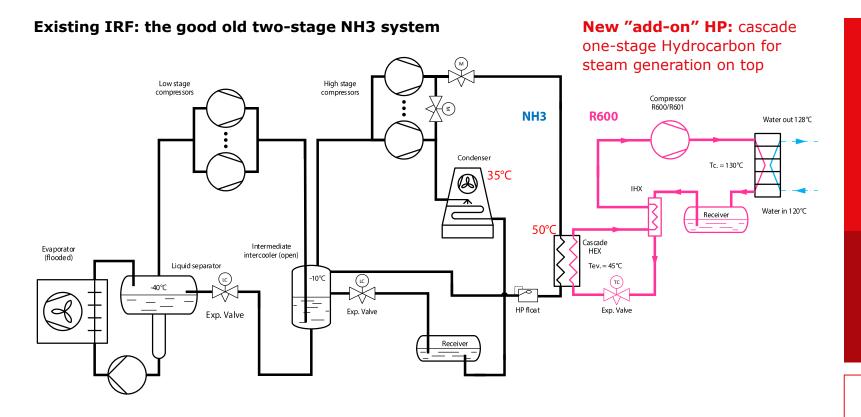
Decarbonize: We can connect cooling and process heat, and disconnect from fossils!


Cooling & process heating in a brewery How to connect cooling and process heating systems?

Generic one-stage system


- Typical max lift 80-90 K
- Combinations are necessary to cover cooling and heating processes

How to combine cascades?



Reference new project: Hydrocarbon system only Brewery application – process cooling, heating and steam generation

Refurbishment example: Hydrocarbons on top of an existing Refrigeration system Brewery application – process cooling, heating and steam generation

Typical two-stage NH3 IRF system in a F&B plant

≥ ≣

$\bullet \bullet \circ$

• • •

Add-on NH3 HP => max. water $90-95^{\circ}C$

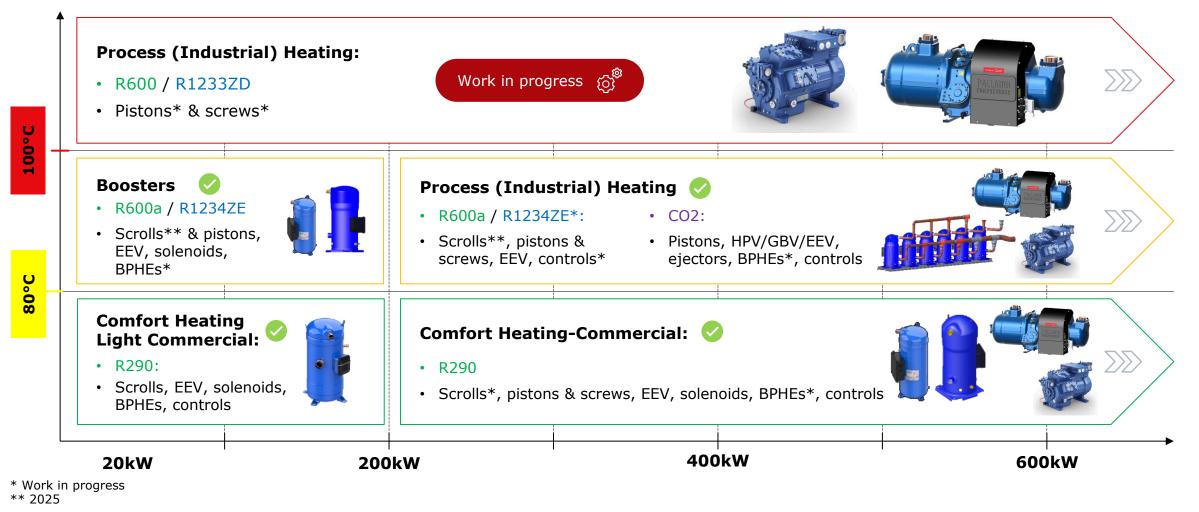
•••

Add on e.g. R600/R601 HP => hot water/steam out at 120°C/130°C

Challenges:

- Cascade HEX temperature
- Capacity mismatch in existing system and steam generating heat pump
- Control

Good news: Yes! R600 in cascade "on top" of the standard NH3 system can get us water out at 120°C



Bad news: We need to increase NH3 condensing temperature to 45-50°C for a reasonable COP

Danfoss heat pump solutions

Heat Supply

ENGINEERING TOMORROW

Thank you for your attention! Let's meet at the Danfoss Booth Hall 7, booth 251 Hall 4A

Chillventa Specialist Forums 2024 **Chillventa Fachforen 2024** CTING S. CONNEC

